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Abstract. We study the properties of a Laplacian potential around an irregular object of finite

surface resistance. This can describe the electrical potential in an irregular electrochemical cell as

well as the concentration in a problem of diffusion towards an irregular membrane of finite

permeability. We show that using a simple fractal generator one can approximately predict the

localization of the active zones of a deterministic fractal electrode of zero resistance. When the

surface resistance r, is finite there exists a crossover length L~ : In pores of sizes smaller than

L~ the current is homogeneously distributed. In pores of sizes larger than L~ the same behavior as in

the case r~ =

0 is observed, namely the current concentrates at the entrance of the pore. From this

consideration one can predict the active surface localization in the case of finite r,. We then

introduce a coarse-graining procedure which maps the problem of non-null r~ into that of

r, =
0. This permits us to obtain the dependence of the admittance and of the active surface on

I,. Finally, we show that the fractal geometry can be the most efficient for a membrane or electrode

that has to work under very variable conditions.

1. Introduction.

Many natural as well as industrial processes take place in the environment of surfaces or at the

interface between two media. The surfaces that one encounters in various of these processes

are complex and irregular. Examples of natural processes are the exchange of water and

inorganic salts between the roots of a tree and its surrounding environment [I] or the transport

of oxygen to the blood flow through the surface of the pulmonary alveoli [2]. Among the

industrial processes, heterogeneous catalysis and electrochemistry provide the outstanding
examples in which porous structures are used to increase the area of exchange and to enhance

the global rate [3]. Any process that is limited by transpon across a surface or interface can be

enhanced using large-surface objects. This is probably the reason why so many natural systems

are found that have ramified structures. Many of these surfaces can also be approximately
described using fractal geometry [4-7]. Therefore, using the tools provided by the fractal

approach can help in analyzing such processes.

(*) Unitd de Recherche Associde N° 041?54 du Centre National de la Recherche Scientifique.
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In the simplest physical situation the mathematical problem is to find the solution of a

Laplacian field with mixed boundary condition on the irregular surface. This problem has been

first considered in the case of electrochemistry where the Laplacian field is the electric

potential in the electrolyte. In electrochemistry, frequency dependent transport experiments

can be performed (impedance spectroscopy) which have shown that in the presence of an

«
irregular electrode

» many electrolytic cells have an impedance which behaves as [8-10] :

Z~~jj =
R~ + k(I/r~ + j yw )~ ~ (l)

where R~ can be considered as the bulk or electrolyte resistance, k is a constant,

r~ is the Faradaic resistance which describes the finite rate of the electrochemical reaction,

y is the specific capacitance describing the charge accumulation at the surface and

q is an exponent which satisfies 0
~ q « I. This behavior is known as constant phase angle

(CPA). For a smooth electrode q =

I and q decreases with the degree of roughness of the

electrode. In an electrochemical cell the electrical potential in the electrolyte follows the

Laplace equation

AV
=

0 (2a)

with the boundary condition V
=

Vo exp@wt) on a counter electrode and

p
' VV

=

(rj '
+ j yw ) V (2b)

on the working electrode. Here p is the electrolyte resistivity, p~ ' VV is the current density
normal to the interface and V is the local potential at some point very near the surface (of the

order of the Gouy-Chapman diffusion layer).
It can be shown using linear response theory that a simple and direct connection exists

between a-c- and d-c- response [11]. In d-c- conditions the surface contribution to the

admittance will be of the form Y~~~_ =

k~ ' (r~)~ ~ (the inverse of the second term in equation I

under d-c- conditions). This is the case we study here. It can be easily shown that this problem

can be mapped into that of the response of an irregular membrane or catalyst [12-13]. In the

case of a catalytic reaction or transfer across a membrane the Laplacian field is the

concentration which satisfies the steady-state diffusion equation AC
=

0. In a membrane the

term r~ is due to the surface resistance which represents the finite permeability through the

membrane itself, whereas in a catalyst this term arises from the fact that the probability of the

diffusing molecules to have a chemical reaction when they collide with the catalyst surface is

less than one (an Eley-Rideal mechanism [14]). Conservation of matter imposes that Fickian

transport to the membrane is equal to transport across the membrane. This would be expressed

as -%VC
=

WC (with 5J the diffusion coefficient in the bulk and W the membrane

permeability) in exact equivalence with equation (2b).

