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Abstract. In Vanneste et al., Europhys. Lett, 17 (1992) 715, a new lattice model was introduced

for the dynamic-al propagation of waves in arbitrary heterogeneous media, which is efficient for

calculations on large systems (1 024 x 024) over long times (several 106 inverse band widths).

Instead of starring from a wave equation or a Hamiltonian which needs to be discretized for

numerical implementation, the model is defined by the set of S-matrices, one for each node,

describing the interaction of the wave field with the scatterers. Here, we expose in detail the

general method of construction of the S-matrices and discuss the physical meaning of the

dynamical S-matrix approach. We calculate the properties of this model for a class of parameters in

the periodic case and exhibit the form of the Bloch modes, the dispersion relation and the mode

density. In a companion paper, we study the transport of wave packets in arbitrary random media.

1. Introduction.

The propagation of waves in arbitrary linear systems can be characterized essentially by three

quantities: the spectrum, the spatial proper modes and the time dependent response.

Description of waves in the Fourier domain is by far the most developed in comparison with

the time domain. The Fourier domain is physically meaningful and particularly efficient for the

treatment of homogeneous or weakly heterogeneous systems. The present understanding of the

behavior of waves in strongly disordered media, notably in the presence of wave localiza-

tion [1-3], relies essentially on a description in the Fourier domain. In this way, the hallmarks

of wave localization is the appearance of spatially localized proper modes and a pure point

spectrum. More generally, Anderson localization is usually described in terms of specific
properties of the stationary wave at a given frequency. On the other hand, much less

attention [4] has bien devoted to the dynamical properties of wave localization, for example
the manner in which waves become localized as a function of time from an initial propagating
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state. Since both the wave and Schrbdinger equations are linear, wave dynamics can be

formally deduced from the knowledge of the frequency dependence of the stationary problem

(see for instance [5, 6] for the wave localization problem). However, the interest in

investigating wave dynamics directly (in particular in the strong disorder regime) is that it can

exhibit more clearly some striking features of the phenomenon in that it provides a genuine real

space-time representation. Furthermore, localization dynamics determine many important
properties of the energy wave transport in random systems, such as transient injection

transmissions or currents, hopping kinetics, pulse transmission and reflections [7a], Along
these directions, recent experimental studies on acoustic waves [7b] using fast electronics and

large transducer arrays have demonstrated the possibility of retuming in time (t
-

T t ) a

nalTow wave packet, thus enabling for instance the spontaneous focalization on a specific

target of a pulse propagating through arbitrary heterogeneous media. Another particularly
significant domain where wave propagation in the time domain is important is seismology : the

challenge here is to analyse finite wave signals and deduce from then the heterogeneous

structure of the earth and/or the source mechanism (nature of the rupture) of the seismic waves

created during earthquakes. In engineering these problems are encountered for instance in the

non-destructive Emission Acoustic technique [8]. More generally, the possibility of having

access to the time domain suggests a wealth of techniques to treat, filter, etc., the wave and

thus gain useful information on the source or the carrying medium.

Analysis of wave propagation in the time domain has been studied previously essentially by
using various numerical schemes, starting from the Schr6dinger parabolic equation

I 0V'/0t =HV' (we note «I» the square root of I), the hyperbolic wave equation
c~~ 0~V'/0t~

=
6V'/n(r); etc. In these equations, H is the Hamiltonian and n(r) is the local

index of refraction. A first difficulty of numerical schemes comes from the discretization of

space and time, which leads to spurious dispersion relations at high frequency and

wavevectors. A more serious problem is that the numerical schemes must preserve the norm of

the wave function, I.e. the time evolution operator U(t)
=

exp [- itH] (for the Schr6dinger
equation) must be unitary. Approximate methods of integration, such as the standard implicit

Crank-Nicholson method [9, 10] have been introduced to approximate the time evolution

operator. Recently, more accurate and efficient algorithms have been proposed [I1-13].
The approach discussed in the present paper (see also [14] for a preliminary account),

although related to explicit integration schemes of the wave equations, starts from an entirely
different point of view. This approach has initially been introduced a few years ago for the

computation of stationary transmissions in random media [15], where its potential for

calculating time-dependent wave properties has been overlooked. We have recently rediscove-

red it from a different approach [14] and extended it for studying time~dependent wave

propagation in large heterogeneous media at long times. Its main qualities are to be inherently
explicit, highly parallel and inconditionally stable while conserving the energy flux exactly. It

is probably the simplest direct approach one can think of to deal with the general problem of

the time evolution of a wave in an arbitrary medium. Its simplicity stems from the fact that it

treats directly the impinging waves on each node of a lattice and describes the scattering event,

in the time domain, by a scattering matrix (S~matrix) one for each node. In contrast to standard

approaches using S-matrices, it is important to stress that we use it in the time domain. We do

not really attempt a priori to model a specific wave equation, but our goal is to define the

minimal ingredients that must be kept in order to model a wave. They are I) to deal with

complex fields A e~~, 2) to obey the condition of energy conservation or equivalently of wave

function norm conservation and 3) to satisfay the invariance with respect to time-reversal (in

the absence of a magnetic field for electrons or more generally of a rotational field coupled to

the wave field). In a sense, our purpose for
«

computing
»

is insight, not numbers [16]. Then,

due to its modelling philosophy, the
« wave automaton » appears to be an ideal starting point
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for the development of numerical routines for the computation of more general propagation

processes.

