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Abstract. Following our previous description of the
« wave automaton », a new lattice model

introduced for the dynamical propagation of waves in arbitrary heterogeneous media which is

efficient for calculations on large systems (1 024 x 1024) over long times (several 10~ inverse

band widths), we present a detailed study of the time-dependent transpon of wave packets in 2D-

random systems. The scattering of a Bloch wave in a periodic system by a single impurity is first

calculated analytically, which allows us to derive the elastic mean free time
r

and mean free length
i~ as a function of the model parameters and the frequency f

=
w/2 ar. We then expose the

different results on wave packets in random media which have been obtained using extensive

numerical simulations on a parallel computer. We study the different regimes (ballistic, diffusive,

localized) which appear as the wave packets spread over the random media and compare these

numerical results with weak localization predictions.

1. Introduction.

The wave automaton model, described in detail in the previous paper II ], is a lattice model of

wave propagation in arbitrary media. It is probably the simplest model to capture the essentials

of wave propagation in discrete lattices. Its construction in real space aqd time makes it ideally
designed for studying time-dependent properties of wave propagation in large arbitrary random

media at long times. Although this model is analogous, in some range of parameters, to a time

dependent tight-binding model with second-nearest neighbor coupling (as has been shown in

ill), its formulation is however quite different from the usual formulation of tight-binding
models. Usually, dealing with wave propagation in heterogeneous media implies the resolution

of an equation (eg. Schrodinger equation), using a Hamiltonian H (eg. HP,
=

V, W, +

J £
W~ for the tight-binding model). Unfortunately, the time evolution is not given by

j, -j =1

(*) CNRS URA 190.
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H directly but by its exponentiated form, the evolution operator

U
=

e'~~
=

I iHr H~ r~/2
+... Numerical calculations then usually need a scheme to

approximate e'~~ which may lead either to errors which end up accumulating at long times or to

complex numerical operations slowing down the computation significantly. Again, the

specificity of our model is that it is the evolution operator U which is postulated from the start.

Besides, because the S-matrix is unitary, U is also perfectly unitary. Except for the calculator

precision itself, the problem of energy drifting is eliminated and the number of iterations can be

drastically increased, enabling computation of the dynamics over very large times (up to

several 10~ time steps with double precision numbers). U processes the scattering and the

conversion of the output field into the new input field. A detailed discussion of more standard

numerical methods used to integrated time-dependent equations can be found in [2-4].

In the wave automaton, narrow pulses A e'~ propagate along the bonds of a lattice (for

instance square or triangular in 2D, cubic in 3D). The impinging pulses on each node of the

lattice are instantaneously and simultaneously scattered by a z by z S-matrix (where

z is the coordinate number) in the time domain into outgoing pulses which then propagate in a

unit time to the neighboring nodes. Energy conservation and invariance with respect to time-

reversal imply that the S-matrices must be unitary and symmetric. For an isotropic square (2D)

or cubic (3D) lattice, each S-matrix is parametrized by three complex parameters:

t (the transmission amplitude in the direction of the incident wave pulse), r (the amplitude
reflected along the incident bond) and d (the amplitude scattered in each channel at

ar/2), which obey the following conditions, it ~
+ [r(~ + (z 2 ii d(~

=

l, and rt * + r* t +

(z 2 (d( ~
=

0 and (r + t ) d* + (r* + t* d + (z 4 (d( ~
=

0 (with z =
4 in 2D and

z =

6 in 3D). In our previous notation ill, for the 2D case,

t
=

e~'" [cos 6 + 1]/2 (la)

r =

e~'" [cos 6 1]/2 (16)

d
=

(i12) e~'" sin 6 (lc)

where 0 w 6 w ar
and 0

w a w ar are real parameters. The parameter 6 is a measure of the

scattering strength and
a

is a measure of the phase shift acquired by the wave at each encounter

with the scatterer. For 6
=

0, the S-matrix is transparent and the wave crosses over the node

keeping the same direction while taking a phase shift equal to 2 a. This is the lD-limit since

the 2D lattice can be considered as a set of independent horizontal and vertical lines on which

waves propagate without distorsions. At the other extreme 6
= ar, the reflection coefficient is

equal to e~'" and is of unit modulus whereas all other processes disappear, The node

possessing such an S-matrix is perfectly reflecting. Varying 6 between 0 and ar then allows us

to weight the strength of the three scattering processes (transmission, reflection and

ar/2 scattering) continuously.
A given system will then be defined by the set of 4 by 4 unitary symmetric S-matrices

parametrized using equation (I), with one S-matrix per node, I-e- one couple (6, a per node.

The case where all the S-matrices are the same on all nodes corresponds to a periodic system,

which was studied in detail in our previous paper ii ]. A quenched random system is defined by

a set of S-matrices, one for each node, with random choices for the real parameters

a and 6. We can also choose to take the same 6 for all matrices and take random choices for

a. The latter model has the advantage that all S-matrices have the_same scattering efficiency

(same scattering cross sections) and differ only by the phase shift taken by a scattered wave.

