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Abstract, We had previously shown that topological and mettre properties of 2d mosaics

obtained from the Voronoi tesselation of monosize packings of discs deviate from those of a totally
random mosaic. Here, we describe a mosaic obtained from the radical tesselation of a two-size

mixture of discs at different packing fractions. Two kinds of packings are considered, expedmental
(discs moving on an air table) and numedcal. The deviations are even more stdking, particularly at

large packing fraction where neither Aboav's nor Lewis' law hold moreover, some distributions,

such as the distribution of the number of sides of the cells, or distribution of the oeil area, are split

mto two parts, each of them related to one species of discs. Finally, we consider polydisperse
packings as to their topological properties, the mosaics obtained from those packings obey
approximately the laws of random mosaics but this is not so for their mettre properties, which are

still largely affected by stedc exclusion.

1. Introduction.

Binary (or more generally, polydisperse) assemblies of discs have been less studied than

monosize systems, either from the experimental or theoretical points of view. Most of the

results deal with compact assemblies which are supposed to mimick in the grain space only
bi-dimensional packings under gravity. For the densest (disordered) packing it has been

venfied experimentally and justified using topological arguments that :

the maximal packing fraction C~~ does not depend much on the percentage of each

species and is close to 0.84, a value a little higher than that found in the monosize case

(C
=

0.82) [Ii, and
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the physical (contact) coordination number z is close to 4 and does not depend much on

the mixture either.

Dilute assemblies have been little studied, except for numerical experiments on random

sequential adsorption (RSA) assemblies [2]. The development of low dimensionality exper-

iments (adsorption or deposition processes, suspensions of particles, breath figures.. has

shown the need for an analysis of disorder at ail packing fractions. The notion of
« true

contact »
which is not always clear even in compact packings is no longer adequate and

must be replaced by the idea of
«

topological neighbour ». The simplest way for determining
the local arrangement around one grain is provided by the radical tesselation proposed by
Gellatly and Finney and others [3], which generalizes to polydisperse packings the Voronoï

tesselation used for monosize discs or point assemblies [4].

The main aim of this paper is to study binary assemblies of discs with a given size ratio at

any concentration and any proportion of small and large discs through the arrangement of the

Voronoï polygons. Comparison with
«

random
»

mosaics found in the literature and with the

mosaics generated from monosize assemblies has been performed and because of the existence

of two disc sizes which provides two kinds of cells, many differences are expected.
This paper is essentially experimental. The larger part is devoted to the study of binary

mixtures of discs with size ratio 2 index refers to the small discs and index 2 to the large

ones. Most of the discussion is concerned with the results on expenmental assemblies of discs

realized on an air table already used for studying assemblies of monosize discs [5]. Some

numerical packings were built for comparison. The assemblies are described in section 2. The

analysis in ternis of the radical generalization of Voronoï tesselation is introduced in section 3.

Sections 4 and 5 deal with the experimental results for the main indicators of the disorder as

ansing from the cell analysis : topological properties such as side number distribution, average
number of neighbours and first neighbour correlations (section 4), metric properties, typically

average areas (section 5). In section 6, we see how these properties are modified when one

considers polydisperse packings built numerically.

2, The assemblies.

2,1 EXPERIMENTAL ASSEMBLIES. The experimental device is descnbed in reference [6].
Because of small local hetereogeneities in the porous table, discs move and rearrange

permanently. This, together with the absence of friction, allows the realization of homogeneous
random assemblies at ail densities. Systematic measurements have been performed on binary

mixtures (2 Ri
= cm and 2 R~

=

2 cm) starting from 2 different viewpoints :

at fixed numerical proportions ni, n~ (ni + n~ =
1) of species and 2, we increase the

packing fraction C (or concentration, or density) up to the densest disordered packing fraction ;

at fixed packing fraction C, we change the proportions ni and n~ of small and large discs.