The
« wave automaton» is in some respect similar in spirit to the cellular automata

models [17], in that macroscopic equations are modelled by arrays of variables that follow

local interaction rules. Similarly to our guideline in the construction of the- «wave

automaton», cellular automata have been proposed as altemative to, rather than an

approximation of, partial differential equations in modelling physics. In the standard cellular

automata models introduced to model fluid dynamics [18], the dynamical variables are

typically limited to just a few states (for instance, Boolean variables), hence the name

« automaton »
in the sense of Von Neumann, and the macroscopic partial differential equation

is recovered after a suitable time and space averaging is taken. Since acoustic waves derive

from the complete compressible Navier-Stokes equation, a similar approach can be proposed
for modeling waves [19]. However, one needs again to average over many lattice sites and

time steps to get rid of fluctuations and to recover the macroscopic wave equation, which limits

the useful size and the time span of the dynamics. On the contrary, our « wave automaton »

uses continuous complex variables A e'~, which allows us to avoid the averaging procedure
since the wave field components must be considered as discrete realizations of their

macroscopic counterparts. Note that we use the term « automaton »
in the broader pre- Von

Neumann sense of an artificial
« creature »

(here the complex field) imitating real life (the

wave), and not in the restricted meaning of a Boolean or discrete variable.

Enders has recently commented [20] that I) there is a physical (Huygens') principle
underlying the

« wave automaton »
approach presented in reference [14] and in this paper and

2) there is a physical (network) representation/realization model for such numerical algo-
rithms/routines. In the term Huygens' principle, are comprised I) the principle of action-by-

proximity and 2) the superposition of secondary wavelets according to the smoothness

properties of the field under consideration.

In section 2, we expose in detail the general method of construction of the S-matrices, and

discuss the physical meaning of the S-matrix approach. In section 3, we calculate the

properties of this model for a class of parameters defining the wave automaton in the periodic

case and exhibit the form of the Bloch modes, the dispersion relation and the mode density.
Appendix A gives the relation between the scattering matrix (S-Matrix) representation and the

usual transfer matrix (T-Matrix) representation. Appendix B provides a list of the different

possible sets of parameters for the parametrisation of S-Matrix that describes isotropic
scattering. In the following paper [21], we use the

« wave automaton » to study the properties
of the dynamical transition of a wave packet into a localized state.

2. Description of the
«

Wave Automaton
»

3. I GENERAL cAsE. Consider a d-dimensional discrete lattice of size L~ and unit mesh size.

We will consider square (d
=

2 ), cubic (d
=

3 ) or more generally hypercubic lattices, such

that the number of bonds connecting to a given node is z =
2 d. Consideration of other lattice

symmetries is straightforward using the corresponding S-matrices for the corresponding
coordination number

z (see below). Two scalar waves (each described by a modulus and

phase) can propagate in opposite directions along each bond of this lattice. Since time

dependent processes are studied, the waves are in fact pulses which interact with the nodes (the
scatterers) at discrete times. It may be useful to look at this system as a simplified
representation of a physical network of unidimensional waveguides connected at each node of

the lattice, such that the wave locally travels unidimensionally in each guide and is coupled to

transverse directions at the connecting nodes. Again, in contrast to previous works [22-24] on

waveguides, only pulses, and not stationary waves, propagate in our model.
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It is important to note that for the square lattice in 2D, or for the cubic lattice in 3D and more

generally for hypercubic lattices in arbitrary dimensions, the network can be divided into two

separate altemate cubic lattices (see Fig. I for the 2D case). At each scattering event by the

nodes of the network, one can distinguish the waves (- -) which are impinging upon the

nodes and those (- -) which are going away from the nodes. Then, the propagation is the

superposition of two independent propagations, one for the impinging waves and the other for

the outgoing waves. One can easily be convinced that the propagation of one of these waves,

when described every two time steps, remains always either on the white or on the black

sublattice (see Fig. I). The other sublattice is only present to connect the (odes of the first

sublattice at the intermediate odd time steps. These properties do not hold for other topologies
such as the triangular lattice in 2D. In the following, we will restrict our attention to cubic

lattices. Therefore, in practice, we can either use the full dynamics calculated every time step

or half of it every two time steps. The results that will be presented on the dispersion relation

and density of states concems the dynamics observed on one of the sublattices every two time

steps.

_J
.I-"..."4......-i-.~..4......-~...

Fig. I. Representation of the two independent sublattices present in the square lattice geometry. Four

waves are escaping from node (I, j ) at time t. At time t + 2, these waves and their counterparts are found

only on the white nodes.

At a given time t~, 2d waves along the 2d bonds connected to a given node are impinging on

this node (scatterer). 2d waves emerge at time t+ from this node after the scattering process

(see Fig. 2). The scatterer located on each node of the lattice thus allows the coupling of all the

different directions of propagation. Mathematically, the scatterer is represented by a 2d by 2d

scattering-matrix (4 by 4 for a two-dimensional lattice) which transforms the 2d fields reaching

a node into the 2d outcoming fields. The d
=

2 case is depicted in figure 2a which gives the

convention for the four components of both the impinging and outgoing fields. This operation
is supposed to be instantaneous (between t~ and t+). Each outcoming pulse at time

t+ then propagates at constant unit speed along its bond towards the neighboring node to

become at time t + I an incoming field on this node. Our notation is : bond I of node

(I, j ) is bond 2 of node (I, j I ; bond 3 of node (I, j is bond 4 of node (I I, j ; bond 2

of node (I, j is bond I of node (I, j + I ; bond 4 of node (I, j ) is bond 3 of node

(I + I, j see Fig. 2a).

