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Abstract. Reconsidering a recently introduced model of sequence-retrieving neural network,

we introduce appropriate analogues of the well-known stabilities and show how these, together
with two coupling parameters A and fi, entirely control the dynamics in the case of strong dilution.

The model is exactly solved and phase diagrams are drawn for two different choices of the synaptic
matrices they reveal a rich structure. We then briefly speculate as to the role of these parameters

within a more general framework.

1. Introduction.

After Hopfield's seminal papers ill of 1982-1984 had revived interest in neural networks

within the physics community and the basic model had been solved by Amit et al. [2], research

in this field has proliferated along quite a wide range of lines (see Refs [23-26] for reviews).

Here we will be concerned with sequence retrieval. Although that issue has been addressed in

quite a number of papers [3-15], there are not that many models. Essentially, those proposed

so far fall into two categories : while some, using either time-dependent synaptic strengths
[3-5] or time-delayed signals [6-11], have somehow embedded the sequentiality into their very
definition, others [12-15] rely solely on instantaneous interactions. In all cases the connection

matrices are asymmetric and the model, by its very nature, exhibits some kind of frustration.

Indeed, even while the network has to be stabilized on the desired pattems (by means of an

appropriate choice of the connection matrix) as in usual, non-sequential models, the patterns

(*) Laboratoire associ£ au CNRS (URA 1306) et aux Universitds Paris VI et VII.
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here must not be too stable either, lest this should preclude the desired transitions from taking

place. Given that the features of all these models are not otherwise crucially different and that

they all seemed to perform quite well when numerically implemented, which particular scheme

is to be preferred by a given investigator depends on the issue he wishes to address.

Our purpose, here, is to identify the parameters goveming the dynamics of such a sequence-

processing network. Ideally, it is hoped that all the complexity of the dynamics can be reduced

to a list comprising only a few parameters types ; more exactly there may be as much as

N, or even Np such parameters for each type : one per site as well as for each of the

p patterns to be memorized but so long as the whole family can still be defined by a single

formula we may still be content with it. To date and as far as usual neural networks are

concemed (by which we mean those models functionning as content-addressable memories,

thereafter abbreviated as CAM), the best candidates have been the so-called stabilities. They

are defined by

A,.
~

=
i,,

~

3j J,j ij, ~/iiJ, (i>

where J is the connection matrix and J, its I-th column-vector, whose eudidean norm

((Jj I is :

llJ,11 =
12j(Ju>~i'~~ (2>

The vectors (~ are the p pattems to be leamt they are random pattems with (possibly) a bias

a. It is well known by now, both numerically [18] and analytically [19, 20], that the depth and

size of the basins of attraction of every pattem R in fully-connected network models are well

correlated with the N stabilities of index R these also offer a convenient framework for the

definition of the maximal storage capacity of the network. It is however an intrinsic feature of

fully-connected models that no completely satisfying reduction their dynamics can be

performed. In order to achieve that, one has to recourse to a diluted model where, because of

the extreme sparsity of the connection matrix, the dynamics of the whole net reduces to a set of

N single-site equations. Such a model was proposed for the first time in reference [17] and it

was found that its dynamics could be expressed in terms of the stabilities. Models of that kind

go under the name of strongly diluted (or DGZ) models it is usually the case that they can be

solved exactly. It is also important to realize that their use imposes no limitation upon the

choice of a learning rule : one simply applies it on the remaining connections (the converse

procedure, I-e- to apply the rule first and then dilute, would be tantamount to loosing the

information embedded in the rule and raises the issue of the robustness of that rule against
random dilution, something we are not interested in here).

Considering our purpose, the time-delayed models are particularly appropriate for, as we

shall see shortly, the stability/transition duality takes in such models a very neat and

convenient form. Moreover their equations of evolution are fairly simple (hence few

parameters) whereas those from the other group of models tend to be composed of a very high
number of terms which would be unpractical here. More specifically, we are going to use the

model of references [6-8] and, like the authors of that last paper, to use it in its strongly diluted

version ; we have also used the same notations wherever possible. Essentially, we find that the

dynamics can be expressed as a function of two sets of stabilities, one of which is the set

already defined in equation (I), plus two coupling parameters and that the usual CAM model

can be viewed as the zero-limit (with respect to those coupling parameters) of the sequence-
processing network. Specific cases of Hebbian and Pseudoinverse [19] type rules will be

studied and
«

phase» diagrams drawn for each. Note that (in most cases, at least) the

«
phases

»
of our diagrams will not be true thermodynamical phases but merely regions of the

phase-space where the dynamics of the network exhibits certain qualitative features : we will
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call them modes (or, equivalently, regimes) of the network, basic modes of such a model (eing
the sequential and CAM modes. Because these two rules are very different and, in a sense,

complementary, we expect them, taken together, to give a good picture of what can take place

within such a model. Moreover, in our view at least, they need not be taken too litterally

rather, they should be viewed as representatives of their respective class of learning rules.

It will tum out that the model has a richer structure than was suspected in the original
references, which was due to an inappropriate parametrization. Here, by contrast, all

«
phases

»
of the model have been identified and analytical, often explicit equations will be

given for all separatrices. Although it will be presented here as a by-product of our search for

the (physically) most relevant parameters of the model, such an in-depth study of that

particular model is certainly valuable in itself if one considers that only a handful of the many

sequential network models to date have been solved exactly and that, therefore, little is known

about their
«

phase
»

diagrams.

2. The model.

The prototypical neural network consists in a single layer of N Ising spins S, (S~
=

± I ;

I
=

I, N) sequentially updated according to the Glauber dynamics

P (S~ (t + I
=

± I
=

ii + exp (± 2 ph, (t »1 (3a>

more often expressed in the following form ;

Is, (t + i ))
=

tanh jp h, (t )j (3b)

where (...) denotes a thermal average, p is an inverse temperature and h, the intemal field

defined by

h, (t
=

J, s (t (4)

It is tacitely assumed that the relevant sum runs over j # or, in other words, that we set all

self-couplings J,, to zero. Then, with a proper choice of synaptic strengths, the states

represented by a set of p preassigned patterns (~ will coincide with equilibrium states of the

network (or merely close to them, if one allows for errors) : in the usual terminology, we say

that the net has memorized the patterns.
In order to obtain a sequence-processing model from that archetype, one merely supplements

the intemal field h~ as defined above with a time-delayed term and rewrites (4) as :

h, (t
=

if S (t +
ii il (t (5)

where J~ and J~
are now two distinct connection matrices, and ~(t) is the convolution of

S(t) with some suitable delay function whose precise form is not essential. For the sake of

simplicity, we adopt for ~(t) the simplest and most commonly used form, namely

~(t>
=

s (t
r

>. (6>

The basic idea is to reach a steady-state regime in which the network is induced by the second,

delayed term in (5) to undergo transitions from one pattem to the next while it is stabilized by
the first, instantaneous term on each pattem in tum as it would be in the CAM mode (whence

the superscripts T and S). The duration of the stay on each pattem is of course expected to be

roughly equal to the time-delay
r, which has to be much longer than the time r~ needed to

complete a transition (about which, besides, we shall have very little to say). In that sense our
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solution will be a long-r approximation but this is no real limitation since
r is a tunable

parameter.