Thus, the emphasis is put on the wave phase, which tums out to be useful to study Anderson

wave localization, a phenomenon deeply associated with phase coherence. This is the choice

that has been made in our computations reported below. The parameters of the model for a

given random system are the scattering strength 6 of the S-matrices and the width
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ha in which the random phase a, which is randomly chosen from one node to another :

a e [- ha + ha ].

A significant advantage of our model is that it can be easily implemented on SIMD parallel
architectures (in that, it is of course not unique). In fact, its parallelisation is obvious : each

virtual processor of the machine is associated with a scatterer at a node of the square lattice and

all scattering processes are performed simultaneously. This allows large 2D system sizes (up to

024 by 024 on a 32 K Connection Machine) to be used. These are useful to minimize finite

size effects and to observe all the different regimes of time propagation with good a accuracy.
It also makes reasonable the future study of 3D system of sizes of order 128~.

The «Wave Automaton» was implemented on the Connection Machine (CM200) of

I-N-R-I-A- (Sophia-Antipolis) and the CM2 of the IPG (Paris). A first sequence generates
simultaneously the S-matrices, calculated for given values of the scattering strength

6 and the disorder parameter ha. We recall that in most of our computations the scattering
strength 6 is the same for all the S-matrices in the lattice when not otherwise specified and the

random phase
a

is randomly and uniformly chosen from one node to another in the interval

a e [- ha, + ha ]. The set of S-matrices is then stored on the Datavault, the parallel memory
of the CM. Note that one could also easily generate a different set of S-matrices at each time

step in order to study wave propagation in time dependent disordered systems, such as in

turbulent media. This problem is left for future studies.

The second step of the computation is the dynamic sequence. A vector of 2 L~ components
(for waves propagating on only one of the sublattices [I]) is constructed to describe the field

entering the four bonds surrounding the L~/2 scatterers. A second vector of 2 L~ components is

also constructed to describe the outgoing field on each node after the scattering process. The

parallel computer performs L~/2 matrix-vector products simultaneously. Then, the outgoing

vector becomes the new input vector using a simple shift to the next four neighboring

scatterers. Since the time consumption of first neighbor communication is negligible on the

CM2 architecture, the speed of the program depends only on the time consumption associated

with the scattering process (matrix-vector products). The program reaches typically I

Gigaflops when working on two sequencers (16 K processors) on a CM200. The additional

calculations of other physical quantities, such as the radius of gyration of the wave packet,
slightly slow it down.

Finally, one has the freedom of the initial conditions, I-e- how the wave energy is injected

within the system. We have worked by launching either a field impulse in time and space (I.e.

we fix the field at the origin of time and space and then let the wave propagate), thus exciting

the whole range of the spectrum, or by launching a wave packet of width Am centered around a

specific pulsation wo, enabling the study of the dynamical interaction of a few modes which

are spatially localized in the neighborhood of the injection site. Computations with such wave

packets have permitted a test of weak localization predictions in the time domain [5] (see

Sect. 3 below). We have also used a source localized on one site and oscillating at some

specific pulsation wo, chosen to be an eigenfrequency of the system (the eigenfrequencies are

obtained by Fourier transform of a long time sequence of the field at the origin, in the case

where an impulse is launched (see below)). By increasing very slowly the amplitude of the

source at wo, one can thus construct the spatial structure of the eigenmode at pulsation

wo.

In section 2, we treat the case of the interaction of a Bloch wave with a single impurity
(corresponding to a different S-matrix on one node in a « sea »

of identical S-matrices). The

scattered Bloch wave is calculated analytically which allows us to derive the elastic mean free

time
r

and mean free length i~ as a function of the model parameters and the frequency
f

=
w/2 ar. These parameters are used in the next section (Sect. 3) to compare quantitatively
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the numerical results of wave propagation in random media with predictions from weak

localization theory. In section 3, we describe the different results that have been obtained using
extensive numerical simulations of wave packets in random media. We particularly study the

different regimes (ballistic, diffusive, localized) which appear as the wave packets spread over

the random media and compare these numerical results with weak localization predictions.

2. Weakly disordered systems.

We consider the case of quenched disordered systems, obtained by choosing the phase

a independently from node to node and randomly in the interval [- ha, + ha ], while still

keeping the parameter 6 identical in all S-matrices. ha is then a measure of the strength of the

disorder : if ha is close to zero, the disorder is weak ; when ha is close to ar/2, the disorder is

maximum. In order to analyse the weak disorder limit, it is also useful to consider disordered

systems constructed by random dilution, I.e. where randomly chosen nodes at large distances

from each other possess a S-matrix with a different phase a' from the rest of the nodes which

have all identical S-matrices. This structure gives sense to the limit of well-defined Bloch

waves interacting with isolated scatterers. The mean free path f~ (or equivalently the mean free

time r~ =

i~/c) which is the key variable to characterize a random system in a general way,
then takes the simple meaning of the effective length between efficient interactions between

the Bloch modes and the scatterers (note that f~ is in general much larger than the distance

between scatterers since a single scatterer is often too weak to scatter significantly the incident