Many studies, most of them theoretical, have been devoted to this subject and can be found

in the literature [I1, 15-35]. The goal of this work is not to discuss the different cases which

may appear but to concentrate on the case of a wide class of self-similar electrodes. This is the

case of 2d electrodes like DLA clusters, diffusion fronts or deterministic fractals as the one

shown in figure 16 for which the following result can be written [36, 37] :

Y~~~ =

(Lb/p )(r~/p )~ ~"~ ' L("~~ ' (3)

where L is the size of the cell, Lo is the smallest feature size of the self-similar electrode and

b is the thickness of the cell. Thus q =

I/D, this result has been obtained by three different
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Fig. I. a) Schematic representation of the electrolytic cell. The rough electrode is a fractal generator
b) Generation of a two-recursion level fractal. At each generation the middle third of each segment is

substituted by a square the fractal dimension is D
=

log (5)flog (3).

methods. First a dimensional analysis with a scaling argument [34], second an iteration method

[36, 37] and third extensive numerical simulations based on the exact analogy between

electrical and diffusion Laplacian fields [34, 37]. There exist also experiments which confirm

this result [37]. It is also convenient to write equation (3) in terms of the admittance

Lbli~ of a flat electrode with the same macroscopic size, and of the characteristic length
A

=
r~/p [34]

Y~~~ =

(Lb/r~)(A/Lo )'~ ~~ (4)
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The purpose of this paper is to go one step further in the understanding of the process by
introducing a simple visual picture of the working regions of a self-similar interface. For this

we discuss the concept of an «
information set »

which is the subset of the surface where the

current concentrates [36]. This information set permits a quantitative way to use the concept of

growth sites which has been extensively studied in the case of cluster growth problems like

D-L-A. [38]. Although this notion is an approximation, it provides a simple way to visualize

the active zones of fractal electrodes (and equivalently of membranes and catalysts). This

concept permits to find the correct way to renormalize the problem and to obtain equation (3)

or (4) through a coarse-graining argument which maps the problem of r~ # 0 into that of

r~ =

0. In section 4 we compare the numerical calculations of the current distribution with the

geometrical interpretation.

2. Active zone in the case of a Laplacian field around an irregular object.

In this section we propose a practical way of visualizing the regions of an electrode (membrane

or catalyst) that can be considered as the active zones for the case r, =

0 (in this case the

boundary condition V
=

0 substitutes the boundary condition (2b) on the fractal electrode). In

this situation we search for the regions of the electrode which receive the current (called the

information set in Reference [36]).

The information set is a theoretical object on which all the current is supposed to arrive

homogeneously. For such a notion to be of any use, it must be compatible with the known

macroscopic properties of a two-dimensional Laplacian field the current concentrates on a

subset of the surface whose size scales as
L', where L is the linear macroscopic size of the

object [39]. When the fractal and counter electrode are far away the total current onto the

fractal electrode is the same as that measured far away from the surface where the equipotential
lines are unperturbed by the surface irregularities. The fractal electrode behaves then as a

smooth one and the dimension of the set where the current concentrates has to be one. An

intuititive may to understand it is considering that any object in d
=

2 presents a cross section

for random walkers which is proportional to its linear size L [40]. If we construct an

information set from a hypothetic
«

information generator» the construction process must

respect this property.
Consider first the problem of the current distribution on the fractal generator shown in

figure la- If the counter electrode is not too close to the working electrode the potential map for

a single pore is expected to behave as shown in figure 2 [41]. In the representation of the

Fig. 2. Laplacian field around the fractal generator in the case r, =

0 [41]. Each stripe represents a

drop in the potential by a factor of 2. The potential V I at a distance of the fractal object equal to the

width of the central pore.
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picture the boundary between the stripes are equipotential lines and the potential varies with a

factor two from one line to the next one. The current, by Ohm's law j
=

p~' VV, is

perpendicular to the equipotential lines and inversely proportional to their separation. One can

see that at the entrance of the pore, the density of equipotential lines next to the pore walls is

much larger than the density in the central part of the pore. This shows that there is little

penetration through the central part of the pore. Therefore, one can see qualitatively that there

is a zone of high current (active zone) and a zone of small current.