Let us now introduce m~, the magnetization of the network over the R-th pattern

m~ (t
=

N ' s (t >. i~ (71

We say that at time to the network has stabilized on pattem (~ (or that it is in that state) when all

magnetizations take negligible values but for the R-th one, which we denote by Q~, I-e-

m~(to>
=

Q~ &~,
v

(8>

As in usual models, a good recall of (~ will be characterized by Q~
=

I. Then, assuming that a

sequential regime has been or will be established, we monitor the state of the network by

means of successive pairs of magnetizations (m~ (t), m~
~

(t)) ; indeed, starting from state

(~, the network will remain in that state for some r
time-steps and then, quite abruptly, evolve

towards and stabilize onto the state (~
~ j, so that the other magnetizations should play no role

(except, possibly, during the brief time-span of the transition). In that way the phase-space of

the dynamics will always be a 2D space at most. Note that within such a framework a starting
point has to be provided for the network, I-e- we must assume that at the very start of the

dynamics the network had already been stabilized on the first pattem for at least

r time-steps. Hence Qi, the initial overlap of the net with the first pattern in the series, is

actually a parameter of the model and, hereafter, will be denoted simply by Q. The starting
assumption of the model (I.e. that the network had been in state Ii for at least

r
time-steps) thus reads :

m~ (t)
=

Q6~,1, t
=

0,
,

r
(9)

At this point, the possibility of the pattems having a non-zero bias a makes it necessary to

shift to a new set of variables. Assuming that at time t the network is in a state with

macroscopic overlap onto patterns (~ and (~
+

we may introduce x~ (t ) and x~
+

(t ) defined

by :

(S (t ))
= x~ (t ) (~ + x~

~

(t (~
+

(10)

where ( ) denotes as before a thermal average, and rewrite the magnetizations m~ and

m~
+

as linear combinations of x~ and x~
+

m~ (t)
= x~ (t + q~ x~

+ j
(t) ( ii a)

m
~ ~

(t )
= q~ x~ (t ) + x~

~

(t i ib)

where q~ is the overlap between the two successive pattems :

q~
=N-'i~.i~~j. (12)

It will then tum out (see Appendix A) that we can get rid of any explicit dependance on the bias

and thus that the dynamics of the system is most conveniently parametrized by using not the

successive pairs (m~, m~
~

but the new ones (x+, x~ ) defined by :

x± (t
=

= x
~

(t + x~
~

(t (13>

the index R running from I to p as every successive transition is completed.

With these definitions and assumptions, the short-term equations of evolution which

describe the transition from some pattem R to the next pattem R + I in the strongly diluted
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network are (see Appendix A)

x~ (t + I
=

lp (A(, Al, A~, A, J) dA( dA/ dA~dA dJ Dz X

x tanh pJ i± At x~ (t ) + At x~
~

(t ) + A Q» A~ + z« (x~ (t))i

p(A(, Al, A~, A,J)=N~' 2, 6(A(- A(,)6(A/- A(~j,)6(A~-A),)6(A A,)6(J-J,)

(14)

«~(x)
=

(1 x2)
+ A 2(1 Q~)

where Dz is the centered, normalized Gaussian measure

Dz
=

(2 7r )~ "~ exp(- z~/2 dz (15)

and J~ denotes the norm of the vector J)
:

j jS j~f (jS )2jl/2 (j~)
'~

"'
J 'J

The A~ and A~ introduced in these equations are the two classes of stabilities called for by the

present model ; for each neuron and pattern R they are defined by

Al.
,

=

I Jf I ' f,.
»

Jf i» (i?a)

A(,,
=

I J) I ' f,,
»

J) f»
+

(17b)

Note that the A(,~ are just the standard stabilities of CAM models. On the other hand

A
,

defined by

A< =

iiJlii/iiJfi l18)

is the first (and by far the most important) of the two coupling parameters of the model it is a

measure of the relative strength of the couplings responsible for the stabilization and of those

responsible for the transition. So far the joint probability distribution p (... ) in (14) depends on

the learning rule ; in most practical cases however, the norms are site-independant and exhibit

no fluctuations (in the thermodynamic limit). It is then possible to simplify (14) by rescaling
the temperature from pJ to p, which amounts to setting J

=
I. In the following we will always

assume that such is the case and we can thus rewrite (14) as :

x~ (t + I )
= p (A(, Al, A~, A ) dA( dA/ dA~dA Dz X

x tanh p i± At x~ (t) + Al x~
~

(t) + A Q~ A~ + z« (x~ (t))1 (19)

Equation (19) is the main result of this section. For any given leaming algorithm for which

the distribution p can be computed, in principle the full phase diagram can then be derived. It

would certainly be interesting to perform a classification of the possible distributions, in the

line of what has been done for CAM models [21]. We will not address this question here,

although it is very likely that very similar results will hold since the algorithms that can be used

here in order to obtain the couplings are essentially the same as those already in use for CAM

networks. As a first step towards such a classification, it is thus of interest to consider two

extreme cases, one where the stabilities are widely distributed with positive and negative
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values, and another where all stabilities are strictly positive and take most of their values

within a short interval. As prototypes of these two extremes, we will study the following
particular cases, named after the corresponding CAM rule

(a) Hebb rule :
J(

=

2~ f,,
~

(,
~

;
J(

=
A 2~ f,

~

(,
~ ~ j

(20a)

(b)
«

Pseudoinverse» rule : A,~
~

=

A~
~

0 ;
Al

~
=

A~
~

0 (20b)

Note that (20) is valid as such only for unbiased patterns but that the Hebb rule might still be

defined by a similar formula in the general case. On the other hand three remarks are in order

here about our definition of the
«

Pseudoinverse
».

First in our view (20b) only means that all

the stability parameters of a given type take the same value in the case of CAM, this would

indeed correspond to the choice of the standard Pseudoinverse algorithm [19, 20]. Here,

however, there are at least two ways of generalizing the standard algorithm. The first is to

compute separately J~ and J~, thus effectively solving for (20b), but it is not the most relevant

definition in this context and we adopted it for the sake of simplicity only. A better extension of

the Pseudoinverse algorithm in this context ill] is to solve for

Z~ f, ~~jJ( fj
~+j

+Z~ f, ~~jJ( fj
~

=

l (21)

which amounts to imposing the constancy not of A~ and A~ separately but that of the total

stability A defined by :

A,
~

=
[A,~

~ ~ j
+ A AT

~

ill + A ~]~ "~ (22)

where the factor (I+A~)~'~~
comes from a normalization by the global norm

[Z~(J( )~ + 2~(J()~]'~~. The reason for that choice will appear later when we will show that

such is the relevant definition of the stability for the long-term dynamics and hence that

A (and not A~
or A~) is the parameter we must optimize. The second point is that our definition

(20b) of the
«

Pseudoinverse
»

implies A
=

I. That, however (even if we stick to (20b) strictu

senso), is a spurious limitation since A may be recovered as a free parameter simply by
incorporating it into the definition of J~ resulting from (20b), whatever it may be ; note,

besides, that this is precisely the way in which it had to be introduced into the Hebb rule, I.e, as

an a priori parameter. Such a procedure is legitimated by the rescaling from pJ, to

J,, as a consequence of which it is only the ratio A, of ((J) ( to ((J) ( that matters. Finally, we

wish to stress again the fact that the conclusions of this study need not be restricted to the

particular picture which would be obtained by using the pseudo-inverse algorithm, no matter

how we define it exactly. Rather, as indicated before, A~ and A~
can be understood here as the

~ypica/ stability parameters that would be produced by any algorithm resulting in a sufficiently
peaked distribution of the stabilities. Thus we want to explore the phase diagram as a function

of these parameters as if we were free to chose them all, A included.

The study of the Hebbian case was already the subject of the original paper [8]. Within our

general framework we will recover their results and also obtain a more detailed description of

the phase diagram. A notable difference, however, is that we are working directly at the

thermodynamic limit (instead of first using finite-N expressions of combinatorial origin in the

line of II 7]), thereby emphasizing in equation (14) the role of the stabilities at an early stage of

the calculation. On the other hand, here as with CAM models, the study of the Hebbian case is

particular instructive, especially in order to contrast it with constant stability models in the line

of the Pseudoinverse.