Up to now, the definition of the model does not specify a wave propagation. In fact, all the

physics is contained in the scattering-matrix which transforms the 2d fields reaching a node
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Fig. 2. Scattering process at a node of the square lattice. al Scattering process at a node of the square

lattice and definition of our parametrization. b) Parametrization of the scattering process leading to the

standard S-matrix.

into the 2d outcoming fields. Of course, nor any 2d by 2d matrix is allowed. In order to

represent a wave, one must constraint the S-matrices in order that the two fundamental

properties of the propagation of a wave are obeyed : I) the conservation of energy flux and 2)

the time reversal invariance. These two conditions ensure the fundamental characteristic of

waves to interfere. Such constraints can also be considered as symmetries that the S-matrix

must obey and are known to control its structure [25].

For d-dimensional systems, we can note E (resp. O) the column vector of the incident (resp
outgoing) fields. We can thus write more generally

O=S.E. (I)

The condition of conservation of the energy flux reads ~O * O
=

~E*. E (~E means transposed
of E and E* the complex conjugate of El, with ~O*. O

=

~E* ~S* S. E, using (I). The

equality being true for any field E, this leads to the condition ~S* S
=

I (where I is the unit

matrix), thus expressing the fact that the S-matrix is unitary [25, 26].

Under time reversal, O is changed into E* which is now the incident field, and

E into O* which now the outgoing field. Invariance with respect to time reversal thus reads

E *
=

S O * (2)

I-e- the same S-matrix transforms the time reversed fields. Equation (2) also reads

O
=

S * E
=

~S E since S * '
=

~S by the unitarity. For this equation to be compatible with

the definition (I) of the S-matrix, this leads to'S
=

S, I-e- the S-matrix defined above is

symmetric.
Note that our convention, for the channels of the outgoing field O, differs from the standard

definition leading to the standard parametrization of the S-matrix. In figure 2a, we associate an

index to each bond linking a node to its neighboring nodes. This index thus controls the index

of the components of both the incident and the outgoing fields. In contrast, in the standard

definition of a S-matrix, the index of the outgoing field component is defined by the direction

of the incident field (see Fig. 2b). In other words, the standard definition of the scattered field

O~ is deduced from our parametrization O by a coordinate inversion. If we note

P the operator for the coordinate inversion, we then have O~
=

P O
=

P S E
m

S ~ E, thus
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defining the standard S-matrix S~
=

P S. From ~S
=

S with S
=

P S~, since P~'
=

P, this

leads to ~S~. ~P
=

P S~, I.e.

P ~S~. P
=

S~, (3)

since ~P =P. Expression (3) is the standard condition for an S-matrix as defined in

textbooks [26]. In the sequel, we will use the notation of figure 2a such that our S-matrix is

unitary and symmetric.
Note that in order to treat the case of electrons in scattering media in the presence of a

magnetic field, we need to relax the condition of time reversal invariance in favor of the

weaker constraint that the phases of time reversed scattering events possess opposite signs.
This interesting problem is not investigated in the present work.

The two conditions of unitarity and symmetry that S-matrix must obey imply that it is

parametrized by exactly d(2 d + I ) free real parameters [27] (instead of 8 d~ real parameters
for arbitrary 2d x 2d matrices with complex coefficients). This gives lo (resp. 21) real

parameters in 2D (resp. 3D) systems. These d(2d+1) free real parameters physically
correspond to the existence of exactly d(2d+1) independent scattering channels as we

demonstrate below (see Fig. 3 for the 2D case). Note that the set of unitary symmetric matrices

forms a group which is isomorphic to the symplectic group. In Appendix A, we show how this

set of scattering matrices is related to the usual set of transfer matrices.

~t~o r3~ ~r ~
~ ~ ~

Fig. 3. Sketch of the lo elementary scattering processes described by the S-matrix 2 transmissions,

4 w/2-scattering events and 4 reflections.

The 2d by 2d unitary and symmetric S-matrices can be parametrized under the form

~ jL Mj= t~ ~,
(4)

with

L
=

-'V
cos 3 V l'V

means transposed of V) (5a)
L'

=

U cos 3 'U (5b)
M

=
U sin 8 V (5c)

U and V are arbitrary unitary d by d matrices parametrised by 2 d~ reals and

cos 8
j

0 sin 8
j

0

cos 8
=

,

sin 8
=

(6)
0 cos 8~ 0 sin 8~

are d by d diagonal matrices.