Snapshots of the assembly are taken at different times. They are read using an image

processing analysis which determines the position of the centers and the radii. Any new

quantity of interest can be derived from these data only. The number of samples is chosen so

that we have enough statistics on both species, typically at least a thousand discs in each

category, and the errors have been calculated from the dispersion found in measurements on

individual photos. Due to constant rearrangements, time averages are also ensemble averages.

2.2 NUMERICAL ASSEMBLIES. We have tried several kinds of numencal assemblies :

(1) At low packing fraction, we have generated RSA [2] binary assemblies of discs. We

recall briefly the procedure discs are placed one by one, the center being chosen at random. If
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the disc does not overlap with already deposited discs, it is definitely placed and does not move

anymore ; otherwise, it is rejected and another center is tried, the size being kept. The process

ends when a given concentration is reached or when no supplementary disc may be added

~jamming limit C ~). Some variations in the building fuie can be used according to the choice

of the species of the disc to be placed : one may position ail the large discs first and then the

small ones which is easier
-, or position the small ones first and then the large ones, which

is more difficult, or choose randomly the species of the disc to be positioned. We chose the

first alternative.

(2) at the opposite, for very compact assemblies, we used a 2d adaptation of the Powell

algorithm [7] : grains are placed successively under gravity, in contact with already positioned
discs. We get only compact assemblies, with packing fraction of the order of C~ax

=
0.84.

For numerical assemblies, some experiments at a larger size ratio (R~/Rj
=

4) and on some

polydisperse packings were performed both with RSA and Powell fuies. The errors were

calculated from the dispersion of the results obtained on several samples ; due to a better

statistics (several thousand discs in a numerical packing), they are smaller than in the

experimental studies.

3. The procedure.

In compact assemblies, the relative position of discs is correctly described in terms of physical
contact. Contacts are no longer interesting quantities in dilute assemblies where only the notion

of «neighbourhood» has a meaning. Such an approach was extensively developed in

monosize assemblies or point systems : it is the well known Voronoi-Dirichlet tesselation [4],
which substitutes the study of the discs by that of their surrounding cells and may be built at

any packing fraction, the characteristic cell size scaling with C~ ~~~.

For unequal discs, Voronoï tesselation is not a good choice as it may intersect the large
discs. Several generalizations have been proposed and the simplest one, which takes into

account the size of each species is the radical tesselation, proposed by Gellatly and Finney [3]

we choose as a separation fine between two discs the radical axis, I.e. the fine of points with

equal tangents (Fig. la). This fine is outside the two discs and orthogonal to the cerner fine (for

touching discs, it is the tangent) ; when the discs are equal, we recover the Voronoi

perpendicular bisector. When performing this construction for every pair of discs, polygonal

convex cells are generated. Each of them contains one disc and one disc only ; two cells with a

common edge are neighbour cells, and the number of sides of a given cell is simply the number

of first (or nearest) neighbours for the disc. The hierarchy of first, second, etc. neighbours goes

as m the Voronoï case (Fig. lb). Actually, similarities between mediator and radical fines are

deeper : for example, as the vertex coordination number is 3, the topological constramts on 2d

graphs yield agam an average number of sides (n)
=

6 as for any tesselation.

In the followmg, the possible correlations between discs are studied through the correlations

between the polygons of the radical tesselation. The same analysis was performed both for

experimental and numencal assemblies but the results in the paper are quoted mostly for the air

table expenments. Results for numencal assemblies (and eventually for a size ratio 4) are

given in detail only when they yield supplementary information.

4. Topological properties.

We present here results drealing with the simple counting of the cells and their first neighbours.
We follow the same fine as in the monosize case and try to see whether the mosaic generated in

the radical tesselation is
«

random
» or not. We shall see that many differences anse in the

binary case, because of the existence of two different classes of polygons.
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Fig. l. (a) Pdnciple of constnlction of the radical axes. (b) Tesselation in a binary mixture of discs

the striped discs are the neighbours of the black disc.

