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RAsum4 Nous avons observ4 des fluctuations de conductance reproductibles dans
un

petit fil

de GaAs:Si auquel nous avons
fait passer la transition d'Anderson par application d'une tension

de grille. Nous analysons quantitativement la statistique log-normale de conductance
en termes

de fluctuations quantiques tronqu4es. Les fluctuations quantiques dues I de petites variations de

l'4nergie des 41ectrons (contr614e par la tension de grille)
ne peuvent pas se

d4velopper complbte-

ment I cause des fluctuations g40m4triques du r4seau de r4sistances assoc14 I la conduction par

sauts dans l'4chantillon. L'4volution des fluctuations, suivant l'4nergie des 41edtrons
ou

le champ
magn4tique, montre que les fluctuations sont non

ergodiques, sauf dans le domaine d'isolant

critique de la transition d'Anderson oi1la longueur de localisation est grande devant la distance

entre impuret4s de Si- La magn4toconductance moyenne est en
bon accord avec des simulations

fond4es
sur

l'analyse de "chernins dirig4s", c'est-I-dire qu'elle sature I In (°~~ ~ ~~
-~

1 poura(o)
a(o) variant

sur
plusieurs ordres de grandeur dans le r4gime fortement localis4-

Abstract We have observed reproducible conductance fluctuations at low temperature in

a
small GaAs:Si wire driven

across
the Anderson transition by the application of

a gate voltage.
We analyse quantitatively the log-normal conductance statistics in terms of truncated quantum

fluctuations. Quantum fluctuations due to small changes of the electron energy (controlled by

the gate voltage) cannot develop fully due to identified geometrical fluctuations of the resistor

network describing the hopping through the sample. The evolution of the fluctuations
versus

electron energy and magnetic field shows that the fluctuations are
non-ergodic, except in the

critical insulating region of the Anderson transition, where the localization length is larger
than the distance between Si impurities. The mean magnetoconductance is in good accordance

with simulations based
on

the Forward-Directed-Path analysis, I-e- it saturates to In(a(H >

1)la(o)) m 1, as
a(o) decreases over

orders of magnitude in the strongly localized regime.

(*) Email: sanquer@amoco.saclay-cea.fr-
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Introduction.

Quantum interference effects are not well understood in disordered insulators. This contrasts

with the diffusive regime where their role in weak localization and of Universal Conductance

Fluctuations phenomena has been largely clarified both theoretically and experimentally iii.
However, huge, reproducible conductance fluctuations have been observed for instance in

the hopping regime of small Si:MOSFET [2] and in lightly doped GaAs:Si samples [3]; the

conductance statistics are found to be very broad, giving rise to very high conductance and

resistance peaks (as compared to the averaged value) when the Fermi level or the transverse

applied magnetic field are varied.

The mechanism of electronic conduction at finite low temperatures in lightly doped semi-

conductors has been explained by Mott [4]- Let us note kBTo the level spacing on the scale

of the localization length (. At low temperatures the hopping electrons optimize the cost due

to thermal activation between energy levels of the initial and final impurity states and the

tunnelling term. This results in a Mott hopping length given rM, on average, by:

i

( T~ d+1

~° ~~ ~~' ~~
2 T

~~~

(d the dimensionality)-
The mean energy difference between the final and initial impurity levels separated by ro is:

i i d

Eo
"

-kBT~~+~ Td+1 (2)
2

At very low temperatures ro diverges and becomes much larger than I, the distance between

impurities. rM is thought to be the phase coherence length in the insulating regime. The

averaged conductance in a large macroscopic sample is given by:

1

To d+1 2r~
g ~ exP y t exP ~ (3)

One has to distinguish between two explanations to describe the conductance fluctuations

versus electron energy in the hopping regime of small samples: fluctuations of geometrical
origin due to a change of the impurity sites visited by the electrons travelling through the

sample [5] (incoherent mesoscopic phenomena [6]), or quantum fluctuations due to interferences

phenomena for a fixed geometry of hopping paths.
Firstly, changes in electronic energy could be sufficient to induce a change of the impurity

sites I and j between which the electrons hop. In other words rM fluctuates around ro when one

shifts the electron energy. As we will see, the typical energy range associated with such a change
is the Mott energy Eo (Eq. (2)). The quantum tunnelling resistance depends exponentially on

the distance and on the energy separation of these sites [7] :

~
~ ~~~

lEzl + lEjl + lEz Ej1
~

in rj
~~~" 2k~T j

(E
=

0 corresponds to the Fermi level). Because few impurity levels are involved during
hopping through a mesoscopic sample at very low temperatures, the logarithm of the conduc-

tance itself exhibits large fluctuations. The explanation of large fluctuations versus the applied

magnetic field results, in this geometrical approach, only from Zeeman shifts of energy of the

impurity states [2].
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Secondly, there exist conductance fluctuations emerging from quantum interference effects

for a fixed quantum coherent hop (fixed locations and energies for the initial and final impurity
states) of typical size rM » I. Because of quantum coherence, one has to consider all the

Feynman paths connecting the initial and final states, consisting of multi-diffusion paths on

intermediate impurity states. At T
=

0 K, I-e- when the quantum coherence length is the length
of the sample, only these quantum interferences persist. They can be regarded as fluctuations

of ( itself. These fluctuations are influenced by phase shifts induced by an applied magnetic
flux.

Two models have been proposed to take into account the interference effects in the hopping
regime.