2.2 THE TWO-DIMENSIONAL cAsE. In two dimensions (d
=

2 ), the S-matrix is thus defined

by the following expression, where the four fields E,, I
=

I to 4 impinging upon the scatterer
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along its four links are transformed into four outgoing fields O,, I
=

I to 4 as depicted in

figure 2a

Oj Ej

O~ E~

~~
~~~

~

~~~

~4 1~4

Ten real parameters are then required to characterize completely a 4 by 4 S-matrix. The

condition that S be symmetric reduces to lo complex parameters and the condition of unitarity
to lo real parameters. An appropriate parametrization for arbitrary unitary 2 by 2 matrices is

V
=

e'"
° ~°,~ ~ ~~~ ~ ~'~ ~

(8a)
o e<P sin 0 cos 0 0 e~'Y

u
<a'( I ° C°S °' Sill °'j ~'~' °, (8b)

o ; e<p' sin 0'cos 0' 0 e~'Y

where a, p, 0, y, a', p', 0' and y' are real numbers generally chosen in the interval

[0, 2
ar ]. Noting

cos 8, 0 sin 8, 0
cos 8

=
,

sin 8
=

(9)
0 cos 8~ 0 sin 8~

we obtain by inserting expressions (6) and (7) into (5) :

'Y
[cos 8, cos~

cos 8~ sin~ 0 e~'P] °

0 0

L
=

e~'«
+ e~ ~'Y [cos 8

j

sin~ 0 cos 8~ cos~ 0 e~'P (° °
(10a)

0

[cos 8 + cos 8~ e~'P] sin 0 cos (°
l 0

'Y'[cos 8
j

cos~ @' cos 8~ sin~ @'e~'P'] °

0 0

L'
=

+
e~'«

+
e~~'Y'[cos 8j sin~ @' cos 8~ cos~ @'e~'P (° °

(lob)
0

[cos 8, + cos 8~ e~'P'] sin @'cos @' (°
l 0

M=-e'~"+«~
x

e'~Y ~ Y 'isin &, cos cos @' sin 81sin g sin g e,(P ~ P)i

+
e~'~Y + Y" [sin 81 sin sin @' sin 8~ cos cos

@'e'~P +P '] (~
x (ioc)

e'~Y Y"[sin 81cos sin @' + sin 8~ sin cos
@'e'~P +P'~] (~

e~'~Y Y'~ [sin 8j sin cos 0' + sin 8~ cos sin 0'e'~P + P ~]
°

0 0
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An intuitive way to understand this parametrization is to consider the four links around a

node, along the four cardinal directions : east (E), west (W), north (N) and south (S). A wave

coming from the south for example is redirected in all directions after scattering : it is partly
reflected back to the south, partly transmitted to the north, while part of it makes a left tum to

west, the rest turning right to east. In this representation, the scattering of a wave impinging on

the four links of a node decomposes itself into ten elementary transfer events : four reflections

(E
-

E, W
-

W, S
-

S, N
-

N) represented by the 4 elementary matrices

I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0

~~~
0 0 0 0

0 0 0 0 ' 0 0 o 0 ' 0 0 0 0 0 0 0 '

0 o 0 0 0 0 o 0 o I

two transmissions (E
-

W, S
-

N represented by the 2 elementary matrices

I o olo o o o

0 0 0
~~~

0 0 0 0

o 0 o o o 0 01 '

0 0 0 0 0

and four ar/2 rotations (E
-

N, W
-

S, N
-

W, S
-

E )