Now, in order to resume from (14), all we need is the distribution p (A(, Al, A~, A ). Let us

consider first the Hebb rule. Then p (A(, Al, A ~) =

D (A( ) D (Al D (A~), the symbol D denoting

here a Gaussian distribution with mean I/ / and variance I, and the mean values of

j j) j and ( J) ( ~
are just

a
and A a

respectively, so that A introduced a prioi~i in (20a) does
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indeed meet the definition (18 ), as it should. On the other hand,
a

denotes as usual the storage
ratio p/N. As a result, regrouping all terms into a single Gaussian distribution and under a

unique integral over z, we retrieve the remarkably simple equation of evolution already derived

in [8] :

x~ (t + I
=

fH Id (t )]

f~(x )
=

Dz tanh p ix + A Q» )/ /
+ z«Hl (23)

ml
=

I +
~

For the Pseudoinverse rule the distribution p (.. ) is simply a product of delta distributions and

we get ~ (t + I )
=

fp[x* (t II

fp (x
=

Dz tanh p [h~
x + A A ~ Q~ + zap (x (24)

«((x)
=

(I x~)
+ A ~(l Q)).

We now tum to a qualitative description of the various behaviours generated by the above

equations of evolution. Its purpose is to keep the description of the phase diagrams in

sections 4 to 6 as concise as possible, even while a whole zoo of phases will have to be

introduced.

3. Overview of the dynamics.

In both cases the uncoupling of the equations of evolution of x~ and >.~ enables us to carry on

an exhaustive analytical study of the model and an exact determination of its «phase»
diagram ; we have failed to find other rules enjoying the same property. For simplicity only the

zero-temperature case will be investigated. Note that since we are monitoring the state of the

network in the space of successive pairs of magnetizations, for which (because of the dilution)

the equations of evolution are of fixed-point type, the dynamics discussed below will be at

worst a two-cycle ; of course with respect to individual spin trajectories more complicated

(possibly chaotic) dynamics can not be ruled out.

3. I DYNAMICS. Sequential models such as this posses three time-scales ; they are summed

up in the following table, where it is assumed that the network is locked in a
sequential mode

and where for each time-scale the relevant variables are printed in bold type :

Table I.

m~
~ j

(t i,
o

=
° SH°~~~/~in Ill]) l~i

v

]
~1, JL +

~
mu (t)

~

°
~ '"' ~ ~ ~ti£efijijps

Q~
~ j = m»

+ '
(~~ Ii

MT
m~ (t)

o
~

Q»

iii"'
MID-TEA~'

,
~

~
=

F (Q»
~

~f ~~ ~~~
'

Q"

one
cycle ~

LONG-TERM

F(Q*)~ Q*~---------""""""""""""""""""""

asymptotic behaviour
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The meaning of this diagram is that the overall dynamics comes in cycles, each cycle being
associated with the pattem on which the network has just stayed, for around

r
time-steps. The

succession of these shifts from pattern to pattem constitutes the mid-term dynamics, the most

natural of the three time-scales in such a model. It is parametrized by the steady-state
magnetizations Q» where the pattern index R, running from I to p (where we set, if necessary,

R + p m R ), acquires the meaning of a discrete time index. Underlying that global dynamics is

a short-term,
«

microscopic
»

dynamics thanks to which the shift from Q» to Q»
+ i can be

explicited in terms of the instantaneous magnetizations m~ (t ), particular attention being paid to

m~ (t and m~
~

(t ), the other ones fluctuating around zero. For all practical purposes the time

variable t may be reset to zero at the onset of each transition since, past the first few ones, all

shift are expected to be isomorphic (I.e. identical in every respect but for a translation of all

pattern indices), which is precisely the rationale for a direct definition of the mid-term

dynamics. If we denote by F its equation of evolution, then F
=

~f)~ should approximatively
hold; practically, F is derived from (19) in the form of a closed equation in Q~ and

Q~
+

Finally if the mid-term dynamics is extrapolated to infinite values of the pattern index

R, we obtain the asymptotic magnetization Q* as the fixed-point of F. We will refer to that

asymptotic regime as the long-term dynamics.

3.2 DIAGRAM oF REGIONS (« PHASE »
DIAGRAM). We recall that, at the very start, the

variables are xi and x~ or, equivalently, x+ and x~ If we denote by the couple
(xi, xii the asymptotic solution of the short-term dynamics defined by equations (24) or (25)
under initial assumption (9) (I,e., its fixed-points under the initial conditions x~ (0

= ± Q), the

sequential retrieval is then characterized by xi
=

0 and the network, initially in state

jj, is now in state (~ (in the sense of Eq. (8)). We denote by R the corresponding region of the

phase-space and by C the remainder (I,e. the region where xj* # 0). Within the present
framework, its physical content can be defined only negatively : rather than corresponding to

any well-defined mode of the network, C is a sort of residue of our reasoning more precisely,
it is the region where the consistency of the initial assumption (9) can not be guaranteed. In

other words, our reasoning is in essence a recurrence proof, which explains why the short-term

separatrix (I,e. the R/C separatrix) has to been defined with respect to the behaviour of the

network during the first
r

time-steps (I.e. during the first c.ycle if we are in R). Hence, whereas

in R consistency allows us to proceed further into the mid- and (possibly) long-term dynamics,
the study of C is per force limited to the first cycle, so that the long-term behaviour of the

system in that region can not be rigorously determined. Later we will see how some

information can nonetheless be extracted and that the region C can be quite satisfyingly
characterized.

Next, within the R region, the value of the fixed-point Q * (implicitely Q * (Q, A, )) of the

implicit equation for Q~ Q~
~ j =

Q~
+ j

(Q~, Q~
+

characterizes the long-term behaviour of

the network, whence a further subdivision in the phase diagram. Depending on whether

Q* is zero or finite, R is split into a «ferromagnetic» part R~~ (Q*#0) and a

«
paramagnetic

» one Rp~ (Q *
=

0 ).

Now, before we proceed further, let us forget for a while our previous definition (22) of the

total stability A ; we are going to show that its existence has a necessary character and that the

relations between the various regions defined so far may be clarified on a purely geometrical
ground. On the first hand at null A the sensible definition of a para- and a ferromagnetic

«
phase

»
is whether xi is null or not (with xi # 0 corresponding to the CAM mode) ; it is

natural to extend that definition to the region C, which is then entirely FG by its very

characterization (since (0, 0) can not be a fixed-point if A # 0). On the other hand, reasoning

with the simpler Pseudoinverse case, we note that the parameters of the phase space are

Q As jT ~~~ ~~~~ ~~~ list shrinks to Q, A~ at zero A. Finally we may also notice that the



N° 6 RETRIEVAL OF TEMPORAL SEQUENCES IN NEURAL NETWORKS 1311

boundary between FG and P, again at zero A, is simply A~
w A~, where A~ is an as-yet-to-be-

determined critical value of A. Hence, assuming some non-pathological topology of the

«
phase

»
diagram, there must exist a global parameter A(A~, A~, A (actually a kind of

rectified A~, I.e. obeying lim A
=

A ~) such that in the (A, A plane the relations between these

-0

various regions and their definitions are simply :

FG
=

R~~ U C
=

(A, A >IA w A~) (25a)

PG
=

Rp~
=

(A, A >IA m A~) (25b)

By the same reasoning a similar parameter A(a, A should also exist for the Hebb rule.

Moreover, since both models derive from the same equation (19), it should be possible to work

out a unique formula for A irrespective of the rule. Such a parameter not only would neatly
bridge the gap between both sets of definitions but also bring in almost one-to-one

correspondence the long-term sequential mode of the network and the (trivially short-term in

that context) CAM mode of the same network at zero A. Of course A as defined in (22) is

precisely such a parameter and we shall see shortly that (25) does indeed hold.