The first approach, referred to as Forward Directed Path analysis (FDP), neglects explicitly
the quantum interferences between returning loops due to backward scattering [8]. This ap-
proach is a perturbative treatment of the deeply localized electronic states by the intermediate

scattering during hopping. A crucial assumption is that the localization length is smaller than

the distance between impurities (which is itself much smaller than the hopping distance). In

this situation, referred to in the rest of this paper as the regime of strong localization, one

has to consider interferences between Feynman paths of steps
+~

I, being smaller than rM.

As suggested first by Nguyen, Spivak and Schklovskii (NSS) [8], only the shortest paths the

Forward Directed Paths are important, because the amplitude of transmission along a Nl

long path is affected by a prefactor exp(f) < 1 (1If > 1), exponentially decreasing with N.

So the Forward Directed Paths approaches are well adapted at least to the strongly localized

regime. The hypothesis ( < I excludes the critical insulating regime described by the scaling
theory of the Anderson transition.

The second approach is based on a
Random Matrix Theory (RMT) applied to the transfer

matrix of either conductors or insulators [9]. In this global approach resonances as well as

quantum interferences between all sorts of Feynman paths are a priori included. To some

extent, this theory indicates that returning loops within the localization domain are essential,
and thus is well adapted to the critical regime of the Anderson transition, where ( » I, I-e-

when electrons are localized over many impurity sites.

FDP and RMT predictions differ drastically for strong spin-orbit scattering or for the effect

of a magnetic field.

The FDP approach predicts the existence of
a

large positive mean magnetoconductance,
which is not the consequence of interferences between Time Reversal conjugated returning loops