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
~~~

0 0 0

0 0 0 0' 0 0 0' 0 0 0 0 0 0 0'

0 0 0 0 0 0 0 0

This shows geometrically the origin of the ten parameters a, p, 0, y, a',p', @',
y', 8j and 8~ (see also Fig. 3), which are just enough and sufficient to control the relative

weight of the ten elementary scattering processes. This reasoning is straightforwardly
generalized to other dimensions and justifies the geometrical interpretation of the existence of

the d(2 d + I ) free real parameters defining the unitary symmetric S-matrices.
Keeping these parameters arbitrary colTesponds to describing general anisotropic media. It will

be convenient below to restrict our attention to isotropic scatterers. In this case, the ten real

parameters can be reduced to three real parameters. Indeed, isotropy implies that the two

transmissions and the four reflections are equivalent, which sets a'= a + ar/2, y =

y',

p =
p' and 0

=
@'. It also implies that the four rotations are equivalent which yields discrete

sets of choices for the parameters 8~ (ou 8 j), y and @. Appendix B gives a list of the different

sets of parameters allowed for the parametrization of isotropic S-matrices, I.e. which verify
L

=

L', M
=

M' and Mll
"

~'22
"

fif12
"

~f21.

In the following we have chosen one set of parameters 8~
=

0, y =

0 and
=

ar/4 which

gives

L
=

L'= e~'"((cos 8j e~'P)( °j + (cos 8j + e~'P)(° (lla)
2 0 0

M= ~e~'«(sin 8j(~ ~jj. (llb)
2

The three real parameters a, 8
j

and p control the phase acquired by the scattered waves and

the strength of the scattering process. For instance when 8
j m

8
= ar, the matrix M is zero and

only the transmission and reflection processes are left. Setting p to 0 removes the second term

in L, corresponding to the transmission contribution. In this case 8jm8
= ar

and



N° 6 PROPAGATION AND TRANSMISSION IN INHOMOGENEOUS MEDIA 1267

p =
0, the only processes to take place are reflections back and forth between two neighboring

nodes : the system is then reduced to a series of independent uncoupled channels where the

wave is captured, remisniscent of localized orbitals in the tight-binding model of electrons in

dirty metals [28]. When having in mind the Anderson localization phenomenon, this limit is

particularly interesting since it corresponds to a trivial on-site localization. In the spirit of the

locator expansion pioneered by Anderson [29], any perturbation around this choice of

parameters 8
j m

8
= ar and p =

0 will weakly couple the localized channels. The localization

problem then reduces to the study of the effect of the weak coupling between localized orbitals.

Of course, this limit is also interesting from the numerical point of view since we expect the

localization length to become very small close to this limit.

In the following, we then keep the parameter p set to 0 while 8 and
a stay free parameters.

The 2 by 2 matrices L, L' and M entering the definition of the S-matrix are now simply
parametrized under the form

L=L'=e~'«[-sin~8/2(~ ~j+cos~8/2(~ ~jj=r[~ ~j+t(~ ~j (12a)

M
=

I e~'~ (sin 8/2 cos 8/2
=

d (12b)

l~ °j represents the reflection terms, (° the transmission terms and (~ the
0 0

rotation terms. r (resp. t) is the amplitude reflection (resp. transmission) coefficient and

d is the amplitude coefficient of the four ar/2 scattering events. The parameter 8 is a measure of

the scattering strength and a is a measure of the phase shift acquired by the wave at each

encounter with the scatterer. Figure 4 depicts the dependence of it (, jr and d as a function

of 8. It is sufficient to choose the parameter 8 in the interval [0,
ar

]. For 8
=

0, the S-matrix is

transparent and the wave crosses over the node keeping the same direction while taking a phase
shift equal to 2

a.
This is the lD-limit since the 2D lattice can then be considered as a set of

independent horizontal and vertical lines on which waves propagate without distorsions. At the

other extreme 8
= ar, the jeflection coefficient is equal to e~'~ and is of unit modulus

whereas all other processes disappear. The node possessing such an S~matrix is perfectly

Reflecfiou

O.6

O-O O.2 0.4 O.6 0.8 1-O 6/11

Fig. 4.- Dependence of the modulus (r( =sin~&/2 of reflection term, the transmission term

it
=

cos~ &/2 and the w/2-rotation term id
=

sin 6/2 cos &/2 as a function of the scattering strength
parameter &, in the parametrization given by equation (12).
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reflecting. Varying 8 between 0 and
ar

then allows one to weight continuously the strength of

the three scattering processes (transmission, reflection and ar/2 scattering).
The meaning of the parameter 8 is best illustrated by calculating the elastic «~ and transport

«~ scattering
« cross sections

»
of such an S-matrix. «~ is the sum of all scattering intensities

off the initial direction. This yields

«~ =
l (t (~ =

l cos~ 8/2. (13)

The transport scattering cross section is similarly defined but with a weight (I cos s

multiplying each term, where (resp, s) is the unit vector in the incident (resp, scattered)
direction. We thus obtain

«, =
2 sin~ 8/2 (14)

Note that we recover «~ = «, =
0 for 8

=

0 and «~ =
l and «, =

2 for 8
= ar. Recall that

these scattering cross sections are written in the units where the lattice size is unity.
A given system will then be defined by the set of 4 by 4 unitary symmetric S-matrices

parametrized using equations (5) and (12), with one S~matrix per node. The case where all the

S~matrices are the same on all nodes corresponds to a periodic system. A quenched random

system is defined by a set of S-matrices, one for each node, with random choices for the real

parameters a and 8. We can also choose to take the same 8 for all matrices and take random

choices for a. The latter model has the advantage that all S-matrices have the same scattering
efficiency (same scattering cross sections) and differ only by the phase shift taken by a

scattered wave. This has the advantage of putting the emphasis on the wave phase, which

might tum out to be useful in the future in order to study Anderson wave localization, a

phenomenon deeply associated with phase coherence. This is the choice that has been made in

most of our computation [211. The parameters of the model for a given random system used in

the companion paper [211 are the scattering strength 8 of the S-matrices and the width

ha in which the random phase a
is randomly chosen from one node to another:

a e [- ha + ha I.

Note that there are in total 4 L~ modes in a system of size L by L, since there are 2 bonds per
node and 2 directions of propagation (I.e. degrees of freedom) per bond. A degenerate case

which is straightforward to check occurs when 8
= ar, such as all bonds become independent

from each other. However, it is simpler and more transparent to deal with only one of the two