Finally, let us return to the mid-term dynamics, which we had skipped because its analysis
requires knowledge of Q*. It tums out that the dependance of the separatrices on

Q can be the source of an interesting behaviour. If, indeed, once Q * is know, it appears that the

sequence of the Q~'s is a decreasing one while the R/C separatrix is also a (not necessarily
uniformly) decreasing function of Q for the (A, A) couple considered, then, according to an

evident scenario, the sequential regime might end abruptly. We will denote by R~~ the part of R

(possibly) corresponding to such a transient sequential regime. That very possibility (which

had been overlooked in [8]) is interesting because it may reveal something of the nature of the

region C ; moreover we shall see that, in the case of the Pseudoinverse rule at least, a very

considerable portion of R is concerned. On the other hand, if such a region exists at all, it will

be interesting to see whether it belongs to Rp~ or R~~ the latter case would indeed be worse

since the sequential regime in Rp~ is scheduled to fade out anyway (we might call it

evanescent).

Before we conclude, let us recall that all the separatrices between the regions defined above

are not necessarily of thermodynamical nature, which will then show up in their dependance on

Q. In fact, only the FG/P separatrix is thermodynamical. The following table gathers the

notations and definitions of all regions :

Table II.

the series Q~ falls

RFG abruptly to
zer~ ''"'~ R(G

Q* # 0

R the first Qu's at least are non- all Q~'s are non-zero : RJ~
zero (I.e. at the end of the first cycle

xi
=

0 and xi # 0) the series Q~
i

falls

Rpc ; abruptly to
zer~ "~

: RJ~
Q* ~

all Q~'s are non-zero : R(~

C : the sequential regime fails to set up ii-e, at the end of the first cycle
xj* # 0 and xi

=
0) ; C is thus actually restricted to C~~
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4. Short-term dynamics.

In order to obtain the equation of the R/C separatrix, the following reparametrization of the

phase-space is useful :

(A, 6 6
=

la I + A ~)]~ '~~ instead of (A, a : Hebb rule (26a)

(A, 6, 1f ) 6
=

A~
+

AA~ instead of (A, A~, A~) : Pseudoinverse rule (26b)

1f
=

A ~/A~

Note that the definitions of 6~~~~ in (26a) and 6p~~~~~ in (26b) do not match we use them only

in this section because they are the parameters naturally arising within the short-term

equations. The diagrams drawn for the PS rule will also look better if these variables are used.

We now let the temperature go to zero. In this way the functions of evolution become :

fH(x)
=

erf
)

6 (x + AQ)j (27a)

,
2

~~~'~
"

~~~
)

(i
iii)«(x> ~~?~~

A remark is in order here about o : whereas the apparent limitations as to A could be easily
disposed of, it is here the very definition of1f that seems to imply that most leaming rules will

enjoy the property 1f
=

1, I.e. that any inbalance between A~ and A~ is in fact a property of the

coupling matrices J~ and J~, which a calculation d la Gardner in the space of the couplings

J,~ might confirm (it is, besides, the case of both rules investigated here if taken at face value).

On the other hand, for reasons to appear shortly, we are particularly unwilling to limit our

study to the case 1f
=

1. As a compromise, only values of 1f close to unity will be considered

below. It is warranted by the fact that, as explained before, the rules investigated here are only
representatives of their class and that departures from the value of 1f implied by these rules

may therefore be indulged if not too large.
Numerically the determination of A

~,

the R/C separatrix, is very easy : R is simply redefined

as ((A, 6)/,<j*~e), where (with our computer and erf routine), a good value of

E
is 10~ ~. Having obtained the numerical curve, we next proceed to its analytical determination

and check that both coincide. All curves presented in the figures have been submitted to that

double search procedure and in the following we will present only the analytical argument.
Analytically, we rewrite the natural definition of R ; (xi

=

0) as x+ *
=

x~ *, I-e- the same

positive fixed-point must be reached no matter whether the iteration of f or g started from

Q or Q (since x~ (0)
=

± Q). In other words, the interval [- Q I Q must be free of fixed-

points ; it is on the latter, geometrical definition of R that we will rely in the following.

4.I HEBB RULE. The separatrices A~,~(6) are smooth (I.e. continuously differentiable)

curves ; but for their endpoints (A, 6
=

(0, /~) and IA, 6
=

(1, + m ), they depend on

Q. An interesting feature is that, in spite of their smoothnes, they are composite curves (see

Fig. 2 and Appendix B for their construction) whose proximal and terminal segment

correspond to curves denotes by A p and A j, respectively. j is expressed as a function of the

important quantity A@(Q) whose implicit equation is (see Fig. I) :

Q
=

err [QA@/
/] (28)

(which is none other than the equation for the fixed-point of f at zero A and hence the

A~ alluded to in Sect. 3.2). By far the most important property of the family of curves

A~,Q ~s the following :

VQ, Q' Q
~

Q'~ V6, A
s,

Q(6
~

A
~,

~,(6 (29)
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2

1.s

2 h~
~~

i

Ps

5

0 2 4 6 6

o

Fig. I. fi At and fi d(~
versus Q. Note that d((Q ) has a vertical asymptote for Q

=
I while

A[~(1)
=

o.

e

~

~S,1.

~

-~5P.9
---.flog

/ Ki~i

o
2 3 4 5 6 7 8 9 10

2 6
~

Fig. 2. Hebb rule 1) Aj~ and Aj_ ~ versus
,/21ar 3, building up A,_ ~,

Q
=

0.9. See text for their

respective pathways. 2) Tile upper and lower curves, on the other hand, are A,_,
=

Aj, and

A,_o+ =
ii o+ versus

,$
3 thus all other curves A,_~ are comprised between those two.
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which can be proved by resorting to a blend of algebraic and geometrical reasoning. It is a kind

of uniformity property; it implies that the A~ ~ s can be ordered according to their

Q. In particular (see again Fig. 2)

VQ, As, o+ ~
A

s, Q ~
~

s,
(30>

where by A~ o+ we mean by definition lim A~ ~
(see Appendix B for more details).

Q-o, Q»o

Finally, what about the possible existence of a CAM regime? This (I.e. not only
xj* # 0 but xi

=
0, tool, by equation (27) implies a null A, which is trivial. Numerically,

however (Fig. 3), it tums out that a large part of C correspond to an «
almost-CAM

»
regime

characterized, moreover, by a high value of xj*. Thus the most probable fate of the network, in

most if not all of C, is that it will be stuck in a local state characterized by (xi
m

0 ; xi
~

0.9 )
during the first cycle (which in C refers merely to the first

r time-steps) and then, by
consistency, during the subsequent ones as well. To all practical purpose, C should thus be a

good CAM regime.

8

,,,,,~''

6 ,,,""

.,"" C
~

,,°"
,,.;"''

4
~,,l' ..;"'

~~
,.,~'

'''

l x(
=

lo"~

2
/ .~ 2 o. 9

j' ~
3 0.99

4 1. lo ~

~l
2 3 4 5 6 7 8 9

2 b
~

,-Fig. 3.-Hebb rule: A,_~~ versus ;21ar3; the curves drawn within C are curves of same

x,* and the regions they delimit on their right are defined by :
(xf ~x), with x=1-10~~

0.99, 0.9 and 10~ from right to left, the latter region, I-e- (x,* ~.
lo ~ )

,

being just C. On the other hand,

to all practical ends xf
=

0 within C.

4.2 PSEUDOINVERSE RULE. Depending on the value of Q, the separatrices A~, ~ are now

made up of three segments if Q
~

0.9 (approximatively), four otherwise each segment is

smooth but their intersections generate kinks in A
~.