Bloch off its propagation direction). At lengths smaller than f~, the wave is essentially
propagating : its energy travels at an average speed c of the wave in the medium and the

scatterers have not yet made a significant contribution except for renormalizing the effective

velocity [6]. The regime where one considers scales jr less than f~, such that f~ WA the

wavelength, is called the weak disorder regime.
A first estimate of the dependence of the mean free path f~ on the parameters

6 and ha can be obtained in the limit of small scattering strengths 6, such that the modulus of

the transmission coefficient is close to one. In this case, the ar/2-scattering events are weak (of
amplitude of order 6) and the lattice can be considered as a set of horizontal and vertical lines

which are weakly coupled transversely. Selecting a direction of propagation along one of the

axe, say Ox, the propagation along Ox is then approximately described at scales less than

f~ by the tight-binding equation (t((W~~j+ W~_j)+V~ W~= 0, where the hopping
coefficient is identified with the modulus t

=

cos~ 6/2 of the transmission coefficient and the

on-site potential V~ is, according to the Fermi golden rule, proportional to the square root of

the scattering cross section «~ =

l -cos~ 6/2 (Eq. (13) [1]). We can then use the lD

expression for the mean free path [7]

f~
=

4 it (~sin~ (k(/[(V() (V~)~] (2)

where ( ) means an averaging over the disorder in the realizations of
a. We estimate the term

(V() (V~)~ by writing V~
=

Vo[I cos~ 6/2]'~~ e~'"~, since all the scattering amplitudes

are proportional to
e~'"~ Assuming a uniform distribution of

a
in the interval [- ha, + ha ],

we obtain

(v2j jv j2
~

VI [I cos~ 6/2 ( (sin 2 ha )/2 ha ) ~

n n

(sin 4 ha )/4 ha
m

(4/3 ) V( it cos~ 6/2 (ha )+ ~

for small ha. This yields

f~
m

(3/V( ) sin~ k (ha )~ ~ cos~(6/2)/ it cos~ 6/2 (3)
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Expression (3) shows that f~ diverges as f~ (ha )~ ~ 6 ~ for small ha and 6. Other more

refined correspondences with the lD tight-binding model recover this leading behavior. This

simple reasoning is however insufficient to describe the dependence of the mean free path as a

function of the Bloch wave directions of propagation.
We now describe the analytical calculation of the scattering of a Bloch wave of arbitrary

wavevector k and a single isolated defect, which will allow us to evaluate the elastic mean free

time r~. In a periodic system, any propagating wave at a given pulsation
w can be described as

a linear combination of Bloch waves A(k, r) (with
w = w

~k)), the 4 n~ components of each

Bloch wave A(k, r ) being given by equations (16) and (26) of our previous paper [I al. We

introduce a perturbation in the medium, the S-matrix S~ is replaced, on one node

(I, j ), by a different S-matrix S~, (with a' # 0).'Any Bloch wave A(k, r ) encountering this

defect at time r, is scattered into a «
scattered wave » : B(k,

r + I ). B(k, r + I can be

decomposed into a linear combination of Bloch waves of the unperturbed system :

B(k, r + I )
=

£ (A(k',
r + I )(B(k,

r + I )) A(k', r + 1) (4)

k.iw
w

ik.))

B (k,
r + I ) is in fact almost equal to A (k,

r + I ), except for the fact that the four local fields

impinging on the four neighboring nodes of node ii, j are different from those deduced from

the structure of A(k, r + I ) due to the scattering process with the matrix S~, # S~, The

complete expression of B(k,
r + I) is given in appendix A. The fundamental hypothesis

which allows us to consider B(k,
r + I ) as the scattered Bloch wave is the assumption of

single scattering, I.e, that the wave interacts only once with the defect. This means that the

four waves, which have been scattered off by the defect S~, at node (I, j ), will never encounter

again the defect S~< but will only see the unperturbed S-matrix S~ on all nodes including
(I, j ). This condition expresses the limit of single scattering taken in this computation.

Knowing the full expression of the scattered wave B (k, r + I ), we are now in a position to

derive the expression of the mean free time r~. The first step is to define the relative weight
P of the scattering from the Bloch wave A(k, r) to the Bloch wave A(k',

r + I) at time

r + I, by the defect S~, on node (I, j ). It is given by

P
=

l~~~'~
~ + ~'~~~~ ~ + ~l '~

(51
£ (A(k',

r + I )(B(k,
r + 1)) (~

kjw =w(k,~,

The denominator allows us to normalize the weight to unity when summing over all outgoing
Bloch waves, expressing the conservation of the energy.