sublattices. This restricts the number of mode to 2L~.

2.3 PHYSICAL CONTENT OF THE WAVE AUTOMATON AND ADVANTAGES. It is physically
illuminating to give a direct derivation of the structure of the S-matrix in the isotropic case. As

shown in figure 5a, we consider a pulse wave of amplitude I incident upon an isotropic

scatterer. An amplitude t (resp. r and d~ is transmitted (resp. reflected and scattered at an angle
ar/2). The condition of time reversal invariance is that the time reverse scattering event,

consisting of four incident fields of amplitudes r*, t*, d* and d* (see Fig. 5b), leads to an

outgoing wave of amplitude I on the link on which the initial pulse was incident and to no

waves on the other links. This yields the three real equations :

(t(~ + (r(~ + 2 (d(~
=

l (lsa)

rt* + r* t + 2 (d(~
=

0 (lsb)

(r + t)d* + (r* + t*)d
=

0. (lsc)

These conditions which signify that the S-matrix is unitary and symmetric are of course

satisfied by the choice of parameters ( lo) or (12). It is clear that conditions (15) and especially
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d

I r

a)
t

--I r
*

b)
~

Fig. 5. Definition of the scattering amplitude in the isotropic case and illustration of the time reversal

invariance condition al direct scattering event b) time reverse scattering event.

the time reversal invariance (lsb-c) lead to strong constraints on the form of the S-matrix. To

illustrate this point physically, let us consider the example of a laser beam separated into two

beams by a semi-reflective miror (such that only t and d are non-vanishing) and then

recombined later to give two other beams (see Fig. 6). If we just allow for the conservation of

energy for this interaction with the semi-reflective mirors, we could imagine that

t
=

d
=

I/
/ is a suitable choice since the energy (t (~ + Id (~ =

l is conserved. However,

upon the recombining process at the other end of the system, we recover a total energy which is

twice the value that has been put in at the be ginning. Note that the recombining process acts in

a way similar to the time reverse scattering process shown in figure 5. The solution to this

problem is for example found by taking t
=

I/ / and d
=

il,I I.e. allowing for a

ar/2 phase shift between the waves transmitted and reflected by the semi-reflective miror. More

generally, when dealing with scattering processes in which a wave is incident on several

channels, it is important to choose the S-matrix, I-e- the scattering amplitudes t,

r and d such that (15) is verified, in the isotropic case.

2 2
t I +d

d

d

Fig. 6. Example of a laser beam separated into two beams by a semi-reflective miror (such that only

i and d are non-vanishing) and then recombined later to give two other beams. If i
=

d
=

II Qi, the total

outgoing energy (2 td(~ + (t~ + d~(~
=

2 is twice the injected energy This paradox is solved by the

choice t
=

I/
/ and d

=

if,fi, meaning that the phase difference between t and d is not arbitrary.
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3. Periodic systems.

Periodic systems are constructed by taking the same S-matrix on all L~ nodes of the lattice. In

the simple case that we consider, namely that the same 8 is chosen for all matrices, the

periodic case corresponds to taking the same a on all sites. As we now show, the study of

periodic systems is useful to better understand the status of the wave automaton model. It will

also be useful for the more general case of a random system studied in [211, since the

interaction of a Bloch wave with a single impurity (corresponding to a different S-matrix on

one node in a « sea »
of identical S-matrices) can be calculated analytically, and allows us to

derive the elastic mean free time T~ and mean free length f~ as a function of the model

parameters and the frequency f
=

w/2 ar. In tum, the elastic mean free time T~ is the key

parameter entering the weak localization predictions which will be tested with our numerical

calculations in [211.
Let us consider the Bloch wave propagating in the direction k at pulsation w, on one of the

two square sublattices of size L by L, and containing n~ nodes with n =
L/ Qi Let us denote it

by a vector A(k, T ) whose 4 n~ components (n~ nodes with 4 incident fields per node) read

A$.J~(T )
= a~

e'~"~ ~~''~"~~ i, j
=

I, n, m =
1, 4 (16)

A(.J~(~) denotes the amplitude of the scalar field impinging on node (I,j) at time

~ in the direction of the bond m (we use the index notation given in Fig. I). k, and

k~ are the two components of the Bloch wave vector k.

Let us recall that the structure of the square lattice and the definitions of our wave automaton

imply that the wave propagation can be considered as the superposition of a wave propagation

on two independent sublattices. To make this point clear, consider a wave impinging on node

(I, j) at time
~.

This wave is scattered in all four directions and reaches the nodes

(I + I, j ), (I, j + I ), (I I, j and (I, j I ) at time
~ + l. It is only at time

~ + 2 that the

wave is scattered back on the original node (I, j ) as well as on the next nearest neighboring
nodes. Consequently, each node is visited every two time steps which means that the square
lattice can be seen as the superposition of two independent sublattices, each one being visited

by the wave every two time steps (see Fig. I ). Since the wave is defined on the same sublattice

only at time
~

and
~ + 2 p (where p is an integer), the scattering event at ~ + (2 p + I ) is an

intermediate step on the other sublattice. This lets us free to choose an additional phase 0 or

ar at each time step since the relevant phase shift is e~'". This implies that expression (16) can

be generalized by multiplication by a factor ± I. Accordingly, the expression of the Bloch

wave can be either (16) or the following expression

A$~J~(~)
=

e'"~a~ e'~"~~~" ~"~~ i, j
=

I, n, m =
1, 4 (17)

where e'"~ represents this additional phase. This would no longer be true on a triangular or

hexagonal lattice, for instance, In the case of the triangular lattice, the S -matrices must be 6 by
6, corresponding to 21 free real parameter and for hexagonal lattice the S-matrices must be 3

by 3, colTesponding to 6 free real parameters. Thus, in addition to the square lattice for

arbitrary anisotropic S-matrices, such lattices offer the possibility of modelling different types

of anisotropic media. They will not be considered below.

As a result of this self-dual property of the square geometry, if the local incident field

V')"~ (~ at node (I, j ) at time
~

has the four components :

qzin (~j j~(<,J)(~) ~«.J>(~) ~«./)(~) ~(>,J>(~)j
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the resulting local output field V'f$(~ + l ) at time
~ + l after a scattering event at node

(I, j ), will be either

V')(~(~ + l
=

(A("J ~'(~ + l ), AI'~J + '~(~
+ l ), Al' ~~J~(~ + l ), Al'+ ~.J~(~ + l ))

or

~'I, j(~ + ~)
"

=