Based on this and according to the scaling properties that the information set must have (it

has to scale as
L'),

we construct an information generator, representing the large current zone,

as shown in figure 3 (top). (In the language of the multifractal formalism [42] the information

set is the set of concentration of the harmonic measure, namely the sites associated with the

probability value that dominates the measure.) From the information generator we build the

information set by iteration (Fig. 3) but to be consistent with the above requirements, it is

necessary for the size of the information generator to be exactly equal to L. This is the only
possibility if one wants to build the set from a single generator. If the generator would be equal

to (I + a
L,

a
being any number different from zero, the information set will not scale as

L' in the iterative process used to build the object. Thus the dashed line in the generator must

extend to exactly half of the depth of the well in figure 3 (top).
In summary, if we use the (approximate) notion of an information set, for this notion to be

consistent with the known properties of the Laplacian field, the size of the information

Fig. 3. Iterative process for the generation of the information set or theoretical active surface. The

solid line is the fractal object, the dashed line is its associated information set. At each recursion level

each segment is substituted by a version of the generator (top figure) rescaled by a factor

(1/3 )", where n is the recursion level. This process assures that independently of the surface irregularities
the total length of the information set is the linear size of the object.
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generator has to be taken equal to L. The idea of an information set is approximative in two

aspects first not all the current arrives in this fraction of the surface and second the current is

not homogeneously distributed on it. However, it is a good approximation when one calculates

the exponents that describe the behavior of the system as it is shown in section 3 and 4.

3. Scaling argument.

3.I SCALING FORM oF THE SURFACE CONTRIBUTION To THE TOTAL RESISTANCE. In this

section we present a new scaling argument which permits to obtain equation (3). This

argument is based on a coarse graining procedure which maps the problem with boundary
condition (2b) on the above situation with r~ =

0.

For a real system with finite p and r~ the first problem is to compare the surface resistance

R~~~_ with the resistance to access the surface R~~~. For very large values of the faradaic

resistance r~, the resistance in the electrolyte becomes negligible in comparison to the

resistance of the surface. In this case, there exists an equipotential line that follows the entire

surface which can then be considered as exposed to the same potential. The total resistance,

which is determined only by the surface contribution, is then proportional to r~ and inversely
proportional to the total area of the fractal surface

R~~~
=

r~/[b(L/Lo)~ Lo] (5)

For a two-dimensional system, independently of the system size, the access resistance is of the

order

Racc.
~

P'b (6)

For given values of p and r, and when r~/Lo
~

p/b, namely the resistance of the smallest feature

of the fractal is larger than the access resistance, the geometrical features can be separated
depending on their size Small parts have a surface resistance larger than the resistance to

access them, whereas large features have a negligible surface resistance. Consequently, there

[[Rfqiii)iji~ "~.j]I jj__ ~ii~,j

~~'j~ %lj. >, ,

.~
.:

~'~~~''i~
)~

l'j_

(a) (bj

Fig. 4. The Laplacian potential around a four-iteration object : a) zero faradaic resistance and b) for

A/Lo
=

3. The smallest pores are covered only by one stripe. in these pores the surface resistance is larger
than the resistance to access to the pore walls. They are approximated as exposed to a constant potential.

In the largest pores the access resistance is much larger than the wall resistance and the potential map

practically recovers the behavior of r, =

0 (see (a)), the only difference is a local effect near the walls.
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exists a crossover length, L~(A), which separates two different geometrical behaviors : a) In

pores smaller than L~ (A ), the resistance is dominated by the surface and the pore walls can be

approximated as exposed to the same potential ; b) In pores larger than L~(A) the system

recovers the behavior of r~ =

0 because the surface impedance is smaller than the access

resistance in the electrolyte (see Fig. 4). Then the crossover length is determined by the

equality between the surface resistance (Eq. (5)) and the access resistance (Eq. (6)) :

r~/ [b(L~/Lo)~ Lo
m

p/b (7a)