(they are
neglected). The mean magnetoconductance < In

~~~~
> depends only on To (10],

g(0)
and is always positive whatever the spin-orbit scattering strength. The FDP approaches also

predict large log-normal conductance fluctuations which are smaller versus the magnetic field

than versus the disorder configuration (non-ergodicity) [8]. Quantitatively, the amplitude of the

fluctuations var(In(g))
versus disorder is given by [11] :

var(In(g))
+~

r(~ with w =
1/3 (resp.1/5)

for d
=

2 (resp.3).
By contrast with the FDP approach, the basic symmetries, such as the Time Reversal and

Spin Rotation symmetry, are just the essential ingredients in the Random Matrix Theory.
This approach gives exact results only in quasi-id geometry, and its implications have to be

weakened in higher dimensions. Nevertheless numerical simulations in 2d and 3d samples,

as well as previous experiments, yield conclusions which are similar to some extent to exact

RMT results [12]. Moreover similar conclusions are obtained in d
=

1, 2,3 on a completely
different model in [13]. The main predictions of the RMT approach are that the breaking of

the time reversal symmetry induces changes in the localization length (, and consequently an

exponential magnetoconductance [12]. The sign of this magnetoconductance depends critically
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on the spin-orbit scattering strength, going from positive to negative when the spin-orbit
scattering increases. This theory also predicts log-normal fluctuations but with a variance of

the logarithm of the conductance which is related to the mean of the logarithm of conductance

(this is a one -parameter theory): var(In(g))
= < In(g) >+~ L/( [9]. Note that contrary to

the FDP result, the fluctuation amplitude as well as the mean magnetoconductance depends

on L/(, and not only on L (L
+~ To at finite temperature). The fluctuation is ergodic versus

the magnetic field and the disorder [14].
It is the aim of this work to test experimentally the validity domain of both approaches, by

addressing the mean magnetoconductance effect, the distribution of the conductance fluctua-

tions and the ergodicity. A submicronic disordered GaAs:Si wire is driven across the metal-

insulator transition by application of a gate voltage. The conductance of the wire is measured

over many orders of magnitude from the diffusive regime to the strongly localized regime at

very low temperatures. To some extent our observations are similar to previously reported re-

sults [2, 3], but sample, analysis and interpretations differ noticeably. In short but wide GaAs

MESFET used in reference [3], the conductance is dominated by a few most conductive paths,
whereas in our lD structure (see also Ref. [2]) the resistance is dominated by one most resistive

hop. In Si-MOSFET used in reference [2], the effect of a magnetic field is interpreted in terms

of Zeeman energy shifts in contrast to our observation of a quantum coherent contribution.

This, paper is organized as follows: in the first part we describe our sample and the vicinity
of the metal-insulator transition when the gate voltage VG is varied. This part includes weak

localization fits in the diffusive regime, which permit the determination of L~
=

fi, the

phase coherence length and the effective width of the wire (D is the diffusion constant, T~ the

phase-breaking time). The rest of the paper is devoted to the insulating regime.
First, we study the temperature dependence of the conductance. We show that, because

of the one-dimensional geometry of our sample, its behavior with temperature is never given
by the usual standard Mott law. Indeed, we explain that fluctuations of the hopping length

around To cannot be neglected. The conductance of our sample in the strongly localized regime
is dominated by an exponentially small conductance corresponding to a hopping distance much

larger than the mean Mott hopping length To =< TM > These considerations are important
to explain some striking experimental observations.

We then turn to the study of the lognormal conductance fluctuations themselves. Those

induced by varying the chemical potential are shown to result from a subtle interplay be-

tween geometrical and quantum fluctuations ("Truncated Quantum Fluctuations", [15]). Since

quantum fluctuations cannot develop fully as the Fermi energy shifts, we turn to the study of

fluctuations induced by the application of a magnetic field H and show that they are of quan-

tum origin. Ergodicity and mean magnetoconductance behaviors change with the proximity
of the metal-insulator transition, and this permits us to clarify the validity domains of FDP

and RMT approaches.

1. The metal,insulator transition in our mesoscopic wire.

1.I SAMPLE AND EXPERIMENT. The sample is a standard Hall bar, with a distance be-

tween successive arms of 3 pm, obtained by etching of a Si-doped GaAs layer. The layer is

400 nm thick grown by Molecular Beam Epitaxy with a Si concentration of 10~3 m~3
on a GaAs

semi-insulator substrate. Electron Beam Lithography has been used to pattern the sample.

The subsequent mask was used to etch the active layer using 250 V argon ions. The width of

the sample is approximately 400 nm. A 100 nm thick aluminium gate has been evaporated on

the Hall bar.
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The sample is placed in the plastic mixing chamber of a qompact home,made dilution refrig-
erator. For electrical measurements, coaxial cables are used between 300 K and 4 K, and strip

lines between 4 K and the mixing chamber. All the lines are properly filtered. The resistance

is obtained by measuring the DC current passing through the sample with a Keithley 617

electrometer. The controlled excitation voltage supplied by the electrometer is divided, and

the I V nonlinearities have been precisely studied (see later). The electrometer is controlled

by computer, and each measurement cycle consists of10 voltage inversions followed by a 3 s

waiting time and 6 measurements (conversion time 0.3 s.). So the resistance results from an

average of 60 measurements. The offset voltage is approximately 100 pV for very different

measured resistances. We have not detected any offset current.

At very low temperatures in mesoscopic samples, one has to be very careful about excitation

and offset voltages applied across the sample [I]. A common problem is to measure large
resistances with excitation voltages small enough to be in the linear I V regime. Figure I

shows a typical I V curve obtained at T
=

91 mK in our sample. The characteristic is well

fitted by:

1= A sh l~~ ~/~~~ with A
=

4 x
10~~~ A, B

=
5 x

10~~ V (5)

and (~~~t
=

-2 x
10~~ V. The conductance is given by:

~
~Vd~+(ffa~t=0

~ ~ ~~ ~ ~ ~~~

200

1

~

-

-3

v
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The low-temperature conductance of the sample depends on the history of the cooling down

from room temperature. In other words the conductance for l§
=

0 V depends for instance on

whether the sample has been cooled under V~ =
+I V or under V~ =

-I V. The conductance

is systematically larger in the latter case. There persist long time relaxations at T
=

4 K

after a large variation of V~. A systematic study permits us to conclude that this relaxation is

not due to a dynamic of disorder seen by the electrons, but to a slow variation of the Fermi

level. IA fact, after a large cycling in VG, the observed conductance fluctuation patterns are

translated in V~ but not at all decorrelated. This is consistent with a retarded response of the

number of electrons to large changes of Vg, with the disorder configuration unchanged. One can

qualitatively take the observed facts into account by supposing that the charge configuration of

electronic traps inside the depletion barrier under the gate is not the equilibium configuration
corresponding to the nominal V~ at low temperatures. The difference results from the slow

kinetics of trapping and release processes for the electrons at low temperature. The charge
configuration in the depletion layer influences the number of electrons and the Fermi energy

in the center of the wire.

These relaxations can be avoided by restricting the range of gate voltage changes in a

given experiment at low temperature, or if not possible, by varying the gate voltage back and

forth a few times in the corresponding range before the experiment. With the help of these

experimental procedures the conductance pattern is fully reproducible as long as the sample

is kept below T
=

4 K.

1.2 THE DIFFUSIVE REGIME. Figure 2 shows the magnetoconductance observed at low