(- AI'~J ~>(~ + i ), Al'.J + ~'(~ + i ), Al'~ '~J'(~
+ i ), Al'+ ~.J>(~ + i ))

Inserting these two expressions in the scattering equation at node (I, j ) :

V'l$(~ + l )
=

SV'l]j (~

provides two systems of four homogeneous equations. These systems have non-zero solutions

if their determinant is zero which provides the following dispersion relations :

(cos (w 2 a cos k, )(cos (w 2
a cos k~ )

=

sin~ (w 2
a tg~ 8/2 (18)

(cos (w 2
a + cos k~)(cos (w 2

a + cos k~)
=

sin~ (w 2
a

) tg~ 8/2 (19)

Each of these relations yields two branches for the dispersion equation in the first Brillouin

zone (k,,k~e [0, vi and we [0, ar/2]), wj(k,,k~) and w~(k~,k,) for equation (18),

w~(k,, k~) and w~(k,, k~ ) for equation (19) :

w
(k,, k~) =

2 a + Arcos (cos 8/2 cos (k~ + k~)/2) +

+ Arcos (cos 8/2 cos (k, k~)/2) (20a)

w~(k,, k~)
=

2 a + Arcos (cos 8/2 cos (k, + k~)/2)

Arcos (cos 8/2 cos (k, k~)/2) (20b)

w~(k,, k, =
2 a + ar [Arcos (cos 8/2 cos (k, + k~.)/2)

Arcos (cos 8/2 cos (k~ k~ )/2) (2 la)

w~(k,, k~ )
=

2
a + ar

[Arcos (cos 8/2 cos (k, + k~)/2) +

+ Arcos (cos 8/2 cos (k, k~,)/2) (21b)

Note that a non-vanishing scattering phase
a

has the simple effect of just shifting

w
(for the same k~ and k~), resulting in a possible overlap and folding between adjacent

Brillouin zones. There is thus no loss of generality by posing
a =

0 in the periodic case. Then,

w e [0, ar/2]. The dispersion relation
w

(k,, k~,) deduced from equation (20) is represented in

figure 7 for different values of 8.

Two regimes are found :

I) when 8
~

ar/2, a gap appears in the structure for
w e [ar 8, ar/2]

2) when 8 w ar/2, this gap disappears and the two branches overlap.

The density of state g(w )
=

dk~ dk~ (V~w (~ giving the number of eigenmodes with

pulsations between
w

and
w + dw, is shown in figure 8, for different values of parameter

8. For 8
=

0.7 ar, the gap extends from
w =

0.3
ar to 0.5

ar and g (w )
=

0 in this interval. For

8
=

0.3 ar, g (w is constant in the same interval
w e [0.3 ar, 0.5

ar
], as a consequence of the

overlap of the two symmetric branches (20a) and (20b) of the dispersion relation.
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6=0.3x ~~ ~~
6=0.5x

w

ky ky

~
kx

a)
~

b) c)
~~

6=O.5x 6=O.7x ~_~ ~~

w

w

ky

kx k
x

d) e) f~

Fig. 7. Dispersion relation
w (k~, k~) : the z-axis corresponds to OS

w w w, the x-axis (resp. y-axis)
corresponds to OS k~ « w (resp. OS k~ q w). al Dispersion relation for

=

0.3
w and for the time-

dynamic version computed every two time steps corresponding to the analysis of one of the two square

sub-lattices. In this case, 0 « w «
w/2 b) same as a) but for the calculation every time step, which is a

superposition of the two decoupled problems on the two sublattices (see text). In this case,

0 « w « ar.
Note that figure 7b is deduced from figure 7a by simple symmetry operations. This figure

shows the absence of gap, cl Dispersion relation for
=

0.5
ar

and for the time-dynamic version

computed every two time steps corresponding to the analysis of one of the two square sub-lattices. In this

case, 0 « w w ar/2 ; d) same as c) but for the calculation every time step, which is a superposition of the

two decoupled problems on the two sublattices (see text). In this case, OS
w « ar.

This value

=0.5
ar

is marginal and the gap begins to open for ~0.5 ar, e) Dispersion relation for

=

0.7
w

and for the time-dynamic version computed every two time steps corresponding to the analysis

of one of the two square sub-lattice. In this case, 0
« w « w/2 f~ same as e) but for the calculation every

time step, which is a superposition of the two decoupled problems on the two sublattices (see text). In this

case, 0
« w « w.

The presence of the gap is clearly apparent.

These analyse reveal the nature of the physics embedded in the parametrization of the S-

matrices in terms of a
and 8. It tums out that this parametrization makes the wave automaton

analogous to a time-dependent tight-binding model [28] with additional second-nearest

neighbor coupling. The analogy is best seen by looking at figure 9. Let us divide the initial
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g(W)

6=0.3x

&=O.5x

...&.

o~

o x/2

Fig. 8. Fig. 9.

Fig. 8. -Representation of the density of states g(w) (in the same arbitrary units) for
=

0.3 w,

=

0.5 w and
=

0.7 w.

Fig. 9. -Connection between the
« wave automaton »

and the tight-binding model (see text). The

original lattice is represented by dotted lines. The sub-lattice coined
«

I », on which the tight-binding
model is defined. is represented by the full lines and the black dots. The 4 w/2-scattering processes of the

intermediate node of lattice
«

2
» connect the site (I, j ) of lattice

« » to its four nearest neighbors, the

4 transmissions connect (I, j) to its four second nearest neighbors along the diagonals and the

4 reflections control the on-site term.

square lattice into two interjenetrating square sub-lattices orientated at 45°. We choose one of

these sub-lattices (coined
«

I
»

hereafter and represented by the black dots in Fig. 9) as being
that on which the tight-binding model will be defined. We attribute a wave intensity to each

node of
«

I
»

equal to the sum of the intensities of its four outgoing waves just after a scattering

event. One can then show that these four outgoing waves on each node of
«

I
» at time

t reach at time t + 2 its four nearest neighbors, its four second nearest neighbors along the

diagonal and are partially reflected to the initial node. If we look at the wave field every two

time steps, we can forget the other sub-lattice
«

2
» except that it provides the intermediate

scattering step. We thus obtain a version of the tight-binding model for an electron in a random

potential, with diagonal second nearest neighbor coupling. The four ar/2 scattering processes

of the intermediate node of lattice 2 provide the coupling to the four nearest neighbours, the

two transmissions provide the coupling with the four second nearest neighbours along the

diagonals and the four reflections control the on-site term. The relative strength of the on-site

potential to the hopping terms is controlled by the parameter 8, as shown in figure 4. Note that

in the limit 8
= ar, the wave on each bond oscillates back and forth between its two

extremities, in a way completely similar to a bound isolated orbital. When 8 decreases from

ar, these localized orbitals become coupled via nearest neighbor and next-nearest neighbor

«
hopping

» terms.

The structure of the dispersion relation in the limit of small k, and k~ (or small

ar k, and
ar k_,

which is the other Brillouin border) in a periodic array of S-matrices allows

us to characterize further the parametrization in terms of
a

and &. Expressions (20) and (21)
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yield

k, k~
~°'~~~' ~?~ ~ " ~

2 tan 8/2
~~~~~