4,1 DISTRIBUTION OF THE NUMBER OF SIDES OF THE CELLS. The simplest topological

properties can be derived from the knowledge of the distributions p~ jjp~ =1 and

~

p, ~( jj pj
~

=

l, i =

1, 2 and p~
= ni Pi

n
+ n~ p~ ~) of the number n of edges of the cells

n

when respectively ail discs and discs of species i are considered.

Small and large discs behave differently as density increases. At given proportions and low

concentration, the total distribution p~ has a unique maximum near n =

5 or 6 ; then at

mcreasing density, it splits into two maxima which get more and more separated. An example
for an equal number of discs of each species on the air table is given m figure 2. The

distribution is peaked around two values close to n =

5 (for small discs) and n =

7 (for large
discs).

0.4
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0.73

o_3
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=
o-m
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Fig. 2. Side number distribution p~ for binary assemblies of discs at small and large packing fractions

(ni
"

0.5 ).
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The hexagons which were dominant in the monosize case at high compacity are very rare.

As a consequence, the percentage p~ is no longer an order parameter. Although the total

variance

q~ =

(n~) (n)~

remains high, of the order of 1.5, ii cari be seen that it does flot fit the universal check in terms

of p~ which was put into evidence for the classical random mosaics and in the monosize

case [8].
The same holds qualitatively for other concentration ratios on the air table (and for numerical

assemblies), 1-e- the height and the position of each peak depend on the mixture. For a size

ratio 4, and a Powell packing (ni
= n~ =

0.5, maximum compacity) the separation of the cells

into 2 classes is still more striking : 70 fb of the polygons around a small disc are quadrilaterals
and nearly the same percentage of cells around large discs have n =

7 and 8 sides while the

total proportion of hexagons is only 7 fà.

4.2 ABOAV-WEAIRE LAW. In classical mosaics, the average number of sides m(n) of the

first neighbours of a cell with n edges is well fitted by the empirical law [9]

6a+q~
m(n)

=

6 -a + (1)
n

where a is a parameter which is believed to be universal if cells can divide or disappear, and

equal to [loi. The Aboav-Weaire law is a first attempt to study the correlations between

neighbounng cells : the linear dependence on 1/n means that cells with a small number of

edges are surrounded by cells with a langer number of sides and conversely. Actually,

parameter a is of the order of 0.5 in the Poisson Voronoï tesselations [1Il and was found to be

an increasing function of the packing fraction m our monosize assemblies [5] (it goes

approximately from 0.5 to 1.5). Other counterexamples to the value a =
were found in breath

figures [12] (a
=

2 and in some evolutive numerical mosaics [13] (where a can be negative !).

In these cases, cell disappearance may or may not occur.

In fact, the law (1) appears only as an approximation and some (weak) deviations from the

linear dependence of nm(n) on n have been observed numerically[14]. In our binary
assemblies, at least at medium or high packing fraction, when the two species are

differenciated, the result is more striking : Aboav-Weaire law does non hold at ail. The

variations of nm(n) with
n are S-shaped (Fig. 3) ; for n w 5, most polygons anse from small

discs and for n m 7 from large ones ; a break clearly occurs at n =

6 because of the different

surroundings of the two classes. Let us note that for 4 w n w 8, the values of m(n ) come from

an average on several hundred cells, and the non-linearity cannot be attributed to a too small

statistics.

It is possible to study small and large discs separately. For each species, one gets a linear

dependence of nm~(n) (1
=

1, 2 with n and ai = a~ approximately. The a~'s are increasing
functions of the packing fraction and may be large, of the order of 2 or more (when

ni "

0.75 they may reach the value 2.5). However, it is not possible to consider it as a precise
result as the linear fit is performed with 3 values of n only for each species.

5. Metric properties.

A study similar to that for monosize packings was performed for metric properties and

particularly for the cell areas. In the monosize case, some distortions to the empincal laws

were observed because of stenc exclusion : for instance the Lewis law does not hold.