R~

~ w

L

Fig. 5. A three-iteration object (top) is coarse-grained using the characteristic length shown in the

figure. In the coarse-grained object (bottom) the active surface recovers the behavior of r, =

0, namely its

total length is L.
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or

L~ (A
i

Lo (A/Lo)"~ (7b)

This means that if one considers a coarse graining of the initial electrode to the size

L~(A) (see Fig. 5), any larger feature will behave with a surface resistance small as compared
to the access resistance p/b. Once the object is coarse grained to a new one where the size of

the elementary unit is L~, the resistance of the generated macrosites is small as compared to the

access resistance and then the Laplacian field recovers the behavior of r, =

0.

This implies the existence of an active surface of the linear size of the object L (Sect. 2). The

difference now is that the bulk resistance R~ (Eq. (I)) is in series with a contribution of the

surface. The surface contribution to the admittance is then equivalent to (L/L~ (A)) elements of

order (hip or

Y~~~ m
(b/p)(L/L~(A)) (8)

which is equivalent to equation (3) or (4). Notice that the coarse graining does not affect the

geometry of the cell (the height-length relation), so the bulk resistance (R~ in Eq. (I)), being
independent of the surface irregularities, will be the same in both the original and the coarse-

grained object.
We would like to point out that the scaling argument developed in this section is general, it is

based on the existence of an information set of dimension one, but this does not have to be

exactly located as it was shown in section 2. However, the iterative procedure that we

proposed allows to visualize this set in a very simple manner.

3.2 ACTIVE SURFACE AND ADAPTABILITY. The scaling form dependence of the active

surface on the faradaic resistance, r~, can also be estimated using the preceeding argument. For

a given value of A, the surface which corresponds to each macrosite is A itself and the number

of these macrosites is of the order L/L~(A). The total surface of the electrode is

S~
=

Lo(L/Lo)~ so that the fraction of active surface S~/S~ is

S~/S~
m

(L/Lo)' ° (A/Lo)~° 'Y~ (9)

An important property arises from the physical picture developed in this section : This is

how the fractal surface adapts to environment conditions. One can easily see that this is

because the fractal symmetry provides new «
active surface

»
when r~ (or A) increases and this

part compensates for the larger faradaic resistance.

We recall that the problem of the electrode can be mapped into that of molecules diffusing
towards a rough membrane having finite permeability. Then a fractal membrane has the

capability of providing new «
active surface

»
whenever it has to absorb molecules having a

lower permeability constant, avoiding in part a reduction in the transfer rate. This property can

be crucial in the life of many natural systems, where a rough membrane can provide a solution

to keep a suitable supply rate for nutrients being in a broad range of permeability values.

4. Numerical results.

4.I TEST ON A DETERMINISTIC FRACTAL. In this section numerical results are compared to

the theoretical predictions of the previous sections We have first checked that our numerical

calculation of the response agrees with relation (3). To verify that the response of the studied

object behaves according to equation (3), we used a relaxation method (see Appendix) to

numerically compute the response of an electrochemical cell with a five-iteration object of the
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Fig. 6. Dependence of (R~ Rh). in computer units, on the faradaic resistance r, for a five-iteration

fractal object of the type shown in figure 16. ~ 0.64 is obtained from the slope in good agreement with

~ =
l/D

=

0.68.

type shown in figure 16. In this calculation one obtains the response of the total electrochemical

cell RT which is the sum of the impedance of the electrode and of the resistance of the bulk of

the electrolyte R~ (Eq.(I) under d-c- conditions). The resistance of the electrolyte
R~ is the resistance R~ (r~

=

0 ). The exponent q is then obtained from the slope of the log-log
plot of [(R~ R~ (r~

=

0 ))] against r~. The value q =

0.64 is obtained in good agreement with

the value q =

I ID
=

0.68 as shown in figure 6 ; the same result was obtained for several other

fractal objects [34].