Both cases ate illustrated in figures 5 and 6,

respectively. In all cases it is possible to recognize an ascending branch corresponding to the

first segment and a descending one made up of the remainder (thus,
«

optional
» segment, if

any, included). Any direct comparison between A )~~~ and A$S~Ud° must be limited to the very
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A
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i

~mid
OS

o
I 1.2 1.4 I-S I-B 2

2 6
~

Fig. 4. Hebb rule : A,
,,

A~,d and A,
~ ~

versus
,(

3 the shaded area comprised between the latter

pair of curves is therefore R)~(0.8).

last segment for it alone corresponds to a contribution from the same underlying curve (actually

A j, see Appendix B) ; other segments do not match. The one Q-independant endpoint of this

model, namely (A, 6 )
=

(1/1f, + m (to be compared with (A, 6
=

(1, + m ) for the Hebb

rule) belongs precisely to the last segment; the other endpoint is now a function of

Q : (A, 6)
=

(0, A(~(Q)), where A[~(Q) is defined in the same way as its counterpart
Af(Q) in (28), I-e- by :

Q
=

erf [QA[~/ 2(1 Q~)1 (31)

At this point of the analysis, we may say that A $S~~d° looks like its counterpart A )~~~, except that

its smooth staff is somehow replaced by a «
hom

» to which contribute all the new segments.

Beyond this point it is more appropriate to revert to A defined in (22) (more precisely to its

average value in case (a)), I.e. by

(A )
=

6 (1 + A : Hebb A
=

6/
fi

: Pseudoinverse (32)

where (... ) now denotes the ensemble average. The change is mandatory for any comparison
of the two rules since A and not 6 is the common parameter it also has the advantage that the

A~, once their expressions have been obtained as a function of 6, are simpler to discuss (but

also more crammed) if thus recast : only compare figures 5, 6 with figure 7.

I) The ordering of the A
~ ~ s with respect to Q is now evident (Fig. 7) the vertical part of

A~ (almost vertical when the
«

optional
» segment contributes to its terminal end), whose

equation becomes A
=

A(~ (thus meeting (25)), recedes towards the origin as Q is increased

the remaining part, on the other hand, obeys just the converse of (29), I.e. it is uniformly
lowered as Q is decreased. As to the proximal and terminal segments, this simply follows from
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3

>~
ii

2.5
=[[= jL

~(

2

1
1.5

~ c R

0 ~ .4 6 8

2
~

'~~

Fig. 5. Pseudoinverse rule (with~d
=

1) here Q
=

0.9. As in figure 2, A,_ ~
is superimposed on the

curves contributing to it, I.e. ii, Al and then Aj
,

all are drawn i,ersus
fi

3. Also displayed are

Aj and Aj,,, though they do not contribute in this case. For lower values of Q. A
iii

may not even be

defined.

aA~~(Q)loo
~

0 for the other, intermediate segment(s), we will be content with relying on

numerical evidence. To sum up, even while we can not rigorously write any inequality in the

line of (29) that would hold for the whole curve, the situation is nonetheless very much (but not

quite) the opposite of what we had found in section (a) in that the relative area of C is now

expected to increase with Q instead of decreasing.

2) A very neat ordering of the family of curves A~ is also possible with respect to the

parameter 1f (see Fig. 8), with 1f playing the role assigned to Q in equation (29). In figure 8 we

have only displayed the graphs corresponding to Q
=

0.9 but we have checked that the same

conclusion holds for a large range of values of Q.

3) As to the comparison of A~, ~
for the Hebb and Pseudoinverse rule, it is not difficult to

prove that A (fl~ lies entirely below A (Sj~d° whatever the value of Q. The proof is exact and rests

solely on the respective definitions of Ac and Ah for the two rules. Figure 10 should give a

feeling of how large the difference can be. The comparison has of course to be carried out for

d
=

I since such is the value of 1f with Hebb rule.

Finally, let us again examine he possibility of a CAM (or
«

quasi-CAM ») mode within

region C (Fig. 9). As for the Hebb rule the largest part of C, namely the whole area lying below

A j, corresponds to a quasi-CAM regime with very good characteristics ; a pure CAM regime
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Fig. 6. -Pseudoinverse rule (with o =1) : same as before but Q
=

0.999 note the lowering of

A,jj, so that it now contributes to A~ ~.

is also possible, but only for A
= or Q

=
I. It is also noteworthy that if Q

~

l the model

enjoys the property of perfect recall, I-e- xi
=

I within C and xi
=

I within R. The true

novelty, however, is that the remainder of C (I.e. the portion lying above j corresponds to a

regime of mixed attractors, where xi and xi are both non-zero and of comparable magnitude.
The really meaningful definition of the

«
hom

»
is therefore

«hom»
=

C rl ((A, 6 )/A
~

Aj (6))
=

((A, 6)/Aj(6 )
~

A
~

A ~(6 )) (33)

This suggests that the first sub-region of
C~~~~~~ on the one hand and C~~~b on the other are close

analogues and that Cp~~~~~ is supplemented with a horn rather than replaced by it, as we implied
above in a first approximation. For (A, 6 ) couples belonging to the hom the most likely fate of

the network is a complete blurring as it overlaps with all pattems in turn without'« forgetting
»

the former ones. During the first
«

cycle
»

(I.e. when xi and xi are still the only relevant

parameters), the picture is simplified by the fact, to a very high accuracy, xi + x?
=

I. In fact

this is true also of other regions of the diagram (at least for both A and A not too large), where it

is trivial.

The following table presents a summary of the discussion (note that it is does not take into

account the long-term FG/PG distinction) :
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Table III.

Region Nature of I" Regime Long-term behaviour of the network

cycle attractor

R
=

0, x?
~

0 Sequential A number of pattems f~
are recovered in

turn ; attractors (x(
=

0, x(~
j ~

0 ),

lL =
I to R~(tr) or m(st)

CPS (but
~

0. xi
=

0 Quasi-CAM The network gets stucked into f,
i

horn), CH (possibly the history of the system stops here

CPS xj*
=

0, xi
~

0 Complete blurring occurs as a number of

xi + xi
=

I Pattems are (partially) recovered and super-

imposed

12 @Q=1. @ a977 @ o-N

@ o.9999 Q~ a9S5 o.66

~~
3 o.999 @ Q92 @ 0.37.

© 0.996 @ 0.87 @ o-o

@ o.99 @ a80

8

1

©
4

a o

o 2 4 .6 8 1.2

2 ~
~

Fig. 7. Pseudoinverse rule (with o
=

1) A,
~ i<ersus

,~
d for the various values of Q indicated

within the figure. The curves to which
ii,

contributes are recognizable in that their descending branch has

two kinks ; roughly speaking it concems all those with Q
~

0.99.

5. Long-term dynamics ;

The easiest way to determine the phases of the long-term dynamics is to consider the implicit

equation for Q *, the asymptotic value of Q~. We no longer need, here, to restrict the analysis

to any particular learning rule since the original set of equations (14) yields directly
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Fig. 8. -Pseudoinverse rule : A,
09 1,ersns

,~d for various values of o.

1.2

1~2

.9

.6

"...., 3

~K

..._

~
,s i, 1.5 2. 2.5

~ "".."......___

....,,,_

0.9

e es 7 75 ,a a5 9 95

2i~

fi.-Pseudoinverse rule (with d =1): same as figure 3. The full curve 15 A~o99 versus

21ar d and various
«

iso-x,*
» are drawn within C, their values being those indicated within ~e figure.

Within the so-called hom, those iso-x,* curves are iso-x? curves, as well, because of the relation

x,* + xi
=

(that relation holds everywhere up to
fi

d
=

2 or so but is trivial outside the hom). At

some point they all fuse with the iso-0.9 curve, which is none other than A j. On the other, hand, the iso-

xi plotted within the insert coincides with it, too, for quite a substantial part of its path this merely
examplifies the fact that, to all practical ends, x,*

=
I throughout C (with the exception of the hom).
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1.2 ~~
R~~

i

R(~ R(~

8

>

R~

C~

o 5 1.5 2 2.5 3

2~

Fig.10.-Comparison of the Hebb and Pseudoinverse rules: Afo~ and A((~ (for o
=

I) versus

/~
d, with the identity of the various regions of the phase-space indicated.