temperatures for a large gate voltage VG, such as the conductance of the wire which is relatively
large. For this value of Vg, the temperature dependence of the conductance is weak below

T
=

4.2 K. It is impossible to fit this dependence with a variable range hopping activation

law (as
we will do in the insulating regime), because it gives too small To parameters (for

instance To ci 50 mK < T for VG "
1.8 V). We fit the mean behavior of the large positive

magnetoconductance with standard ID weak localization formula [16] and we find L~
=

130 nm

and an effective cross section W~
=

(65 nm)~ (the sample has been rotated in the magnetic
field and the magnetoconductance is found to be the same, which indicates that the cross

section is isotropic). The effective length of the sample is evaluated to be 5 ~Jm, because in our

two-probe measurement a part of two thin arms under the gate contributes to the conductance.

The magnetic field Hc which gives a flux quantum through L~W is Hc
=

~
=

0.42 T.
e L~W

This gives the good order of magnitude for the correlation field of the magnetoconductance
fluctuations. The amplitude of the fluctuations, if they are supposed to be the Universal

Conductance Fluctuation, is given by ii?] 6g(H)
ci

~~ ~ ~~ ~

ci 2.2 x10~~
~~

in
h

~
h

good accordance with the experiment.

Figure 3 shows the variation of the conductance (in units of e~ /h)
as a function of the applied

gate voltage for T
=

100 mK. The conductance exhibits reproducible Gaussian fluctuations as a

function of VG, of amplitude similar to the conductance fluctuations induced by the transverse

applied magnetic field, and so in accordance with the estimate of the Universal Conductance

Fluctuation.

In accordance with the scaling theory of the Anderson transition, we expect that the tran-

sition occurs for a conductance at the phase coherence length of order e~/h. For our sample

consisting approximately of L/L~ ci 40 quantum boxes in series, this criterion corresponds to

a
conductance of order 2.5 x

10~~ e~/h,. This corresponds to a gate voltage of approximately
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Fig. 2. Magnetoconductance (in units of e~/h) at T
=

100 mK for large positive VG =
+1.8 V

(diffusive regime). The solid line is the lD Weak localization fit. The vertical bar is the UCF estimate.
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Fig. 3. The conductance (in quantum units)
as

function of VG in the diffusive regime. The vertical

bar is the UCF estimate.

l§
=

+0.5 V above which the temperature dependence of g is weak between T
=

4.2 K and

T
=

100 mK and roughly independent of Vg. Below V~ =
+0.5 V, g becomes activated: for

instance, from figure 5, we obtain typically that the resistance ratio between T
=

4.2 K and

T
=

100 mK is 2A, 2.5, 2.75, 3.7, 6.5 and 10 respectively for V~ =
+0.7, +0.6, +0.5, +0.4,
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+0.3 and +0.2 V. From the experiment it will be pointless to argue any further about the

exact position of the transition.

Note nevertheless that in this range of conductances, the conductance fluctuation departs
from its value in the diffusive regime, growing and becoming asymmetric with tails to low

conductances.

With the estimated effective cross section, and supposing that the concentration of electrons

is close to the critical concentration- in GaAs for the Metal-Insulator Transition nc =
1.6 x

10~~ m~~,
we find a mobility of

~J ci 3600 cm~/Vs. Close to the transition, we obtain that

lF Cf 65 nm, which is comparable to the width of the sample, EF Cf 45 K, the elastic mean

free path ci 24 nm comparable to the distance between Si atoms, and kfl ci 2 (Ioffe-Regel
criterion for the Metal-Insulator transition).

1. 3 THE ANDERSON TRANSITION. As the gate voltage is reduced, the number of electrons

in the wire decreases as their Fermi energy:

eN
=

/
Cgate(V~)dV~ (7)

Typically, we estimate that Cgate Cf 1-5 x
10~~~ F and we neglect its gate voltage dependence.

Near the critical Mott concentration nc ci I-G x 10~~ m~~ and taking a 3D density of states, we

estimate that a variation AV~ ci 10 mV corresponds to AEF Cf I K (Note that, with this crude

estimate, the gate voltage range needed to deplete the wire completely from the nc value is

ci 0.5 V).
The Anderson transition takes place below a certain critical gate voltage, and the temper-

ature dependence of the conductance becomes activated. This is apparent in figure 4a, where

In(G) is plotted versus
T~~/~ for various gate voltages. (The choice of the exponent -1/2

or

-I is rather arbitrary as explained and discussed in the following) An interesting point is

that the activated behavior saturates below a temperature which increases when the sample
becomes more insulating. For instance in figure 4a, there is a complete saturation of g below

T
+~

450 mK for To
+~

93 K, as for To
"

3.8 K, g does not saturate at low temperatures and

typically, g(T
=

450 mK)
+~

1.5g(T
=

70 mK). We will discuss this saturation in section 1.5.

In the restricted range of temperatures where the Mott hopping regime is seen
(Eq. (2)),

it is difficult to evaluate precisely the actual value of the exponent One first point is
d + I

that the exponent must give a reasonable estimate for the parameter To, I-e- it cannot exceed

60 K, the energy of a single Si impurity state in GaAs. For this reason, one cannot choose an

exponent of1/4 (d°= 3) since this would give a To of order of a thousand K. Moreover, since

the effective cross section of our sample at the M-I-T- is only 65 nm~ and since it decreases

when l§ is diminished, it is not surprising that, below M-I-T-, our sample should be a ID wire

(ro > W, d "1).

1. 4 THE ONE-DIMENSIONAL HOPPING REGIME. It has been first pointed out by Kurkijarvi

[18], that one has a simple T~~ activation law for the conductance for a given ID wire in

Mott's regime (To > W). This results from the fact that a single hop dominates the measured

resistance. A priori, the slope of this single activation law only gives the energy activation of

the dominant link and not directly To, the mean energy spacing on the scale of the localization

domain. We will see later that when averaging over disorder is made, one recovers an exponent

1/2 whose slope is a function of both the length of wire and of To. Let us explain why.
Qualitatively, let us note that in samples at d

=
2 or 3, Mott's law is observed without

averaging over many samples. This is because when d > I self-averaging occurs within each
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Fig. 4. A) In(g) (in quantum units)
versus

T~~/~ for various VG. The To parameter values for the

extremal curves are indicated. B) In(g)
versus VG at various temperatures between T m I K and

T ci 70 mK. The range of VG corresponds to the curves at the bottom of figure 4a.

sample, allowing us to consider only a typical resistor (ro,Eo) given by Mott's law (see Eqs.
(1-3)) in order to calculate the resistance of the whole sample. But in ID wires, such an

averaging does not take place: since elementary resistors are always added in series, one has

to consider the strongest one
(and not the mean one) in order to evaluate the resistance of the

wire.

Such an idea can be quantitatively developed. We now summarize what comes out of a

JOURNAL DE PHYSIQUE i -T 3, N'ii, NOVEMBER 1993



2330 JOURNAL DE PHYSIQUE I N°11

detailed analysis of the Mott VRH in ID wires [5,6,15]. Let us consider a long wire without

fluctuations of quantum origin which allows us to use equation (4) for each elementary re-

sistance R,j dud to get their values as soon as the distribution (z~,E~) of localized states is

known. One statistically neglects resonant or direct tunnelling since we assume L » ro. Using

an assumption of local optimisation (at each step the electron chooses the less resistive hop),

one can self consistently solve the problem of ID hopping [15]. Due to a possible local lack of

levels near the chemical potentiel ~J, lengths of elementary hops fluctuate around ro, giving for

Rq a distribution whose width wq is so large that the addition of N
=

L/ro resistances Rq
in series does not self-average (as long as N is not extremely large). Note that such a method

is consistent only if wq » wq, where wq is the width of the distribution of resistances due to

quantum interferences (wq can be regarded as the fluctuation of I If in (I)).

One can show that, if N < N*
=

~e~l~~f~~ (a
ci

2), the resistance of a wire is entirely
a

dominated by only one elementary most resistive hop: Rmax
=

MaXN(Rq) whose average
value is size dependent. Estimation of Rmax gives:

In R ci In Rmax
"