We then test the idea of the information set as an approximation of the active zone in the case

r~ =

0, by comparing its theoretical localization with actual numerical observations of the

active zone of the electrode. Being the information set, as defined in section 2, a simplified
active surface, the first thing one can ask is what is the fraction of the total current that indeed

reaches it. When r~ =

0 the S~/S~ ratio is equfl to (L/Lo)' ~. In the case of a five-iteration

object of the type shown in figures 1-3 S~/S~
=

7.8 fb. From the solution of Laplace equation
the current that arrives in each surface site is computed. For comparison purposes one can look

at the 7.8 fb of the surface associated with the largest local current values. We find first that

86 fb of the cumnt arrives in this fraction of the surface. Second, the localization of these

sites, as shown by the black points in figure 7, is close to that predicted from the concept of an

l..
~"

, ?..
'

' s)~~ ~b~~

.~ ~t
~l ~ j,

~f
'~~~ j,,' .~

_

~ ~ '
',~"~t ~~ ~

~~ , . ' ~, '

Fig. 7. -
Numerical

estimation of the active surface (r, = ) for a ive-iteration object (the active sites

are in
black). The linear size of the object is L = 729 lattice The ctive urface are the

L = 729 boundary sites associated with the largest values
of current per site ; 86 fl of

really rrives in this zone.
Notice

that the part
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information set as suggested in figure 3. Notice then that the simple procedure suggested in

section 2 for generating an information set gives a good approximation of the localization of

the most active zones of the fractal electrode.

The information set was defined in section 2 as a theoretical active surface, where the whole

current concentrates and where it is supposed to be homogeneously distributed. In fact, the

current is not homogeneously distributed in this zone and we now discuss the real current

distribution. From the numerical solution of Laplace equation one can classify the surface sites

according to the value of current per site Qo). One can then plot n@o)jo versus

jo, where n jo) is the number of sites associated to a given jo. This is shown in figure 8 for the

case of a five-iteration object. The form of the observed peak indicates that the current

concentrates in a narrow band of jo values. The surface sites associated to these

jo values constitute the information set. It is the fact that there exists a narrow peak which

permits to approximate the system as if the whole current concentrates in a subset of the

surface associated to one value of jo. This was found to be a good approximation when one

calculates the scaling exponents that describe the distribution of current (see for instance

Ref. [42]).

We present now the visualization of the working regions of the electrode for different values

of the surface resistance [or A
=

r~/p]. To build the active surface we take the sites associated

to the largest jo values up to the accumulation of a given percentage of the total current. The

case of 86 fb of the current for A/Lo
=

5 is shown in figure 9a. One can distinguish two classes

of pores, those that behave homogeneously (a continuous line of active zone extends to the

bottom of the pores) and those in which the behavior characteristic of r~ =

0 is recovered (the
active zone penetrates one half of the pore width). It is on this fact that is based the idea of the

coarse-graining procedure The existence of a crossover length upon which one can coarse-

grain the object (Fig. 9b) and recover the behavior of r~ =

0.

The case of A/Lo
=

25 is shown in figure lo. The picture shows again where arrives 86 fb of

the total current associated with the largest jo values. The same type of behavior as in the case

A/Lo
=

5 is observed, but with an increase of the crossover length. Comparing figure 9 and

figure lo, one can see that the visual crossover length has been shifted approximately by the

factor (Aj/A~)"~
=

(25/5 )'/~
=

3 as predicted by equation (7).

According to the theoretical development of section 3, one expects also the scaling relation

(9) to be valid. This idea was tested as follows : the active surface is considered as the number

of surface sites needed to accumulate a given fraction of the total current (e,g, the black sites in

figures 9 and lo are those needed to get 86fb of the current). Then one can plot the

O.35

0.3

0.25

~
O.2

~ 0.15

o-i

o.05

0

1>' 1>? ii' 10'~ 1«'

Fig. 8. nor)jo versus jo for a five-iteration object in the case r~ =
0.
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Fig. 9. Numerical estimations of the active surface for a five-iteration object when A/Lo
=

5. a) In the
original object and b) in the coarse-grained object. Notice that the localization of the active surface in the
coarse-grained object is close to its theoretical localization.

1>

Fig. 10. Numerical estimations of the active surface for a five-iteration object when A/Lo
=

25. a) in

the original object and b) in the coarse-grained object. Notice that there is a shift in the value of

L~ by approximately a factor of three with respect to that of figure 9, in agreement with equation (7).