We are interested in computing the so-called transport mean free time or mean free path,
which will be of use in section 3 for calculating the transport properties of the wave in random

media. In order to obtain the transport mean free time, we need to multiply the weight
P for the scattering from channel k to channel k' by the factor (I -cosok,,k)m

(I-k.k'/(k((k'(), where o~,~ is the angle between the two wavevectors k and

~,

~'k',
k "

~' (1 CDS °k', k) (~)

This factor puts a zero weight to the forward scattering and gives a maximum weight to the

backward scattering. It takes into account the fact that the forward scattering does not

correspond to a true scattering event [6].

To get the total fraction of the wave which has been scattered in all directions except the
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incident one, we add all the contributions for the different outgoing channels k'and obtain

~'k
~

i ~
k', k

~~~

k'

After one scattering event, the energy left in the k direction is then (I P~).

Let us now consider an initially periodic medium in which all the sites are slightly modified

to carry a matrix S~ # S~, with small random a'. In the limit where the perturbation created by
the modification a'# 0 is weak, we can use the superposition approximation over all the

elementary scattering processes encountered by-the initial Bloch wave. Then, the energy jn the

k direction on the Bloch wave A(k, r) after the time
r

is decreased by the factor

(I P
~

)~~~~ m exp (- P
~

v ~~ r
in the limit of small P

~,
where v ~~

is the phase velocity of the

Bloch wave A(k). Indeed, the product v~~ r
gives the number of sites encountered by the

Bloch wave along a line of propagation in the direction k, per unit length of the wave front.

This allows us to define the transport mean free time r~ as

~k ~ [V#k ~ k1 (8)

r~ represents the characteristic decay time of the Bloch wave propagating along direction k due

to the presence of disorder. Note that equation (8) with (5) is nothing but the adaptation of the

Fermi golden rule to the present problem.
The transport mean free time r~(w) of the disordered medium for a given pulsation

w is given by averaging the decay rate I/r~ over all the possible incident directions k and over

the disorder (a'e [- ha, ha ]). This reads

~e

W
)

l~k k

a'E [- ha, ha

~~~

where N~ represents the total number of wavevectors k which verify the dispersion relation

w(k)
= w

for a fixed value of
w.

The transport mean free time r~(w) is the average
characteristic decay time of waves at frequency

w.
It will be used in section 3. We do not

present the general case of arbitrary pulsations
w but restrict our attention to the range of

w

such that the dispersion relation is quadratic, and thus equivalent to a tight-binding or

Schr6dinger equation. This will allow us to use the prediction of weak localization

calculations, which are available only in the case of quadratic dispersion relations [5]. In the

parametrization in terms of
a

and 6 in the wave automaton, pure quadratic dispersion relations

exist only when the two brailches given by equations (20a) and (20b) or (22a) and (22b) of

reference [la] can be separated. This occurs when a gap exists, I.e. for 6
~

ar/2. We also

restrict our attention to values of
w

close to and less than the band edge value

w*
= ar 6. This yields a number of domains for k

=
(k~, k~.) over which the sum in

equation (9) must be performed. These domains are defined in appendix B. Some important
but tedious steps of the summation leading to the final expression of r~(w) are given in

appendix C. The series of integrals must finally be performed numerically. In figure is shown

the result of these computations where r~ (w is drawn as a function of w, in the neighborhood
of the band edge where the calculation holds. The transport mean free path can then be

obtained since it is just the product of r~(w by the average wave velocity c at the pulsation

w.
Note that the computation presented in figure I is valid only in the vicinity of the band edge.

3. Sub-diffusion and wave localization.

We now present our main numerical results obtained by implementing the wave automaton on

a Connection Machine. Figure 2 shows a series of snapshots at different increasing times of the
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~(~°) bmo.5n

Aum0.ln~
ova

0.1 0.2 0.3 0.4 0.5

Fig. I. Dependence of the transpon mean free time r~(w ), obtained from the theory developed in the

text, as a function of the pulsation
w

for 3
=

0.5
ar

and ha
=

0. I w. The analytical calculation is only
valid near the band edge,

w =

0.5
ar.

wave intensity field within a random system with 6
=

ar/2 and ha
=

0. I ar, after launching at

the center of a system (the origin) of size 512 by 512 at r =

0 a narrow Gaussian wave packet
of central pulsation

w =

0.47 ar and width Am
=

0.005
ar

(corresponding to a mean free path
f~m10). For comparison figure 3 shows the same series of snapshots under the same

conditions except that the wave, which is launched at the origin, consists in a Dirac impulse. In

figure 2, a much smaller number of modes are excited whereas all modes in the system which

overlap significantly with the origin are excited in figure 3. In figure 3, we clearly observe

three regimes the spreading of the wave packets is first ballistic for
r w 20 less than the

elastic mean free time for 20
w r w

80, one can still observe the ballistic front whereas most

of the wave energy has been scattered off and becomes diffusive. This ballistic-diffusive cross-

over cannot be observed in the case of the wave packet (Fig. 2) because the source remains

active over a time longer than the elastic mean, free time. The analysis developed below will

show that the diffusive regime is in fact subdiffusive. At much longer times of the order of

10~, the waves finally become localized. It is interesting to note the difference between the

structures of the wave field at r =

10~, represented in figures 2 and 3, for the Gaussian wave

packet and for the Dirac impulse. The wave field is much more structured in the case of the

Gaussian wave packet, due to the fact that a much smaller number of modes have been excited.