~~~~ (8)
(

with

< rmax >= 2ro @@
=

((
~

)~/~ @@ (8bis)
T

Note that in average over disorder, one still has a
T~~/~ law. The measured In R does

not directly give To but features of the dominant hop. Nevertheless To the important
averaged microscopic energy can be estimated for our experimental parameter In R and

for reasonable (: in the companion paper [15] a simulation of our wire for In R ci +9 at

T
=

0.45 K is presented with: (
=

21 ci 50 nm and To
"

6 K (see the comments in [15] on

the slight discrepancy between calculated and measured In R). ( ci I, so we call this regime
"strongly localized", by contrast with the "barely insulating regime" that one encounters near

M-I-T- where To is not large enough compared to T to allow a description in terms of variable

range hopping. In this regime ( must be given in order of magnitude by L~ ci 130 nm
(at very

low temperatures), I-e- ( » I.

Moreover, we found numerically that the whole experimental range of conductances cor-

responds to variations of To between 2 K and 10 K. Let us emphasize that these values are

significantly lower than those naively extracted from data in T~~/~ scale (see Fig. 4a) which,

as we explained, is definitely not relevant for a given wire in Mott's regime. Nevertheless, as

already pointed, no precise determination of the temperature exponent can be extracted from

the experiment, and the choice of the abscissa in figure 4a is rather arbitrary.

1. 5 SATURATION OF THE CONDUCTANCE AT LOW TEMPERATURE. As noted before, the

temperature dependence of the conductance exhibits a saturation below a temperature which

increases when the gate voltage decreases. Because all the measured conductance properties
become temperature independent, it is likely to incriminate electron heating by radiofrequency

voltage sources (let us recall that the conductance is recorded in the I V linear regime).
Voltage radiofrequency noise is a priori more efficient to heat electrons when conductance

is high. However the conductance saturation is clear only when conductance is low (small
VG). Moreover the saturation temperature is the same for the peaks and the valleys of the

conductance pattern even for peak-to-valley ratio as large as 10~, in the strongly localized

regime. This is hardly compatible with simple heating.
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Even if it is difficult to rule out heating by radiofrequency pickup, the observed saturation

up to T
=

400 mK seen in the strongly localized regime could be due to intrinsic physical
effects: either resonant tunnelling processes or the existence of plateaus in the temperature
dependence of a mesoscopic ID wire in the hopping regime [15].

A crossover from hopping at high temperatures to T-independent tunnelling at low temper-
atures should happen if the diverging Mott hopping length To (more precisely rmax) becomes

of the order of the sample length at low T [2,19]. But the estimate of rmax ci 600 nm
ob-

tained from the reported estimate of To is about 10 times smaller than our sample length
when the saturation of g occurs. The resonant tunnelling through the sample is negligible
under this condition. Another observation against the resonant tunnelling picture is that the

measured conductance is always decreasing when the temperature decreases, even for sharp
conductance peaks. However it is well known that inelastic processes always decrease the res-

onant conductance in the tunnell1~lg processes, whereas phonons always increase the hopping
conductance. For these reasons we do not believe that resonant or direct tunnelling processes

are of importance in our geometry.
Apart from resonant tunnelling or heating, special features of temperature dependence in

ID V.R.H. could give rise to temperature saturation. As reported in figure 2 of [15], one has

to distinguish two main cases for the temperature dependence. First, when the temperature
is such that values of N

=
L/ro

are large enough (precisely when N > N* defined above),
In R should vary as I IT. Since To diminishes as T increases, such a regime only arises at quite

high temperatures, let us say: T > T*. T* is given by: T*
=

~~
[15] roughly

i~ ~@ T*
f

/~
proportional to To, such that T* increases when the sample becomes more insulating. As

already noted, one can indeed see in figure 4a and this is a general trend that activated

behavior is valid above a temperature which grows as the sample is driven to a more insulating
regime. We estimate, using the definition of N* with the experimental parameters, that:

T* ci 1 2 K in the strongly insulating regime.
What happens if N < N*? As discussed in [15] we think that in this case the activa-

tion energy of the dominant link can be very weak, leading to an apparent saturation of R

with decreasing T. If this happens, such a non-activated link will remain dominant as long

as the second-dominant activated link becomes more resistive because of decreasing T. Thus

T-dependence of R will be a succession of "activated segment apparent plateau" and reference

[15] shows that in a logarithmic scale of T plateaus and segments are of same size. When aver-

aging over many samples, one should however recover Mott's ID law due to random location

of segments and plateaus for different samples.
However, the observed saturation of R is larger than the size of plateaus predicted in [15]

and moreover we never see an activated segment at temperatures lower than the temperature

at which saturation begins. Therefore, we think that heating by rf pick-up could be partly
responsible for the observed saturation.

Up to now, the study of the temperature dependence in the localised regime has been carried

out without taking into account any quantum fluctuations. We now focus on conductance

fluctuations versus Fermi energy and on the effect of magnetic field, which will give us much

more insight into the relevance of zero temperature theories for our experiment.

2. Conductance fluctuations in the localized regime.

Figure 5 ihows the conductance as a function of the gate voltage (over a large range of VG) for
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Fig. 5. A) Conductance in quantum units versus the gate voltage at T
=

4.2 K. B) The same at

T
=

100 mK.

two temperatures: T
=

4.2 K and T
=

100 mK (a thermal cycling up to room temperature has

been applied between the two records). The relative fluctuation becomes enormous for small

values of the conductance (sometimes exceeding two orders of magnitude),
so that a semilog

representation is more adapted (Fig. 6).