S~/S~ ratio as a function of A. The plots for 75 fb and 86 fb of the current are shown in

figures I la and I16 respectively. From the slope one gets respectively 0.32 and 0.29, close to

the expected value (D I )/D
=

0.32. This shows then that the scaling argument remains true

upon changing the selected fraction as far as this fraction remains large.

loo

ion
(bj

(a)

~~
~

m
-

, ~«
~

o~

~
~

lo lo

'° '°° A '°°° lo loo ~ 1000

Fig. Il. Active surface versus A for a five-iteration object. The active surface is considered the
fraction of the surface associated to the largest current per site values up to the accumulation of a given
percentage of the current : a) the active surface is the fraction of surface required to get 75 fl of the total

current and b) is the case for 86 fl of the total current. A slope equal to 0.32 and 0.29 are obtained in a)
and b) respectively, to be compared with the expected value (D I )/D

=

0.32.
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4.2 GENERAL PROCEDURE FOR ESTIMATING THE ACTIVE SURFACE IN THE CASE OF RANDOM

suRFAcEs. In this section we show how the active surface can be determined in the case of

random fractal surfaces and suggest a general procedure valid in the case of fractal and non

fractal objects. The model of random surface we use is a diffusion front (shown in Fig. 12, for

details see Ref. [43]). This diffusion front is built as follows A source of panicles is kept at

constant concentration p =

I. The particles diffuse (they can jump with probability equal
I/z to each of its z neighboring sites under the condition the neighboring site is unoccupied).
After a given time a diffusion front is observed, which can be defined as the external frontier of

the largest cluster of particles. In fact only pan of the frontier is
«

accessible
» to random

walkers. This accessible front is the limit of the grey zone in figure12 and has a fractal

dimension D
=

4/3 [44].

A duffusion front of lateral size L
=

600 lattice units is the fractal electrode, the counter

electrode is located at loo lattice units from it. We solve the Laplace equation for several

values of the faradaic resistance r~ and we verify that equation (I) is satisfied. The value

q =

0.75 ± 0.01 is obtained, in good agreement with the expected value q =

I/D
=

3/4 (see

Fig. 13).

As we did in the previous section we estimate the fraction of the total current which arrives

in the theoretical active surface. For the case r~
=

0, the S~/S~ ratio is the linear size of the

object L divided by the total length and its value is 17 fb : 82 fb of the current arrives in this

fraction of the surface which is located as indicated in figure12 by the black sites.