Q* as the fixed-point of F, the mid-term equation of evolution. Q* is thus defined by :

Q*
"

F (Q*)
" P (Aj dA Dz tanh p IAQ* + z

(Q*)~i (34)

where we have used the same notations as above and assumed that p (A ) depends neither on the

spin nor on the pattem indices I and R. We caution against the fact the sum in the definition

(23) of A does not refer to A(~ + AA(~ but to A,~~~j + AA)~. Since both 1f and

disappear from the long-term equation, A is the only parameter and the situation is thus

analogous to the zero-A case a glance at (19) would even reveal that (34) is precisely the form

that (19) would take if A were set to zero. Hence, in agreement with our previous assertions,

once expressed in terms of the proper parameter, the long-term dynamics becomes a faithful

copy of the (necessarily short-term) dynamics of the corresponding zero-A network.

Expliciting (34) for each case at zero-temperature yields :

F~(Q *)
=

err [hQ*/ Vi (Q*)~l (35a)

Fp(Q*)
=

erf lid) Q*] ; (A)
=

(I + A )/
fi

(35b)

I-e- the same equations as those defining A~ in each case.

The equations of the long-term separatrix (telling R~~ from Rp~) are thus simply

A
=

h((0)
=

,~ (whatever the value of Q) for the Hebb rule and A
=

A(~(Q) for the

pseudoinverse rule (see Appendix B for details). That particular Hebbian frontier enjoys the

property of being the only true thermodynamical frontier and second-order separatrix in this

paper : all other ones are of first-order type and the (sub-) regions they delimitate are not true

thermodynamical phases.
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6. Mid-term dynamics.

Let us recall that the purpose of this section is to check for a sudden disruption of the sequential
regime within R. Because it is discussed here for the first time, full details are given in the text

and there is no corresponding section in the Appendix.

6. I HEBB RULE. Here is the case alluded to in the overview : Q * is the limit of a decreasing
series of Q~'s while A

~

increases with decreasing Q's there is then a risk that some portion of

the original separatrix A~(A, Q might fall below one of the successively arising A~(A, Q~ ).

Thus it will not be safe unless there is no intersection of A ~(A, Q * (A )) with A ~(A, Q ), which a

little geometry would show can not happen but in the first part of A~, hence the curve :

A~,nd
"

~ i (A, Q*(A )) (36)

(see Fig. 4). The condition for a persistent sequential regime reads A
~

A~~~(A) and the

variable Q has been eliminated as it should. The region of transient sequential regime is

actually a very thin stripe running close to A
~, j

and which all A
~, ~ must cross by definition ; for

any given Q, the small patch of R~~ comprised between A~, ~
and A~,~ must be discarded in

order to obtain the region of persistent (or stable) sequential regime. The interesting point here

is not so much the (negligible) extent of the loss than its very existence since, by an argument

of continuity in the phase-plane, this fact rules out the existence of a corresponding stripe in C

that would tum sequential in the long-run. A contrario, it suggests that the region C is

somehow more stable, in the long run, than R~~. This lends support to our former finding that

C should correspond, to all practical ends, to a stable CAM mode, with the network locked

into Ii.

6.2 PSEUDOINVERSE RULE. Here is the converse case. A graph of Q*(A (which has three

branches) would show that the Q * that is actually reached is always either 0 or I (there is also

an intermediate fixed-point in some cases but it is unstable) ; hence within the R region the

series Q~ is an increasing series running from Qj to unity. A glance at figure 6 would then

show that the region that must be substracted from RFG(Q) is its intersection with

R~~ (I ) or, in other words, the whole portion of R~~ (Q ) situated below A
~ j

(whose equation is

imply =1/1f), which is a much larger patch than formerly. As a result, the definitive

equation of A
~

may be considerably simplified if Q
~

0.9 (I.e. the value of Q below which, at

1f
=

1, A~(A)
~

l whatever the value of A) in that case C U R)~ is simply the I/4 plane

(A, A )/A
~

l lo A
~

A(~(Q )) and R~~ the remainder. Practically, this restricts the role of the

horn to the high-Q range, I-e- 0.9 w
Q S I.

Evidently the situation is not so clear as regard Rp~. there might exist an intricate

tessellation of transient and stable patches or, just as well, a very simple pattem in the line of

what happens within R~~. We do not think that this point really deserves further study from a

practical point of view, the interesting case is clearly the former one.

7. Discussion.

However strikingly different their geometrical outlook, the phase diagrams obtained for both

rules are qualitatively the same, the Pseudoinverse being characterized only by a richer but also

more clear-cut behaviour. Indeed, first, perfect recall is possible with that rule it happens only
for Q or A

=

I within region C because it is then a short-term recall of the first pattem but the

long-term recall within R (if any) is always perfect ; since the series Q~ should converge
rapidly, this is a significant feature of the rule. Also noteworthy is the dramatic dependance on
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Q (both quantitative and qualitative) of the Pseudoinverse phase-diagram, in clear contrast

with the mere 20 ill or so increase of At
as Q is lowered from I to zero. The most important

difference, however, concems the extent of the various non-sequential regimes (broadly
defined) but an assesment of the relative performances of the two rules in this field is not easy.

Everything considered the definitive C~~, already much larger than the short-term

C~, does more than double its area when it is fused with the so-called transient and evanescent

sequential regimes, which, from a practical point of view, are not truly sequential. This is the

case, in particular, of the whole stripe (A
~

l lo ). A shift from the Hebb to the Pseudoinverse

looks therefore detrimental ; the relative loss, however, is partially compensated by a gain in

the leftmost part of the diagram. Indeed, the useless region on the left is now
(0

~
A

~
A~)

which, given the definition (28) and (31) of A$~ and Al, implies the (at least partial) gain of the

whole stripe (A$~(Q )
~

A
~

fi). Now, this is far from being a negligible adjunction since

it concerns the low-A range, I-e- precisely those values of A which are always most easy to

obtain.

That, however, is not the whole story for another, equally relevant way of assessing
RJ~ is to reason in (a, A ) coordinates. Here there is no choice but to take our definitions at

face value. Since the crude definition (20) of the Pseudoinverse implies A~(a)=
A~(a )

=
I, whence A~~(a )

=

[(I + A )/
fi~]

I, high values of A

(especially for A
~

l) translate into low values of a. Hence some compromise between high

a s and high A's will be necessary and only the leftmost part of RJ~ will display interesting
features. The better definition (21), on the other hand, would yield

A~ ~~~~'> ~~(a
=

(21a ) 1, thus doubling the range of available values of a but leaving the

antagonistic relation between a and A otherwise unchanged. By contrast the situation in the

Hebbian case is a more mixed one : since (A~~~~(a))
=

a~"~[(l
+ A )/

fi],
high

values of A do not imply low ones for
a

but, on the other hand, no accurate control of

A is possible (since it obeys a Gaussian distribution) and the resource of tuning
Q is also denied to us since the frontier of the forbidden left stripe is then always
A

=

fi.

What finally emerges from that first survey is a conclusion already familiar from similar

studies in other contexts. Indeed the relative superiority of our extended Pseudoinverse rule

over the extended Hebb rule concem the core of the model, I-e- the true (long-term) sequential
regime of RJ~. They are somehow bought at the expense of its performance in other regimes ;

in particular a whole region of the diagram : the horn, is totally unsuited to either CAM or

sequence-processing and is peculiar to the Pseudoinverse case. Hence, whenever the more

elaborate rule of the two the Pseudoinverse, performs better, it does so in a very «
focused

»

way, so to say in this context for high values of Q or low values of either
a or

A. By contrast the Hebb rule performs more homogeneously, I-e- is more robust, even while its

«
peak

»
performances are less promising. On the other hand, it should be noted that the two

models differ little with respect to A : in both cases the higher its value the better.

