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Abstract. The evolution with length of the probability distribution for the two-probe
conductance (g2) of a disordered one-dimensional system is obtained numerically. It evolves from

a strongly peaked distribution close to g2
=

in the small length limit towards another strongly
peaked distribution near g2 =

0 in the large length limit. In the middle it goes through a quasi-
diffusive regime where the distribution is nearly uniform. This is consistent with a universal

conductance fluctuation of magnitude
=

0.3 e~/h (as observed in a recent paper) occurs in such a

domain.

The study of mesoscopic systems (the sizes of which are much larger than the atomic size but

less than the localization length for electronic wave functions in disordered systems as well as

the inelastic mean free path due to phonons) has gained a lot of prominence in recent years Ii

because of their technological importance and some fundamental questions regarding the

scaling theory of Anderson localization [2]. A knowledge of the full probability distribution

[3, 4], and not just the individual moments [2], of the conductance (either four-probe or two-

probe) of such samples at all length scales and the associated scaling (divergent) behaviour of

the independent parameters involved in that description are of crucial importance for this

purpose.

Historically, the second cumulant of the two-probe conductance in the metallic (for

dimensionality d~2) or the quasi-metallic (for dw2) regime enjoys a special status.

Disordered metals (in the diffusive or Ohmic regime) display a novel phenomenon of universal

conductance fluctuations (UCF). This universality implies that in the diffusive regime, the

standard deviation (I.e., the square root of second cumulant) of the two-probe conductance

distribution is independent of any change in length (I,e., average conductance), Fermi energy

or of any microscopic details of the system and consequently of the underlying Hamiltonian

involved ; but depends only on the dimensionality of the system. The values of the UCF in 3D,
2D, and quasi-lD, for electrons of one spin variety, are 0.544, 0.431 and 0.365, respectively
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(in units of e~/h)
as shown in [5]. Until recently, it was mostly believed (I) that this interesting

feature can not be seen in strictly one-dimensional systems since in ID, the localization length,
f, is essentially equal to the elastic mean free path, f (in fact, the localization length is totally
dependent on the elastic mean free path because there is only one independent length or energy
scale in the problem) and a diffusive regime (Ohmic behaviour) can never show up. But it has

recently been shown by Gangopadthyay and Sen [6], referred to as GS from now on, that in an

effective diffusive regime, Ohm's law is valid approximately in ID and the UCF

(m 0.3 e~/h) does exist. GS show their results mostly for a tight binding Hamiltonian along
with a site diagonal disorder, I-e-, where the site energies are independent random variables

chosen from a uniform distribution of width W. To show that their results are independent of

the distribution or the Hamiltonian they did also check that the UCF exists when the

Hamiltonian is a Schrodinger Hamiltonian with &-function impurities or when the disorder

distribution is Gaussian. The hopping term V for the tight binding Hamiltonian and the lattice

constant were taken to be one to set the energy and the length scales respectively. For various

disorders (W) and Fermi energies (E of the electron, GS found that f
m

5.5 f and that if one

allows a certain pre-specified tolerance, say a 2 ill error, to Ohm's Law in this case, I-e-, a

± 2 fib deviation from constancy of the usually defined conductivity, then there is a length
domain of about 2 f 4 I within which Ohmic behaviour persists and a domain 0.45 f

I,I f within which the UCF of 0.28 0.31e~/h exists. For example, we have shown in

figure I the average conductivity and the standard deviation of the two-probe conductance
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Fig. I. Average two-probe conductivity (scaled down by
a factor of tool shown in full line and the

standard deviation of the two-probe conductance (sd gj) shown in dashed line, as a function of length for
W 0.6, E o-I (hopping term V 11.

(1) It will be noted that in Lee and Stone (1985), the work was done upto quasi- ID, and not in ID- An

« exact »
analytical work was also recently done on quasi- ID, and it was not extended to exact ID see

Mello P. A., Phys. Rev. Lett. 60 (1988) 1089. Indeed, a very recent work intends to show that UCF in

exact ID can be sustained only in the subtle presence of an incoherent scattering such that the localization

effects are not completely washed out and there is only one inelastic (phonon) scattering in the whole

sample see D'Amato J. L., Pastawaski H. M., Phys. Ret,. B 41 (1990) 7411.
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g~ against length using 5 000 sample configurations for each length. It may be noted that in this

case W
=

0.6, E
=

0,I and it tums out that f~270 and f
=

50. The UCF of about

0.28 0.30 e~/h_ occur between the lengths 120 and 300 respectively.
For the purpose of this short communication, we have numerically calculated the full

probability distribution function, P (g~), in an effort to understand the probabilistic origin of

the constancy in the second cumulant irrespective of the value of the first one (I.e., the average)
in the diffusive regime. We have shown in figure 2 the evolution of P(g~) as the length
L of the system increases from a very small to a very large value. The parameters chosen for

this figure are as in figure I and the lengths of the system chosen are L
=

10, 135 and 400

respectively. It will be noted here that for a very small system size (L « I,
as defined in GS),