These observations are in qualitative agreement with the standard picture of wave transport
in random media [8-10], according to which the wave is ballistic at scales longer than

f~, diffusive at scales larger than i~, until one reaches the localization regime at scales larger
than the localization length f. In order to exist, the third regime of Anderson localization needs

a sufficiently strong disorder [8-10], jn dimensions larger than two. The present understanding
is that waves are always localized in two and less dimensions [8-10]. In practice however, the

Anderson localization will be observed only when the system size is larger than the localization

length f, which, in our systems, is a function of 6 and ha.

Since figure 3 corresponds to a large superposition of excited modes, a kind of self-

averaging occurs and only the global features of the transport are observed. This is particularly
clear by taking the Fourier transform of the wave amplitude time dependence at the origin, as

represented in figure 4a for the particular choice of parameters 6
=

0.9
ar and ha

=

0.2 ar.

This choice of parameters entails a very short localization length of the order of a few lattice

meshes. Therefore, the Dirac impulse excites all modes whose locations are within a

localization length of the origin. Because they are relatively few, well-defined peaks
corrbsponding to the eigenfrequencies can be observed. Note that the Fourier transform of the

same signal as for the Dirac impulse shown in figure 3 would give such a dense system of

peaks that they would form a very dense system of peaks on this scale 0.25 w f w 0.25 due

to the much larger number of modes which are excited in this case. Figure 4b presents the

Fourier transform of the time evolution of a Dirac impulse propagation on a periodic system

JOURNAL DE PHYSIQUE T 1 N's JUNE 1991
4~
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with 6 =0.9ar and ha =0. The eigenfrequencies form a dense set in the interval

0.05
w

f
w 0.05 (as expected the passing band width is 0, I ar (see I al ). Note that the effect

of disorder is to populate the stop bands of the periodic system. Very sharp peaks can be

observed centered on the eigenfrequencies of the random system. We note that the density of

peaks defines a nearly constant average density of states (the average spacing between

neighboring peaks seems to be independent of the frequency). This was expected since the

a)

b>

Fig. 2. Series of snapshots at different increasing times of the wave intensity field within a random

system with 3
=

ar/2 and ha
=

0. I ar, after launching at the center of a system (the origin) of size 512

by 512 at r
=0 a narrow Gaussian wave packet of central pulsation

w =
0.47

ar and width

Am
=

0.005 ar. Figures a to d are closeups which show only a small central pan of the system. The figure
shows the entire lattice. a)

r =
500 hi

r =
1000 cl

r =

lo 000 d)
r =

lo 000 showing the entire

lattice. Note that the lattice in figure 2d has nothing to do with the original lattice but is drawn for the

purpose of representation.
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Fig. 2c.

cn
I

q
a

lit jg§

~j~ j§f
j ~j y9 j

Fig. 2d.

density of states in the periodic case is already constant for 6 w w w ar/2 and does not vary

significantly except near w =
0, as seen in figure 8 of reference [I al. We have verified that the

distribution of spacings 6w between consecutive eigenpulsations is Poissonian, in agreement

with the general theory of random matrices ill]. This result is well-known in lD random

systems and is characteristic of localized modes it 2]. It is thus interesting to confirm that the

Poissonian distribution seems robust in higher dimensions. Physically, the Poissonian nature

of the distribution of level spacings stems from the superposition of many quasi-independent

sub-systems of size of the order of the localization length.
In contrast, a much smaller number of modes are excited in the case of figure 2 and the

complexity of the observed intensity field thus reflects that of the eigenmodes. To illustrate this
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point further, figure 5 shows the wave intensity field of a pure eigenmode at frequency
f

=

0.228714 in the case 6
=

0.5
ar

and ha
=

0.3 ar, obtained by using a source placed at the

origin which oscillates at the pulsation frequency f
=

0.228714, and whose amplitude has

been increased from zero very slowly over a long timespan AT
m

10~ in order to minimize the

number (~10~~ L~ zw10) of excited modes in the frequency range hf m10~~ around the

a)

hi

Fig. 3. Same as in figure 2 except that the wave, which is launched at the origin, consists in a Dirac

impulse. Figuresa to f are closeups which show only a small central part of the system.

a) r =
20 b)

r =

40 c)
r =

60 d)
r =

80 e)
r =

100 f~ r =

200 ; g) r =

10 000 for the entire

lattice. The vertical scale has been enhanced by a factor lo in figure g). Note that the lattice shown in

figure 3g has nothing to do with the original lattice but is drawn for the purpose of representation.
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Fig. 3c.

Fig. 3d.
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Fig. 3e.

Fig. 3f.
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lit jg§

~j~ y§f
j l~j jy9 j

Fig. 3g.