An additionnal lesson to be drawn from the study is the very special role played by
A

=

1/1f ; in networks of 1f also unity, this means that A~/A~
=

((J) ((/ ((J)((
=

I is the gross

equation of the R/C separatrix (which becomes exact in the limit of infinite A's and/or for

the PS rule of high Q's or vanishingly small for instance finite storage capacities). In

other words, the condition for the onset of a sequential regime would be, more or less, that the

transitionnal stabilities take over their stabilizing counterparts, a rather intuitively evident

conclusion within the present framework. That, besides, is the very reason why we determined

ourselves in favour of a time-delayed model if we had used instead an instantaneous model,

then by the very definition of those, a whole series of transitional stabilities
«

of
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vth order
» :

AT-I
=

f~
~

J) f~
~

~/((J)(( R, v =

I,
,

p (37)

would have been called for and, thus making intuitive-looking conclusions considerably more

difficult to reach.

Regarding now more specifically the short-term dynamics, it comes rather as a surprise that,

everything considered, the adoption of a Pseudoinverse-type rule should also enhance the

performances of the network in the short-term regime. This was not expected since both (21)

and (22) are extrapolations of a rule originally designed to enhance the CAM region of a zero-A

network (which besides it does here, via A(~) which in this in this context, as explained before

in section 3.2, corresponds to the long-term sequential retrieval properties. One must be

careful here as it might an undesirable consequence of using the crude definition (20) instead of

the better one (21). We do not think so, however, for numerical simulations on (21) and

analysis of the resulting distributions of A~ and A~ showed that, for a ~
l and to within I ill,

just A
=

1f
=

did hold. For
a ~

l, some of the A~ and A~ became of course negative but the

former relation was still obeyed by most. Hence we feel rather confident that even the rather

awkward definition we have used in order to obtain an exact phase diagram does not limit the

validity of our approach and that equation (27b) is a tolerably good representative if its class.

That observation need not detain us from looking for yet better rules, designed more

specifically in view of improving the long-term dynamics. Such rules (for instance (22)) will

have to be based on the definition of the global stability A and not on those of its components
A~ and 2~; the problem, then, will be that very few rules I) have workable stability

distributions (remember that the short-term equations require knowledge of the individual

distributions of A( and A() and 2) make the system exactly solvable (which requires, amongst

other things, the uncoupling of the equations of evolution for x+ and x~ ). For rules defined

directly after A, the first point will undoubtly the more troublesome ; on the other hand all rules

leaving more than one integral in (I I) will fail to meet the second point, even while they may

meet the first, thereby making the short- and mid-term equations of evolution intractable and

leaving only the long-term dynamics open to the investigation.

7. Conclusion.

The present study has revealed in the phase-space a richer structure than had previously been

possible and has confirmed the merits of strongly-diluted models for the solution of even quite

complicated network designs. It has also, as anticipated in the introduction, given a more

explicit content to the short/long-term duality that is a peculiar feature of such models with the

definition of a transitional counterpart (17b) to the usual stabilities (I) or (17a).

Another interesting result is that we have succeeded in deriving from a simple and exactly

solved model a list of parameter goveming the dynamics of a sequence-retrieving network.

That list comprises Q, A, A and 1f, I.e. the initial magnetization on the first pattem, a global

stability parameter (the analogue for a sequence-processing network of the usual stability of

CAM models) and two coupling parameters measuring the relative strength of the transitional

and stabilizing terms, the first (A) in terms of the coupling matrices, the second

(o ) in terms of the two classes of (normalized) stability parameters. As discussed in the text,

what evidence we have obtained conceming o is a little stretched but there is in fact numerical

evidence [27], drawn moreover from a more realistically connected version of the present
model, that the ratio o

=

A~/A~ does indeed play the role we assigned to it in this study. The

above list of parameters is therefore a convenient framework within which to assess and

discuss the performance of this and related models as various rules and, possibly, network
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architectures, are tried. In that respect the essence of our results is that both 1f and

A should be maximised. More precisely

I) Just as
A~(a must be maximized with respect to the storage capacity

a
in an ordinary

CAM network, here it is A(a ) which should be maximized with respect to a.

2) High values of 1f seem desirable for the short-term dynamic, probably because they
facilitate the

«
microscopic

»
dynamics of the transitions.

3) Psychophysiological analogies strongly suggest that the ability to store sequence of

patterns is bought at the expense of the capacity to retrieve them one by one (try to sing your

favorite song starting by the middle it will unfold well once a verse has been recalled but the

individual verses are usually difficult to recall from scratch) ; hence we would like to see if

A~
can not be maximized together with A or 1f. Here for instance it is clear that

A as defined in (22) (hence a~~~ =

2) can not be maximized for
~ a ~

2 without some of the

A~ and A~ becoming negative.
As an alternative (or a preparatory step) to the search for particular, explicit learning rules, a

most convenient way of assessing the feasibility of this program and of obtaining a measure of

the relative cost of the maximisation of each parameter would be to undertake calculations in

the space of couplings, in the line of previous work by Gardner. Additionnally, it should not be

impossible in this way to understand why A
=

I and 1f
=

are such privileged values. We

have just performed a number of such calculations, combining different sets of constraints, and

will present the results shortly in what should be regarded a5 a companion paper [28] to the

present one.
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Appendix A.

General equations of the dynamics.

Note that this section makes use of non-normalized stabilities, I.e. of ((Jf ( A)
,

(X
=

S, T )

instead of A),, if, in the text, the stabilities were introduced directly in normalized form, it

was in order to keep the number of definitions down to a minimum. If we define

m+ and m~ in the same way as x+ and x~ in the text then from the definition of the

dynamics (3)-(6) we get :

~
(m~ (t))

~ =

l/N £
~

((± f,_ + f,,~)S,(t +1))
~

(Al)

=
± I/N £ (tanh lpi,, h, (t)] + I/N £ (tanh lpi,,

~
h, (t)] (A2)

=
± (mj(t)) + (m2(t)) (A3)

because f,
~

and S, (t + I ), but for their sign, are always unity and the hyperbolic tangent is

uneven. As in the text, we have denoted by ( ) the ensemble average, not to be confused

with the thermal average ~ ~.
The last formula may then be rewritten as a probability
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distribution provided we know the first and second moments of f~ h, (t and f,
~

h, (t ). As to

the first moments we have :

(f,, h, (t ))
= xi it ) A,( + px~(t A(

~ + pQA( (A4)

(~<,
2 h< (I))

~ EXI (I) A( + X2(I) A(
2 + QA~1 (A5)

where by
e~ we denote f,

j
f,

~ ; we have dropped the spin indices since all e, (and all

f,
~

as well) have the same probability distribution

P (x)
=

1/2 (1 + k) 6 (x I ) + 1/2(1 k) 6 (.< + 1) (A6)

where the value of k is a if x stands for f~,
~

and q
=

a~ if it stands for e,~ Similarly and

whatever R (R
=

1, 2) we obtain for the second moments :

(ii,,~ h,(t)i~j ji~
~

h,(t)j~
=

jjJ)jj~il (>j(t) + ex2(t))i + jjJijj (I Q~) (A7)

"

1"r(t)i~ (A8j

where we have used the fact that, under the hypothesis of strong dilution :

(S, (t
r

)
S~

(t))
=

6~,
~ 6~,~ (A9)

(remember that we use discrete time). The validity of (A9) for Cm LnN, where

C is the connectivity of the network, is proved in reference [17] where the trick was

introduced. Finally

mj (t
=

I. DZ £ P e) tanh p [At x, (t) + eA( x~(t +
eQA)

+ z«~(t )] (A10)

=

m~(t)
=

DZ z P (e)tanh p ieAjxj(t)
+

Ajx~(t)
+

QAj+ z«~(t)i (Al1)

,==,

where

.