120 JOURNAL DE PHYSIQUE I N°

so

nm(n)
,

A

D suldloniy
~

Ô largeonly

~
° global

30

OEl

n

3 4 5 6 7 8 9 10

Fig. 3. Aboav's law is not verified in dense binary packings (here C
=

0.73 and ni 0.5).

Nevertheless, the behaviour of the total area distribution remains rather regular and follows a

gamma distribution [5, 15].

In binary mixtures, the differences are more striking : as the radical axis is closer to the

center of the small disc, the area of the polygons is directly related to the size of the discs they
contain (this is one of the reasons for having chosen such a tesselation). The different

behaviour of the 2 classes is more accentuated thon in the topological properties.

5,1 DISTRIBUTION OF THE AREAS.- In figure 4, we have plotted the histogram of the

normahzed areas for an equal number of small and large discs and for the monosize packing at

the same density (medium compacity, C 0.45) : for the binary assembly, the two populations

are already well separated. For higher compacity, the separation is even more marked, the

histogram is split into two completely separated parts. Of course, larger size ratios lead to still

larger separations.

5.2 LEWIS LAW. -Lewis [16] has shown that in biological tissues, the average area

A~ of the cells with n sides is an increasing (linear) function of n.

A~
=

Ao(n no)

where Ao and no are parameters of the tissue. This law was venfied later for most random

mosaics in the literature, though a similar law for the penmeter P,~ is sometimes a better fit

(Desch law [17]). We have shown that the Lewis law and the Desch law do not hold in

compact (C m
0.45 monosize assemblies of discs [5], as A~ (and P~) exhibits a minimum for

n =
5 : stenc exclusion is responsible for the high value of the area of low order polygons

(triangles including a disc need more place than quadrilaterals and so on.. ), while the average

size of the cells increases again for polygons with 6, 7, etc. sides as ail neighbour discs cannot

be touching.
In binary mixtures, the strong discrepancy in the disc cell size induces a strong non-hnearity

of the Lewis law with a rapid change at n =

6 (see Fig. 5 for C
=

0.48, as above ; for

4 w n w 8, the values of A~ come from an average over several hundred cells). For a size ratio
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Fig. 4. Histogram of normabzed areas (a) for a monosize packing at C
=

0.46 (b) for a binaly packing

at C
=

0.48 with ni =

0.5.

of 4 and medium concentration small cells have on average areas of 4 to 10 times smaller than

the large ones and the change at n =

6 is very sharp. One may wonder whether some linear

behaviour may exist separately for small and large discs. Actually this is not so for compact
assemblies; if A~ behaves roughly hke an increasing (more or less linear) function of

n for both sizes at low packing fraction as small and large discs are not very differentiated, m

the compact case, the 2 classes behave differently : for small discs, A~ is a function of

n similar to that in the monosize case, with a minimum (at n =
4) due to the steric exclusion.

For large discs, A~ is nearly constant or can even slowly decrease with increasing

n : this is because in this case a langer value of n corresponds to a langer number of small discs

around a large one and a better space filling.

JOURNAL DE PHYSIQUE t T 4, N' JANUARY 1994
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Fig. 5. Average area A~ as a function of n in a binary packing at C
=

0.48 with ni =

0.5 the Lewis

law is not verified.

6. Polydisperse packings.

As seen above, at large packing fraction, a binary mixture leads to bimodal distributions and

then appears as the more
diametricallf opposed to the monosize packing. One may then

wonder how results are modified when more radius sizes are mvolved which allow one to get a

wide range of cell dimensions. In order to see that, we have built numerical polydisperse
packings (6 sizes of discs), either dilute (RSA, C 0.5) or dense (Powell, C 0. 85) packings,
with the same values of radii (6, 10, 14, 18, 22, 26) but different proportions of the disc

species : uniform, mcreasing and decreasmg linear distributions of the radii.