~ ~ /~~$j%
~

fl)~~f~,
'_

' Il.
~~ II

~~m$$~jll
,,,~

w-Q fl tiff '1'
''~~'$

t~~ t. %'~ /*~ ~~~i f
~

~~~
~. ' .>

~" ~~~~~~~~
([.

.i'" 2 ~~.Qp~ ~4~p~i
/ [."

,mJ~'w.:.
.jt.1'(~~'4

,~m 4@fliiNi
fifQ£

Fig. 12. Numerical estimation of the active surface. The working electrode is the
«

accessible
»

diffusion front of linear size L 600 lattice units. For r~ =

0 the active surface is the 600 boundary sites

associated with largest jo values (black sites). 82 fl of the current really arrives in this part of the surface.

n
tc

'-
tc

ioo
~

iooo

e

Fig. 13. (R~ R~ as a function of r~ for a diffusion front electrode. A slope equal to 0.75 is obtained,

in good agreement with the expected value ~ =

l/D
=

3/4.
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We now discuss about the procedure to localize the active surface for values of the faradaic

resistance r, different of zero. It has been shown that in the equivalent problem of diffusion on

a lattice A can be defined as a/« [33, 34], where a is the random walk step and

~r
is the sticking probability. A is of the order of the number of surface sites visited by a walker

before being absorbed. Then, zones including a number of sites of order A can be considered as

perfect absorbents, namely a walker that hits the surface for the first time within this zone is

finally absorbed in it. Then the procedure to estimate the active surface can be generalized as

follows (applicable to fractal and non-fractal surfaces) a) The surface is coarse grained in a

manner in which each one of the new generated macrosites includes a surface A of the original
object. Notice that for a fractal object the macrosite size will be L

m
(A/Lo)'/~ Lo. However, for

non-fractal objects the linear size of the macrosites depends on the local irregularity and may

be very different in different zones of the surface b) On the coarse-grained object the Laplace
field behaves as in the case of r~ =

0, then once the object is coarse grained, the total length of

the active surface is the linear size of the object.
We solve the Laplace equation on the coarse-grained object using the boundary condition

r, =

0 on the fractal electrode (in this object the S~/S~ ratio is the linear size of the object
divided by the total surface). We look for the sites of largest jo values up to the accumulation of

a fraction of surface equal to the known S~/S~ ratio. We then determine the fraction of the

current that arrives in this part of the surface.

We present here the results for two values of A. After coarse-graining S~/S~ is respectively
35 fb and 51 fb corresponding to A/Lo

=

lo and A/Lo
=

40. The current that arrives in this zone

is found to be approximately 84 fb for both cases. The slightly larger current fraction obtained

in this cases compared with the case r~
=

0 is expected to be due to the fact that the coarse-

graining diminishes the
«

losses
»

of current in the fjords of the irregularities that have been

coarse-grained. The localization of these sites are shown in figures 14 and 15 (sites in black).

(aJ

(b)

d-

Fig. 14. Numerical estimation of the active part of the diffusion front surface for A/Lo
=

lo. a) The

coarse-grained object. Each macrosite corresponds to a zone of the original object that had a surface equal

to A. The active surface size is the linear measured size of the object 35 fb of the total area and where

84 fl of the current arrives ; b) Active surface computed on the original object. In this case 82.5 fl of the

current arrives in the 35 fl of the surface associated with the largest jo values, I.e. the active surface. Note

that the localization of this zone is approximately the same in both cases.
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(a)

(b)

Fig. 15. a) Numerical estimation of the active surface of the diffusion front for A/Lo
=

40. a) The

coarse-grained object. The active surface is in this case 51 fl of the total area and where 84 fl of the

current reaches b) Active surface calculated on the original object : 83.5 fb of the current arrives in the

51 fl of the surface associated with the largest jo values. The localization of this zone is approximately
the same in both cases.

We compare these results with the numerical solutions in the original object (before coarse-

graining) using the surface resistance corresponding to A/Lo
=

lo and A/Lo
=

40 as boundary
condition. We look for the current that arrives in the theoretical active surface (35 fb for

A/Lo
=

lo and 51fb for A/Lo
=

40, see above). For A/Lo
=

lo we find that approximately
85.5 fb of the current arrives in this part of the surface, whereas 83.5 fb when A/Lo

=

40.

These are very closed to what we found for the coarse-grained object. Moreover, the

localization of these sites on the surface shows no significant difference with their localization

when the system was solved using the coarse-grained object as can be seen comparing (a) and

(b) in figures14 and 15. This procedure permits then to determine the active surface of a

membrane, catalyst or electrode on a coarse-grained object instead of the original one,

reducing then considerably the time to perform the numerical calculation.

5. Conclusions.

We have shown that the concept of information set or active surface can be a powerful tool in

the study of the macroscopic behavior of a Laplacian field around an irregular object. It gives

first a very simple picture of the working regions of a fractal electrode or membrane in the case

r~ =

0. Then a simple coarse-graining procedure permits to find the active surface when

r~ =

0. This procedure provides a simple visualization of the process and a simple explanation

of the transfer equation (3). We have also shown that a fractal membrane is
«

self-adapted
» to

variable working conditions. We think that a fractal membrane may be the optimal solution to

keep a suitable rate of transfer for absorbing simultaneously molecules having different

permeability values. This propeny can be crucial in the life of many natural systems, where a

surface showing irregularities at all length scales can provide sufficient surface for the transfer
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at an adequate rate of all the nutrients necessary for the metabolism. We then mentioned that

the procedure used to estimate the active surface can be extended to the case of irregular but

non-fractal surfaces, which may constitute a powerful tool to study processes of this type in the

environment of irregular objects.
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Appendix. Numerical algorithm for the solution of Laplace equation.

To calculate the current onto the fractal surface we solved the Laplace equation (Eq. (2)) using

a relaxation method. The discretization of the Laplace equation in the bulk yields

V,~ =

~~'
~'~ ~ ~'

~ ~'~ ~ ~"~ ~ ~"~
~ (A.1)

4

The discretization of the boundary condition equation (2b) for a boundary site (I, j ) is given
by :

V,~ V~ V~
=

(A.2)
p r~/Lo

where V~ can be supposed to be the potential at a point very near the surface on the bulk side.

So, boundary sites are connected to the surface through a resistance constituted by the bulk

resistance p in series with the specific surface resistance, r~/Lo (see Fig. A, la). This renders,

x x x x x