I.
stands for the other integrals (the same ones as in (9)

. we have summed over equivalent spins ;

. the f,,
~

h, (t) are treated as Gaussian variables (which follows from (A6) and the law of

large numbers.

Given that the respective definitions of m~ (t) and x~ (t) imply

m± (t)
=

(i ± q) >.± (t) (A12)

equation (10) of the text follow in a straightforward way. The usefulness of the shift from

m~ to x~
was to get rid of the irrelevant factor (I ± q) in the equations of the dynamics.

Appendix B.

Detailed equations of the separatrices.

SHORT-TERM DYNAMICS.

(al Hebb rule.

Let us recall that the problem is to find the couples (A, 6) for which the intervall
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IQ, Q is free of fixed points. The equation of evolution, f, being an homeomorphism with

positive first derivative on that interval, we need not inquire beyond the first-order fixed-

points. Ideally (and such is the case here) there is a unique positive fixed-point (whence
x+ *), so that the critical A (6 corresponds either to the disappearance of the two negatives
fixed-points, one (the lowest-lying) stable, the other unstable, or to the moment (as

6 is increased) where the latter goes below Q. Such is the definition of A
~

in the present case.

We must therefore consider the curves defined by :

>.*~o
Aj~(&j: f(x*)=x* (Bi)

f'(x*)=i

Ai,Q(6):f(-Q)=-Q (82)

whose equations are :

Aj~(6 )
=

1~/2 Ln (@
6 ) 6 erf1~/2 Ln

(/&
6 )11

,

6
m,fi (83)

j ~(6 )
=

A@(Q )/6
,

6
=

A@(Q (84)

Aj is always smaller than Ap, equality occurring only at 6(Q) it has to be so since

6 marks the point where the two negative fixed-points coalesce and disappear (as either

6 or A is increased) ; its physical meaning is thus to tell the stable from the unstable point with

respect to Q. On the other hand af/6A is always positive, whatever x and 6. Finally (see

Fig. 2) :

A~,~(&)
=

AjQ(6), 6
~

6(Q)

=
A j,~(&),

~
(Q). (85)

Each curve contributes for one of the Q-indepenent endpoints (0,,~) (belonging to

Ap) and (I, + m) (belonging to Aj). Since Ap and Aj are tangent at 6(Q) and are

everywhere differentiable, so is A~, even while it is a composite curve (which numerically
obtained graphs could therefore not reveal).

It is interesting to note that the extreme curves A~ o+
and A~, (and these alone) are not

composite for they are entirely given by Ajo+ and Aj,
j,

respectively, the balance shifting

progressively from the former to the latter. Note also that the Q
=

0 limit reveals a (slight)
pathology of the model, namely that A~,o+ # A~,o. Indeed, while f no longer shows any

dependance on A at zero Q (the very notion of a sequential retrieval is then meaningless,
besides) the equations defining A~. (83)-(85), on the other hand, do have a limit when

Q approaches zero, which is therefore the natural way to handle the pathology. The same will

be true of the Pseudoinverse rule.

(b) Pseudoinverse rule.

We will follow the same line of reasoning but will have to take into account the following
additional complications with respect to the former case :

I) There may be more than one positive fixed-point, whence the need to supplement the

curves A j ~
and A j ~

(defined as above, with f replaced by g) with their positive counterparts

Al
~

and A11, ~
defined, for the former, as in (Bl) (but where x*

~
0 has been replaced by

x*
~

0 and f by g) and by g IQ )
=

Q for the latter.

Both Ah and A ii can be expressed, in the line of (84), in such a way as to confine the

dependance on Q to a quantity A(~(Q) defined in the text. More precisely, their expressions
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follow from the inversion of

6i, Q(A
"

J(~(Q) +~
(86)

6j ~(A
=

6j( ~(A (1 + 1fA )/(1 1fA ). (87)

2) A sign reversal of the first derivatives of g, namely aglaA and aglax, may no longer be

ruled out, thus undermining our simple geometrical reasoning. A further consequence of the

same fact will be that g (x will be able to undergo two sign reversals over [- Q, Q instead of

one ; in particular the sign of g(- Q) will now depend on A (whereas f(- Q) was always
negative in (a)) and will sometimes be positive. As a consequence of that, we have to take into

account the possibility of its being a (second-order) fixed-point, too, and append on our list a

fifth and last curve A
iii, ~

defined by gig (- Q)I
=

Q.
Clearly, given the last fact and as many as five curves competing to build up

A~, breaking the (A, 6 plane into a dozen patches or so, a purely geometrical reasoning,
though still possible, would be rather tedious and not without risks as well. A rigorous

determination of the separatrices is nonetheless still possible : it rests on the fact that the

behaviour of g with respect to its fixed-points and the points (- Q, Q ), (- Q, g (- Q )) must

be homogeneous inside each of these patches. It will be enough, therefore, in order to assign
each of them to either R or C, to pick up a single point out of it and to test it numerically the

completion of the process will reveal the frontier. Provided the qualitative regimes of the model

are clear-cut (which we have shown is the case) and the test-point lie well inside their

respective patches, the lack of rigour incurred by such a «
mixed

»
method will be negligible

and only some (rather irrelevant) geometrical understanding will be lost. The detailed anatomy

of two qualitatively different cases is displayed in figures 5 and 6.

As 6 is increased, A, turns out to espouse the paths of Aj(, then (possibly) of

Ajjj, followed by Aj and finally by Ah, the (entirely) missing contribution from

A~~ is somehow replaced by the
«

hom
»

made up with the first two or three segments

(remember that in A)~~~, the first contribution was that of Ap, followed by that of

ii ). That part of A, is therefore a peculiar feature of the Pseudoinverse rule. So, too, is the

need for A
iii.

Although its characteristics have been but superficially investigated, its very

existence seems limited to the high-Q range and its actual contribution to A~ to yet higher
values practically (for 1f

=
1) it sets in around 0.8, by which time it is still lying too high and

far away from the other curves to contributes, which it does starting from circa

Q
=

0.99 (see Fig. 7 and caption).
We also note that, here as before, the rule that several curves contribute to the actual R/C

separatrix finds exceptions in the two limit-curves A~, ~+ and A~, j,
both of which are here of

type Aj throughout. A~ j,
besides, has the exceptionally simple equation (A

=

1/1f), which

can be interpreted as a
flittening

out of A j (and A jjj) combined with the progressive irrelevance

of ( and Al. The following fact is also worth mentioning if we consider RIG U C (I.e. the

really meaningful definition of C), we note that it is the union of the actually infinite but

constant stripe IA
~

l/1f ) and of a portion of the horn. That latter part has zero area for

Q
~

o,9 (approximatively) and for Q
=

hence, if C denotes the area of RIG UC, then

BIT loo must change sign at some Qc close to unity and, from positive, tum negative. Although
this is certainly a minor point, it gives a feeling of how unnatural that rule can be in some

respects.

LONG-TERM DYNAMICS. Because with the Hebb rule F in (35) is a convex function of its

argument, with only one positive non-zero fixed-point, the equation of the R~~/R~~ separatrix
is simply ah~~~~lao IQ o =

I, I.e. A
=

A@(0)
=

fi (the more correct definition
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aQ~
~

j(Q~)lao~ (~~ ~~
would have yielded the same result). The situation is very different

with the Pseudoinverse rul j*
=

I is always a fixed-point but there is a second, unstable

positive fixed-point if A
~

ar/2. This implies that in the range [0, ii
the

«
good

»
fixed-

point Q*
=

I can still be accessed provided that Q is larger than the intermediate one and the

desired equation is therefore A
=

A(~(Q ). It is because of this dependance on Q that it is not a

thermodynamical frontie.
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