2. I QUANTITATIVE ANALYSIS OF THE LOG-NORMAL CONDUCTANCE FLUCTUATIqNS. In

this section we develop a quantitative analysis of the log-normal conductance fluctuations,
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Fig. 6. Figure 58 in
a

semi-logarithmic plot. The
arrows

indicate the estimated Anderson transition

and the barely and strongly insulating regimes where the magnetic field dependence has been precisely
studied (see Fig. 8).

based on the considerations developed successively by Lee [5], Raikh and Ruzin [6], and Ladieu

and Bouchaud [15].
Figure 7 shows 61n(R) versus < In(R) > for T

=
100 mK and H

=
0 T. < ln(R) > is

obtained by numerical smoothing of In(R) to remove the short VG-range fluctuations. Two

experiments differing only by a thermal cycling to room temperature are presented in order to

improve the statistics.

As we reported in the preceding section, the measured In R is dominated by the most

resistive link Rmax whose value is size dependent. Thus amplitude of fluctuations is given by
the width wN of Rmax distribution. Estimation of wN leads to wN < w~j, and gives:

In R 21n(aN) ~~~

Fortunately, this prediction depends weakly on the single adjustable parameter N, for real-

istic large values of N. We numerically found (see Fig. 4 of [15]) that N ci 53, but even taking
N

=
25 100 (To "