~~~
Ve

~~~~~

x x x x x

SU~'~Ce ~s j+I,j
'/2 '"

(b)
x x 1/2 x

I,j-I

x

Fig. A.I. a) Electrical equivalent circuit showing the connection of a boundary site (I, j) with its

neighboring sites in the lattice. This is for the case of a boundary site that is next neighbor of only one

surface site b) Schematic representation of the mesh used in the numerical solution. Sites denoted as

«x » are those whose potentials are calculated in the coarse mesh approximation. Those denoted as

«
1/2

» are calculated as average of two sites of weight of 1/2 when the interpolation forrnula is applied,
whereas those denoted as «

I/4
» are estimated in the interpolation forrnula as average of 4 sites of weight

IN. The fine mesh in the second step is applied only inside the pore structure.
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for the case of a boundary site which is next neighbor of only one surface site

(V, is the one substituted by a surface site in Fig. A. la)

~"
~~'~ ~

~'~ ~

j~'
~ ~~ ~~

r~/Lo + p

This can be easily extended to the case of boundary sites that are next neighbor of more than

one surface site.

We now give some details of the numerical procedure. The mesh size is 1/3 of the unit site

used to build the fractal. To accelerate the numerical algorithm, we first solved in a coarse

mesh (of grid size 2 x 2 lattice units) and then use the obtained potential values as first input in

the second step. In the coarse mesh solution, only the potentials in the sites V~,,~~ are

calculated (those denoted as (.;) in figure A. lb). In the second step we introduced a mesh of

two grid sizes, a fine mesh (mesh I x I lattice units) inside the pore structure, whereas

outside the pore structure the coarse mesh (2 x 2 lattice units) is kept. To obtain the potential
values in the sites different from (2 I, 2j in the fine-mesh zone of the two-grid solution (in
order to use them as first input in the second step of the solution) the following interpolation
formula is applied [45] :

i 2 4

l

I 2

I 2 4

The matrix indicates the weights in the interpolation formula for the calculation of the element

[I, j (the central one in the matrix) of all its neighbors. Then, the weight of I, j itself is I, that

of the sites of type [(I I, j ; (I + I, j (I, j I ) (I, j + I )] is 1/2 and those of the type

[(I-I, j I) (I-I, j + I) (I + I, j I ; (I + I, j + I )] is I/4. For applying this formula the

potential values in the sites that have not been calculated in the coarse mesh approximation
[other than those of type (2i,2j)] are zero. Then, in the case of a site of type

2 I, 2 j one recovers the coarse mesh value (all the other eight neighbors have not been

calculated in the coarse-mesh approximation and the have zero potentials). The site denoted as

1/2 in figure A. lb will be obtained as average of two sites of weight 1/2, whereas that denoted

as I/4 will be obtained as average of 4 sites of weight IN. In the case of boundary sites, the

boundary conditions have to be introduced in the interpolation formula.

The approximation of using a mesh of two grid sizes
was compared to the results obtained

using a fine mesh in the entire lattice. The two-grid solution was found to be much more

efficient than a one-grid solution and with almost no effect on the precision. It diminishes the

time required to get convergence in 4 or 5 times, depending on the value of r~, and with an

error less than 5/10 000 when the current values are compared to those obtained using a fine-

mesh in the entire lattice. It has to be pointed out that in our case the convergence was tested in

the total current values and not in the local ones.
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