6.1 TOPOLOGICAL PROPERTIES. For ail these packings, the distribution p~ of the number of

sides of the polygons is ummodal with a maximum for n =

6 (Fig. 6). Of course, the shape of

0.3

Pn
.

a

o

002
a

a
Powell

.
WA

a

a

o-i °

o

a

n
0

2 4 6 8 10 12

Fig. 6. Side number distribution p~ m a dense (Powell, C 0.85) and a dilute (RSA~ C 0.5)

polydisperse packing for a uniforrn distribution of radii.
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the distribution depends on the composition of the mixture : the more numerous the smallest

discs, the wider the distribution for large values of n. At a given packing fraction, the

distribution is wider than for a monosize packing and the value of q~ is langer. However, the

umversal law q~ =

f~p~) is well followed by the polydisperse packings.
The Aboav-Weaire law is quite well verified in the polydisperse packings (Fig. 7) with a

parameter a close to 1.3. However, the linearity is not as perfect as in monosize packings.

70

nm(n)

6o

. Rs~

° Powefl

30

n

2o

3 5 7 9 11

Fig. 7. Aboav-Weaire law is quite well verified in dense and dilute polydisperse packings (here the

radius distribution is linearly decreasmg). The errors bars are of the order of magnitude of the symbols.

6.2 METRIC PROPERTIES. The above results show that the defects appearing m a two-size

distribution of discs are to a large part eliminated for a much larger distribution of radii, at least

for the topological properties. This is no longer true for the metric properties. Figure 8 shows

the histogram of the normalized areas A of the cells for a dense packing with linear mcreasing

0.12

P(A)

o-io

0.08 m Powell
11 WA

0.06

o-m

0.02

A

0

0~ 1 1.S 2

Fig. 8. Histogram of the area A of the cells, norrnahzed to its average value, for a dense and a dilute

packing, m the case of a linearly increasmg distribution of radii.
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distribution of radii. One can see that the size of the polygons is directely related to the size of

the discs : the area distribution is split into 6 separated distributions : each of these comes from

one species of discs and its height is reminiscent of the radius distribution. The same is true at

large packing fraction for the other compositions. For RSA packings, the histogram of the

areas is no Ionger multimodal as also shown in figure 8, because steric exclusion is less

important here.

As can be seen in figure 9, the Lewis law is not verified the behaviour of A~ with

n is qualitatively the same as in dense binary mixtures (here again, for 4 w n w 8, the values of

A~ come from an average on several hundred cells, and the non-linearity cannot be attributed to

a too weak statistics). Trie non-linearity is less strong but is still evident in the dilute packings.
The values of A~ depend on the disc size distribution : of course, for a given packing fraction, a

larger number of small discs leads to cells with smaller size. That explains the relative

positions of the curves corresponding to the three radius distributions.
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Fig. 9. Average area A~ as a function of n for dense (a) and dilute (b) polydisperse packings with

respectively umform (6), hnearly increasmg (+) and linearly decreasmg (U) distribution of radii. The

Lewis law is not vedfied.
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7. Conclusion.

We have reported here experimental results on the statistics of cells obtained from the radical

Voronoï tesselation of binary mixtures of discs.

Mosaics behave very differently from the
«

random
» mosaics in the literature and from the

mosaics of the monosize packings. The existence of 2 classes of cells, depending strongly on

the size of the central disc (even at medium density) leads to strong non-regulanties both in the

topological and the metric properties. This holds both for the experimental and numerical

assemblies and the effect is more and more accentuated as the packing fraction increases and

when the size ratio is large.
Finally, in polydisperse packings, the distribution of the number of sides of the cells is more

equilibrated. More generally, as to their topological properties, the mosaics generated from the

tesselation of those packings obey approximately the laws of random mosaics. This is not so

for their metric properties, which are still largely affected by steric exclusion.

We awaiting with the interest the generalisation to binary and polydisperse assemblies of the

arguments leading to the linear Aboav [9, 13] and Lewis [10] laws in random mosaics.
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