50 200 nm),
we get a small dispersion:

~~~ ~
=

o-II + .ols (lo)

This prediction is reported in figure 7, in very good accordance with the experimental data.

Therefore, at this point, one does not need to invoke the quantum coherence to explain the

observed amplitude of 61n(R). We now detail the arguments which justify the introduction of

quantum fluctuations within the most resistive hop.
The predicted energy width for the geometrical fluctuations is given by [6-15]:
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100 mK. Two experiments

are
represented

to improve the statistics. < ln g > is obtained after smoothing of the experimental curves
g(VG).

Dotted lines
are

the prediction of reference [15]. Note nevertheless the tendency of 61n R to saturate

at ci I for high resistances.

typically in our strongly localized regime (for T ci 0.5 K). This energy scale is in fact twice the

mean energy spacing of levels lying within rmax. However, numerical simulations of quantum
fluctuations versus Fermi energy at T

=
0 K have been carried out very recently [20] companion

paper). They have suggested that the typical width in energy AEqu of these fluctuations is

of the order of the mean energy level spacing within the finite quantum coherent system. Let

us assume, as usual, that quantum coherence is preserved on the scale of each hop at finite

temperature. Then, we get that quantum interferences in the dominant link change completely
within a scale in energy given by the mean level spacing within rmax at finite temperature.
Therefore, we get AEqu ci AEg~o at finite temperature. Crudely speaking, this means that

within rmax quantum interferences are dominated by diffusion on levels whose energy is the

closest to initial and final energies of hop. This energy is simply ci AEg~o.
Of course, the latter statement is concerned with only mean energy scales. Therefore, we

think that observed fluctuations are partly of quantum origin, depending on each particular
fluctuation: if for a given hop, quantum interferences change with energy faster than geomet-

rical fluctuations, then the fluctuation will be of quantum origin and therefore T independent.
If the inverse situation takes place we will get a strongly T dependent fluctuation just given
by geometrical considerations. Indeed, even for a given hop, providing that the value of the

resistance is given exclusively by equation (4), the fluctuation induced by varying Fermi energy

is very sensitive to any shift of temperature.

Figure 4b gives an example of a fluctuation of quantum origin. Indeed, one can see that

this conductance fluctuation 61n g exhibits no or a very weak temperature dependence, even

in a temperature range where the mean conductance keeps on decreasing with decreasing T

(here, e-g- between T
=

I K and T
=

400 mK). This behavior suggests that finite temperature

models totally removing quantum interferences are
incomplete.

Let us now consider the amplitude of a quantum fluctuation on the dominant resistor. It is



N°11 CONDUCTANCE IN SMALL INSULATING WIRES 2335

worth noting that the zero temperature RMT or FDP approaches predict: Aln R ci

~
>

T

~

l (see [15], o =
1/4

or
1/10 for R-M-T- and F.D.P. respectively), whereas the geometrical one

is always £ I in our experiment. This quantitative analysis shows that the fluctuation that we

observe cannot be the full quantum one, but is truncated by the geometrical fluctuation. This

means that when a quantum fluctuation inside the largest (dominating) resistor yields a large
increase of the resistance, the electrons hop to a different final impurity site. On the contrary,

when a quantum fluctuation yields a large decrease of the resistance, the second largest resistor

starts playing a leading role, therefore limiting again the fluctuation of measured In R.

Near the Anderson transition, wq is no longer much larger than the estimated quantum
fluctuations ii 5], which means that the above considerations breakdown since the method used

is no longer valid. Physically, this means that the effect of interferences within ( itself can

no longer be ignored (quantum fluctuations can be regarded as fluctuations off). Moreover

because wq decreases, the whole conductance is less and less controlled by the weakest link.

In this regime, the quantum fluctuation should develop fully, but this range is too narrow to

allow a quantitative test. Moreover, the temperature dependence of fluctuations in this regime
is much more marked than in the regime of figure 4b. This emphasizes that the description of

the vicinity of the transition requires a model where quantum fluctuations are fully taken into

account, and not only considered on the dominant link.

The study of fluctuations versus the Fermi energy shows the subtle interplay between quan-

tum and geometrical fluctuations. The application of a magnetic field can induce Zeeman

shifts of energy levels E~ in (4), and consequently induce geometrical fluctuations. On the

other hand magnetic flux can change the quantum interferences and induce quantum fluctua-

tions. We will see in the next section that magnetoconductance fluctuations are purely due to

quantum interference effect in our sample.

2. 2 THE FLUCTUATIONS IN APPLIED MAGNETIC FIELD VERSUS THE FLUCTUATIONS IN VG.

Figure 8 presents a detail of the conductance fluctuation versus gate voltage and applied
magnetic field for both very low and moderately low conductances at T

=
100 mK (see Fig.

6).

2. 2. I Strongly localized regime: non ergodicity For the very low conductances in a linear

scale representation (Fig. 8A), conductance peaks seem to appear just by application of the

magnetic field, as in reference [2]. In a logarithmic representation (Fig. 88), however, such

conductance peaks correspond to maxima of the conductance in zero field. Moreover, the

applied magnetic field is unable to decorrelate the pattern of the conductance fluctuations

versus the gate voltage. This situation is precisely referred to as non-ergodic [3]. With the

data of figure 88 we find indeed:

var(In R)H ci 0.22 < var(In R)v~ ~ l.10

This is not, strictly speaking, a proof that there is non-ergodicity in this strongly localized

situation because one first has to know if the field scale appearing in the problem is not too

large or, equivalently, if the statistics over the magnetic field is complete. Our experimental

field range is limited below 4 or 5 T because of the large negative mean magnetoconductance
associated with the shrinking of atomic orbitals for higher field [2 Ii. In fact when the condition:

H »
~ j

Cf 3 T (for a = aBohr and
=

20 nm, the distance between Silicon impurities) is

e a
satisfied, the magnetic field modifies the shape of each wave function, and not only the phase

along the Feynman paths. So we restrict our interpretation to the low field range.



2336 JOURNAL DE PHYSIQUE I N°11

A B

~ ~
c

II
if ,/

~

Q

°
Vg

6°~~

C '~~~
D

/ /
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a

linear scale. B) Low Conductances in
a

logarithmic scale. C) Moderate
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linear scale. D) Moderate Conductances in a logarithmic scale.

Between 0 and 3A T, typically we only see 2 or 3 oscillations of In(g(H)) in the strongly
localized regime. The correlation field (difficult to be estimated) is of order I T (a quantum

of flux hle is put through (64 nm)~ for I T). Nevertheless, the comparison with the barely
localized situation shows that the experiment distinguishes, in practice, the ergodic and non-

ergodic cases even for one or two oscillations of magnetoconductance.
The observed non-ergodicity implies that the magnetic field is unable to induce geometrical

fluctuations. On the contrary, a strong Zeeman shift would change all the impurity energies
and thus the geometry of hopping paths [2-3] inducing geometrical fluctuations. We do not see

the magnetic field translating the maxima of In g [2], and so Zeeman effects are negligible in

our sample for our field range.

The experiment shows that the quantum fluctuation versus magnetic field (AIn RH < I), is

smaller than the geometrical fluctuation (AIn Rg~o ci
I). This is in the spirit of the Nguyen,

Spivak and Shklovskii model [8], where the quantum fluctuation versus magnetic flux is smaller

than any other kind of fluctuation. This has been already noticed by Orlov et al. in reference

[3]. Furthermore we have suggested in section 2.I that the geometrical fluctuation is smaller

than the quantum fluctuation versus energy (AIn Rqu > I) "truncated quantum fluctuation" ).
This allows us to conclude that the quantum fluctuation is larger versus energy than versus

magnetic field. To our knowledge, there is no attempt to model the fluctuation versus energy

at T
=

0 K apart from that of Avishai and Pichard [20]. In the strongly localized regime, their

numerical results show a similar non-ergodic behavior, precisely when standard RMT results

start to fail.

2.2.2 Barely localized regime: ergodicity Figures 8C and 8D show the conductance as a

function of VG and applied magnetic field at T
=

70 mK for a range of conductance just on

the insulating side of the Anderson transition: typically < In(g(H
=

0)) >+~ -5(g
+~

7 x 10~3),
whereas the transition takes place for < In(g(H

=
0)) >+~ -3.7 (g

+~
2.5 x 10~~). For these
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Fig. 9. Contour plots of figures 8b and 8d. The magnetic field does not decorrelate the conductance

pattern versus gate voltage in the strongly localized regime (9A). On the contrary the situation is

ergodic in the barely localized regime (98).

conductances, To ~ 2 K, so that we are in the limiting case of the VRH regime. In this range
of conductance, the shape of the fluctuations is reminiscent of what is observed more deeply
in the insulating regime.

By contrast to the strongly insulating regime, near the Anderson transition, the experiment
indicates the validity of the ergodic hypothesis formulated first in the diffusive regime for

small disorder parameter (kfl)~~

var(In R)H Cf 0.19 Cf
var(In R)v~ t 0,27

Our experiment shows that it is still valid at least very close to the transition, and by continuity
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in the critical insulating regime. We have seen that near the Anderson transition it is no

longer relevant to separate geometrical and quantum fluctuations: the analysis performed in

the strongly localized regime fails as already mentioned in section 2.I.

Because the estimated ( becomes quite large with respect to the distance between impurities,
the electrons are no longer fixed to a given impurity but localized in shallow regions, which

are changed by the application of a magnetic field. Because of this redistribution, the ergodic
hypothesis is realistic. It is indeed numerically obtained by Avishai and Pichard near the

Anderson transition [20].
But as we mentioned in 2.I, the extension of this critical regime (( » I) in our MBE grown

GaAs:Si sample appears to be quite narrow. We believe that it is much more developed in

less pure samples like amorphous alloys. Because of this narrowness, it is difficult to be more

quantitative.
In both NSS model and RMT model, there exists a close connection between the quantum

fluctuations and the averaged magnetoconductance effect; let us now turn to the analysis of

the mean magnetoconductance effect.

2.3 THE MEAN MAGNETOCONDUCTANCE EFFECT. Positive magnetoconductance at low

temperatures in insulating GaAs:Si was reported long ago [3, 13, 22]. Amongst the models

which have been proposed, Spivak and Shklovskii [8, 21] predict at the macroscopic limit, that:

In (°~~
~~~~

ci 1 (12)