,~o

io'~

10~~

io'~
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Fig. 4. a) Fourier transform of the wave amplitude time dependence at the origin as a function of the

frequency fin the case 3
=

0.9 ar and ha
=

0.2 w. b) Same as a) but in the corresponding periodic

lattice 3
=

0.9
ar

and ha
=

0.
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Fig. 5. Wave intensity field of a pure eigenmode of frequency f
=

0.228714 in a random system with

3
=

0.5 ar
and ha

=

0.3
ar.
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frequency f
=

0.228714. Then, keeping the source functioning over a long time
m

10~ at a

constant amplitude allows us to amplify the mode linearly in time by resonance at

f
=

0.228714, whereas all the other modes which may have been excited have their amplitude
remain constant. We check that the obtained wave field corresponds to the single mode at

f
=

0.228714, by Fourier transforming the wave amplitude time dependence at the origin after

the source has been finally cut down. One indeed observes the existence of a single peak of

intensity
~

10~ above all others. More directly, we verify that all points of the lattice oscillate

with the same frequency f. Although we have not carried out a specific study of the spatial
properties of the eigenmodes, the spatially intermittent structure of the eigenmodes with the

presence of quite many different scales is in qualitative agreement with previous studies 11 3]

which have shown that the localized eigenmodes are fractal and may be even multifractal up

the cut-off length imposed by the finite loca(zation length f.

Figure 6 shows the radius of gyration or mean square width

R~ ~~~
= ~

W jr jr ~ W (r
~

"~ of the spreading wave packet as a function of time up to

r=10~ launched from an initial Diract impulse at the origin, for 6
=

0.83 ar and

ha
=

0.I
ar

for two boundary conditions : periodic (upper curve) and open (lower curve).

Note that the two curves are indistinguishable except at the largest times at which the tails of

the wave packet reach the system border. Here, (R~(~'~ is not averaged over different

realizations of the disorder but corresponds to a single specific realization. The observed self-

averaging stems from the superposition of the hundred of thousands modes which are excited

in this configuration and which overlap on the frequency axis for times less than the inverse

average spacing between eigenfrequencies. At longer times, beating becomes significant. For

systems with larger disorders so that the number of modes in a localization volume is largely
decreased, we also observe significant fluctuations of (R~( "~

as a function of time.

~
~

~76.7
~j
~

10
~
~

u1e
(

i o i o~ i o~ i o' i o~ i o~

TIME

Fig. 6.- Radius of gyration (R~("~
=

(~ V'(r)( jr (~ (V'(r)~ ("~ as a function of time up to

r =

10~ (the inverse bandwidth corresponds to r 2) for 8
=

0.83
ar

and ha
=

0. I ar
for two boundary

conditions periodic (upper curve) and open (lower curve).

Instead of the usual diffusive behavior expected at scales i~ <
jr

< f, we observe a sub-

diffusive dynamics in which the mean square width (R~ of an initial narrow pulse launched at

r =
0 scales as (R~ r

~
~, with an exponent v =

0.45 significantly less than 1/2 and varying
continuously as a function of the disorder. This observation of a sub-diffuse regime, with an

exponent v w
1/2, allows to us refine the standard picture of localization according to which a

wave packet diffuses at short times before realizing it is trapped as in an effective cavity of size

given by the localization length. The observation of such a diffusive regime has previously
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been announced in numerical studies in [14] and predicted on the basis of weak localization

calculations in [5]. In order to understand better this subdiffusive regime, in figure 7 we report

the dependence of (R~ '~~
as a function of time for different values of the scattering strength

(same ha
=

0.4 ar and increasing 6 by 0. ar units from 0. I ar to 0.8
ar

from top to bottom.

All curves are characterized by three regimes, I) ballistic at very short times for

(R~ '~~
~

i~, 2) sub-diffusive at intermediate times for f~ w
R~ '~~

w f and 3) localized at long

times. For the smallest 6, the localized regime is not observed since the localization length is

larger than the system size. For the largest 6, the subdiffusive regime disappears since

localization occurs at the scale of the lattice mesh. The dependence of v as a function of

6 is shown in figure. The exponent v
decreases from its classical diffusive value 1/2 as the

scattering strength increases.

~
CJ

p 2°9 ' how.4«

CtS
~

cD
~o 6~

~ lo
c

u1
Il

II
io~ io~ io~ lo' io~

TIME

Fig. 7. Dependence of (R~( "~
as a function of time for different values of the scattering strength

(same ha
=

0.4
ar and increasing 3 by 0.

ar
units from 0.I

ar to 0.8
ar

from top to bottom).

°.6V
,

Aa@.4n

DA

0.3

0.2
,

~~.2 0.3 DA 0.5 0.6 0~7~~~

Fig. 8. Dependence of
v as a function of 8 (ha being kept fixed) in the case where a Dirac impulse is

launched at the origin (case represented in Fig. 7).