I,e., in the nearly ballistic regime, the peak of the very narrow distribution is centered around a

g~ very close to I (the upper cut-off being I ). In the other extreme (L » f ), I,e., in the strongly
localized regime, the peak is centred around a g~ very close to 0 (the lower cut-off being 0) for

obvious reasons. One very important distinguishing feature between these two regimes is that

while in the nearly ballistic regime, the tail of the narrow distribution is almost non-existent, in

the localized regime, there is a clearly discemible tail all the way upto the upper-cut off in

g~. This tail distribution makes a very significant contribution to the four-probe conductance

such that in the large length limit, all the moments of the four-probe conductance, including the

average, diverge [7] and the central limit theorem fails. This tail of the stationary distribution

(L
- oJ limit) is very important in the sense that the universality and the scaling behaviour is

govemed by it [8, 9]. The prevalent belief [7, 10] is that In (I + r~) in the L
- oJ limit, where

r~ is the four-probe resistance, is normally distributed. We have checked that our results for

r~ in the case of L
=

400 of figure 2, is consistent with that. But for reasons described above

we focus on the universal features of P (g~) in the mesoscopic regime.
In between the two domains discussed above, I-e-, inside the weakly localized regime, an

interesting situation develops. It was shown in GS that the quasi-Ohmic regime occurs around

the stationary value of the conductivity around L~~~= f/2. For the case of figure 2,

L~~~ is about 135. It will be noted that the P (g~ for this length is almost uniform. Indeed the
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Fig. 2. The probability distribution, P (g~l for the same parameters as in figure and for three

different lengths to show its evolution through three different regimes.
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distribution is very broad in the quasi-Ohmic regime as we have shown in figures 3a-3d, and

this near-uniformity of the distribution remains intact as we change the length scale within our

quasi Ohmic range. The existence of UCF in lD can now be justified by noting that the

standard deviation of a uniform probability distribution of width s is s/
$. Here we note that

the distribution of g~ shows approximately uniform behaviour for a definite range of system
sizes and we have s =

I. Had the distribution been exactly uniform in the whole quasi-Ohmic

range we would have obtained a standard deviation of II
$

>
0.29, and this value happens

to be close to that obtained in GS.

In this connection, we would like to comment on the insufficiency of random phase model

(RPM) in obtaining the distribution analytically [9] even in the UCF (or the wealcly localized)
regime. Actually the distribution in reference [9] is for the four-probe resistance

r~ =
(I g~)/g~. When one makes a transformation of random variables, one obtains for this

distribution in the RPM

P (g~
=

~
exp1- l IA

,

(I
A g~ g2

where A is the average four-probe resistance of the finite sample considered. To see how it

compares with our distribution, we have chosen the parameters W
=

0.6, E
=

0.9 when the

localization length f
m

210. In this case we have chosen L
=

100, which is clearly within our

UCF regime and we find that for this length A
m

I. In figure 4, one notes a very significant
difference between our « exact »

distribution and the one obtained in RPM. To see how the

standard deviation (sd) of g~ compares between these two cases, we have calculated the same

for the distribution (I) numerically for this length. It turns out that the value is about

0.22 e~/h, which is also significantly different from the value in GS. It may be noted here that

Abrikosov [10] has found an «exact» expression (in the form of an integral) for the

distribution of four-probe resistance in lD. When evaluated numerically we find that this

distribution fits through our histogram extremely well (not shown here to avoir clumsiness). It

is thus very important to find the actual probability distribution for the conductances carefully

because it plays a very important role in determining the scaling behaviour and any universal

property (e.g. UCF) thereof.



N° 8 UNIVERSAL CONDUCTANCE FLUCTUATIONS IN ID 1675

1.6

1.4

1.2
"".

I-O
- ,

m j
c~ ,

~/
0.8 /

D- /
/

0.6 j
,

j'
0,4

/
/

0.2

g2

Fig. 4. Comparison of P (g~) for a length in the UCF regime as obtained by us (histogram> and as
obtained analytically [9] in the random phase model (RPM). The parameters chosen are W 0.6,

E
=

0.9 (where localisation length
m

210) and L loo.
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