(Hc is given by ~(~~ ), which compares very well with numerical simulations [8].
~

(l/2~
o

Zhao et al. [10] argue that simulations performed within the same framework of FDP

analysis but on larger samples, show no saturation of the magnetoconductance in the limit

of very large quantum coherent sample (I.e. very low temperatures). Moreover they give a

universal estimate:

in i~ll ~ o-i
i

Where LH
- l~ HI

~~~

(13)

Their simulations corroborate the results obtained by Medina et al. ill].
As noted in the introduction, RMT predictions differ from the FDP model because the

positive magnetoconductance (in case of negligible spin-orbit scattering) depends on
roll and

not only on To (the predictions differ completely in the case of strong spin-orbit scattering).
For instance at T

=
0 K (to avoid the introduction of the phase coherent hop and its magnetic

field dependence)

~~~~~~10~~~ '~ ((H~ Hc) ~
~0)

2~0)
~~~~~~~~

~~~~

if ((H > Hi)
=

2((0) [12] (quasi ID RMT result; Hi is given by H](~
ci )~). At finite

temperature, the expression is less simple because To depends weakly on H via ((H) [12].
Nevertheless, the mean magnetoconductance is very sensitive to the mean conductance in zero

field in this RMT approach.
Figure 10 shows the mean magnetoconductance effect between H

=
0 and H

=
2.5 T in the

strongly localized regime. The zero field mean conductance experimentally the smoothed
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Fig. 10. The smoothed conductance for H
=

0 and H
=

2.5 T in the strongly localized regime. The

observed mean magnetoconductance effect is roughly insensitive to the conductance value (at H
=

0)
g(H

=
2.5 T)

and fluctuates around: In(
~W

I, the mean magnetoconductance value after averaging
g(H

=
0)

over the whole range of VG.

conductance after numerical averaging of the fluctuations in VG varies over 3 orders of

magnitude. Nevertheless < In
~~~ ~'~ ~~

> is roughly unchanged and approximately
9(°)

equal to I. The averaging over the whole range VG gives In
~~~'~ ~~

ci I. This is just the
9(°)

prediction of NSS [8-21] (the averaging needed for this prediction is obtained by smoothing in

VG which extends over several fluctuations). We note that it is also in good accordance with

the result of Zhao et al. ii Ii if we suppose that To ~ 160 nm, a realistic value in our experiment,
is roughly insensitive to < g(0) >. However we are not able to test their analytical universal

result. In any case, the insensitivity of the mean magnetoconductance to the mean conductance

value stresses the fact that FDP approaches are more adapted than RMT approaches in this

regime.
As one approaches the Anderson transition, the mean magnetoconductance tends smoothly

to the weak antilocalization contribution in the diffusive regime. Contrarily to the strongly
insulating regime where the mean magnetoconductance and the conductance fluctuations are

of the same order of magnitude, near the transition the mean magnetoconductance becomes

mucll larger than the fluctuations. The analysis in the barely localized regime in terms of

changes of the localization length is restricted because of the small range of conductance where

this regime occurs. Nevertheless the observed magnetoconductance is compatible with a small

increase of ( (for instance ((2.5 T)
=

1.3((0) for To Cf 2 K), as predicted by RMT approach

[9]:

(
=

(flN + 2 fl)1 (15)

where N is the number of transverse channels and fl is one or two in the absence or in the
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presence of applied magnetic field respectively. In our experiment N is clbse to one, so that the

crossover from fl
=

I to fl
=

2 does not imply a doubling of (, as predicted in the macroscopic
limit (N

-+
cc).

Conclusion.

The initial aim of this work was to gain more insight into quantum interference phenomena in

a mesoscopic, disordered insulator. We have studied a small wire where enormous reproducible
conductance fluctuations versus the Fermi energy of electrons or versus applied magnetic field

are observed at very low temperatures.
The fluctuation versus Fermi energy results from an interplay between geometrical incoherent

and quantum mechanically coherent mesoscopic effects. The fluctuation versus magnetic field,

on the contrary, is purely due to interference effects.

We can distinguish two insulating regimes. When ( is comparable to the distance between

impurities, the observed non-ergodicity and the analysis of the mean magnetoconductauce

(< In
~~~ ~ ~~

>ci I) indicate that interferences between Time Reversal conjugated loops
9(°)

are not essential to describe the properties of the conductance distribution. On the other

hand, close to the Anderson transition, the localization radius includes many impurity sites.

Unfortunately, this critical regime is narrow in our sample, so that a precise comparison with

the predictions of the RMT approach is not available, except for the important fact that the

fluctuation is ergodic. We believe that, in the experiment, we do not mistake this critical

insulating regime for the critical diffusive regime near the Anderson transition. In any case, as

far as a finite temperature experiment can determine the critical transition point, the ergodicity
holds beyond the diffusive reg1nle.

In the variable range hopping regime of our ID sample deep enough in the insulating regime,

a theory where only one elementary long hop dominates the resistance gives a good quantitative
prediction for the fluctuation versus energy.

Finally, the study of mesoscopic insulators with a larger disorder, like amorphous alloys, will

give us more insight into the critical Anderson insulating phase.
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