This subdiffusion stems from weak localization effects. Indeed, consider the weak

localization formula for the diffusion coefficient at large scale L of a wave packet centered on

w : D(L)
=

Doll (2 wr~)~' Log (L/f~)], where r~(w) is the characteristic decay time

calculated in equation (9). Taking r/r~ (L/f~)~, this yields D(r
=

Doll (wr~ )~ ' Log (r/r~)]. Using (R~(
=

4 D (r r, we recover precisely the time depen-

dent weak localization perturbation calculations [5]. Using the fact that to first order,

I (wr~)~ ' Log (r/r~)
m

(r/r~)~ '~~~~, we thus obtain

v =

1/2 (2 wr~)~' (10)
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Equation (10) explains qualitatively the result of figure 8 that
v

decreases as r~ or

i~ decreases. However, no precise quantitative analysis is possible with a Dirac pulse since it

does not fulfill the conditions for the weak localization calculations to be valid. Indeed,

equation (10) holds only for narrow wave packets of central pulsation
w

and width

Am « w. In order to test quantitatively the time dependent weak localization calculations [5],

we now consider the simulations of the spreading of wave packets using a set of parameters
such that all the conditions required for the weak localization expression (10) to hold are

satisfied. The central pulsation
w

is chosen close to a gap (which exists for 6 m ar/2 so that the

dispersion relation
w

(k) is quadratic), thereby ensuring that our wave automaton model is

quantitatively equivalent to a short-range tight-binding model. Figure 9 presents the depen-
dence of

v as a function of
w

for 6
=

ar/2 and ha
=

0. I ar. This set of parameters constitutes

the best trade off for quantifying with precision the subdiffusive behavior (a disorder which is

not too weak to observe the effect and not too strong so that subdiffusion still exits). Note also

that when
w

approaches the band edge (w
=

0.5
ar

in this case), the localization length
becomes very small and the subdiffusive regime is hardly observable. On the contrary, when

w
is far from ar/2, the correction to the classical value

v =

1/2 becomes small and the

dispersion relation begins to deviate significantly from being quadratic. We find large
fluctuations (in the ratio of one to several thousands) from realization to realization in the

amount of energy coupled inside the system, which can be attributed to local resonances at

w
of the transient source with localized proper modes placed near the origin. This means that

the diffusion of the wave packet is controlled by a wildly fluctuating number of excited modes.

As a consequence, we have found ensemble averaging unreliable since the results do not seem

to improve significantly as the number of realizations is increased (say from 10 to 100). The

points obtained numerically which are shown in figure 9 have been obtained by taking the most

probable value of the slope of Log (R~ as a function of Log r, The bars give our estimate of

the fluctuations around this most probable value. The theoretical expression [5] (Eq. (10)) is

given by the crosses for comparison, We find a good quantitative agreement, with however a

systematic deviation as w approaches the band edge, which is not surprising since the first

order perturbation theory becomes unreliable as the perturbative parameter I/wr~ becomes

larger.

~ ~
V

,

A~xm0. In

o_4
' 6#0.5R

0,3

0.2

~i.44
0.46 0.48

~

Fig. 9. Dependence of the exponent v as a function of
w

for 3
=

ar/2 and ha
=

0. I ar, in the case

where a Gaussian wave packet of central pulsation
w

chosen clo~e to a gap and of width

Am
=

0.005
ar

is launched at the origin. The numerical results are represented by the vertical bars and the

theoretical predictions (see text) correspond to the crosses.

4. Conclusion.

We have analyzed quantitatively the time evolution of the spreading of a wave packet in a 2D

disordered system. The observed subdiffusive regime has been explained quantitatively in

terms of a time dependent weak localization correction to the diffusion coefficient. The good
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agreement between weak localization theory and our numerical computations has been made

possible by using a direct determination of the elastic mean free time, which quantifies the

scattering efficiency of Bloch waves by S-matrix scatterers.
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Appendix A.

Expression of the wave B(k, r + I ) scattered by a scatterer on node (io, jo) in terms of Bloch

waves A(k, r + ~ ~'~~
~ A~""~°~ '~(r

+ 1)

~,~ ~~ +
Aj'°'~~ ~ '~(r

+
on node (io, jo + I : B~ (r + I

=

A)~'~°~ ~~(r + I )

li~'~~~° ~ ~(~ + '

l'°'~°~ ~~(r + 1)

~2 (a a') ~('o, Jo ' (~ ~ j
on node (io, jo I ) :

B/°'~°
~( r +

=

~,

~

A~°' °~ (r + Ii

A(°'~°~ ~~(r + 1)

A~'°~ "~°~(r
+ 1)

~, ~ j ~
Aj'°~ ~'~°~(r + I )

on node (io + I, jo) Bk ° ° (r + 1)
=

~-
2<(a

a j ~~'ii + ,Jo (~ ~ j )

Aj°~ ~'~°~(r + I

Al'°~ ~'~°~(r + 1)

~, ~

A)'°~ ~'~°~(r + I
on node (io I, jo) i

Bk°~ ° (r + I
= j,~_,

~~~jA~ (r + 1)

~21(a
-a

~"o- '.Jo)(~
~ j j

For all other nodes (I, j :
BI'~J~(r + I

=

Al'- J~(r
+ I ).

We deduce (A~, B~) ~ using expressions (26) of [I] giving the Bloch wave coefficients.

We thus obtain

~/2 ~
~2

~~k' ~k) '~ '~~'~~ ~ ~'~
J~J~,
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with

U
=

cos (k( k~,)/2 [cos (k( k~.)/2 cos w cos (k( + k~)/2 XX' +

+ cos (k[ k, )/2 [cos (k[ k, )/2 cos w cos (k[ + k~ )/2] YY'

V
=

1/2 sin
w

(cos k( cos k~ ) XX' + 1/2 sin
w (cos k[ cos k~ ) YY'

D
=

(I cos w cos k~ X~
+ (I cos w cos k,) Y~

D'
=

(I cos w cos k~, ) X'~
+ (I cos w cos k~,) Y'~

where

X
=

cos (w 6/2 ) cos k, cos 6/2 X'
= cos (w 6/2 ) cos k,, cos 6/2

Y
=

cos (w 6/2 cos k~ cos 6/2 Y'
=

cos (w 6/2 cos k,: cos 6/2

Appendix B.

Domains of integration for the calculation of the mean free path defined by
w

(k)
= w

equations (20b) and (22b) of reference [la] give

2 ,/(w
*

w
) tg 6/2

~
k[

~ + 2 ~/(w
*

w tg 6/2 (domaine dj

and k(
=

hi (w, k,)
= ~~~/4(w *

w ) tg 6/2 k(~

or k(
=

h~(w, k,
= ~~~/4(w *

w tg 6/2 k(~

where
w

* is the frequency of the band edge.
Equation (23a) of reference [I al gives

ar
2 ,/(w

*
w

) tg 6/2
~

k]
~ ar

(domaine d~ )

and k(
=

h~(w, k, )
=

jar ~~~/4(w *
w

) tg 6/2 (ar k_[)~]

or k(
=

h4(w, k,)
=

lW ~/4(w *
w tg 6/2 (ar k_[ )~]

ar ~
k[

~ ar + 2 ~/(w
*

w tg 6/2 (domaine d~

and k(
=

h~(w, k,)
=

jar ~~~/4(w *
w tg 6/2 (ar + k[ )~]

or k(
=

h~(w, k,)
=

jar ~~~/4(w *
w

) tg 6/2 (ar + k_()~].

The sum over wavevectors in the determination of the transport mean free time must thus be

performed over these three domains.

Appendix C.

Final expression of the free mean time r~(w :

the average over the disorder, when
a =

0, gives the contribution :

Si~ 2 6~Yj e~ ~'
" l ~l

a e j- aa, ha1
"

~
2 li~
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the discrete sum of any function f(k) over the k's becomes :

I f(k)
~

£ 6w, w(k)f(k)
~

£ 6w, w(k,
k,)f(k,, ky)

"

k ~uch
w

(k w k t,, t,

"

I
~k~_h (w,

k,)f(~~, ~v)

t,,t,
~

=

~~~
dk~ 6 (k~ h~ (w, k, )) f(k,, k~)

=

~~~
f(k,, h~(w, k,))

d,
2 "IL

d,
2 "IL

where d~ and
h~ are respectively one of the three domains of k, and one of the six expressions of

k~
given in appendix B ;

we also have

~ ~' ~ ~ ~'

CO$ @~< ~ =

~ ~~ ~k~

and

N~=),/(w*-w)tg6/2.

The final expression for r~(w is given by

sin 2 ha

~)w
) 4(w *

j~~g
6/2

~

where

Q
=

dk~ F (k,, hi (w, k, )) + dk~ F (k,, h~(w, k,)) + dk, F (k,, h~(w, k,)) +

di d, di

+
ldk, F (k,, h~(w, k,)) + dk, F (k,, h~(w, k, ii + dk, F (k,, h~(w, k, ii

d~ d~ d~

~h~~~ F (k,, h~(w, k,))
=

ldkj[G(k(, hi (w, k[ )) + G(k(, h~(w, kj))] + dk[[G(k(, h~(w, k()) + G(k[, h~(w, k())]
dj di

ldk( [K(k[, hj(w, k[)) +K(k(, h~(w, k())] + dk([K(k(, h~(w, k[)) + K(k(, h~(w, k'))]
dj

di
~

+ dk([G(k[, h~(w, k[)) + G(k(, h~(w, k_())]
dj

+ ldk[[K(k(, h~(w, k[)) + K(k(, h~(w, k[ ))]
dj

~/2 ~2
~~~ ~~~~~ ~~~~' ~ (~°'~~)) j~,

~~ C°S °k', kl



N° 6 A WAVE AUTOMATON FOR WAVE PROPAGATION 1301

and

K(kj, h~(w, kj))
=

~~)(

The expressions for U, V, D and D' are given in appendix A.
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