kj
+ k(

w~(k~, k~.) =

2
a + (22b)

~2 ~ ~2
~°~~~~' ~~~ ~

" ~ ~ ~
4 )an 8~2 ~~~~~

~°~~~" ~'~ ~ " ~ ~
2

~~i12
~~~~~

The quadratic dispersion relations (22b) and (23a) for w~(k,, k,,) and w~(k,, k~) are typical of

the tight-binding model for small k (quadratic dispersion relation). The analog of the hopping
coefficient is thus given by 1/[4 tan 8/2]. Moreover, the other branches wj(k~, k~) and

w~(k~, k~) reveal the specificity of our chosen parametrization in term of
a

and 8. In the

infrared limit (k~ and
k~ ml), w, is still quadratic but a fixed k~ or k~, it goes to

2
a

linearly in k~ or k~. This branch has also the special feature that wj can come close to

2 a (I.e. the product k, k,, goes to zero) while either k, or k~,
remain arbitrarily large (as long as

the product remains small).
The Bloch modes A$.J~(~

are easily calculated from the scattering equation. Indeed, if the

determinant of the homogeneous system is zero, the homogeneous solution is such that three of

the amplitudes (say a~,a~,a~) can be expressed as a function of one of them (say
aj) :

w k~

<k,

~~~
2

(24a)~2 ~~ ~

w + k~
~~~

2

, ~
w + k~

~~ ~
~~'

k ~~~
2 cos (w 8/2 cos k, cos 8/2

~~~
W + k,, cos (w 3/2 ) cos k, cos 8/2

~~~~~

2

~ _,
~ ~<

@ ~~~
2 cos (w 8/2 ) cos k~ cos 8/2

~~ ~'~
w + k~ cos (w 8/2) cos k~ cos 8/2

~~~~~

~~~
2

Note that for
a # 0, it suffices to replace

w
by

w
2

a or w
2

a ar to get the general
expressions. Because the Bloch modes form a basis in the mode space, the normalisation

(V']f~,(~), V',])~(~))
= 8~,,,~,j, ~,,~j

is required and yields a fourth relation between the

amplitudes aj, a~, a~, a~.

'~l' ~ '~2' ~ '~3'~ ~ '~4(~
"

l (25)

We finally obtain the expressions of the Bloch modes as

ai =
sin

~°
~'

(cos (w 8/2) cos k cos 8/2) e'~~~ (26a)fi 2 ~
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~2 "

)
Sill

~

~

~~
(C°S (W ~/2 C°S k< C°S 8/2 e

'~~~ (26b)

a~
=

sin
~° ~ ~~

(cos (w 8/2) cos k cos 8/2) e"/~ (26c)fi 2 ~

a4 =

fi
Sin

~° ~>
(C°S (W 8/2 C°S ky C°S 8/2 ) e

~~~ (26d)

where

D
=

(I cos w cos k~.) (cos (w 8/2 ) cos k~ cos 8/2 )~ +

+ (l cos w cos k~) (cos (w 8/2) cos k~ cos
8/2)~ (27)

These expressions are used in the following paper [21] to analyze the interaction of a Bloch

wave with a defect.

4. Conclusions.

We have described in detail a new lattice model, the
« wave automaton »

for the dynamical
propagation of waves in arbitrary heterogeneous media. It treats the field as a continuous

complex number and the time and space are discrete. This model does not belong to the class of

cellular automata but is rather analogous to so-called coupled maps, used to model spatio-
temporal chaotic systems. We thus use the term « automaton »

in the broader pre- von

Neumann sense of an artificial
« creature »

(here the complex field) imitating real life (the

wave), and not in the restricted meaning of a Boolean or discrete variable. In the companion

paper [21], we show that it is efficient for calculations on large systems (1 024 x 024) over

long times (several 106 inverse band widths). We have detailed the construction of the wave

automaton, and in particular the parametrization of the S-matrix on each node of the lattice. We

have given the analytical form of the dispersion relation, density of states and Bloch modes for

periodic systems. This understanding is useful in order to be able to model a variety of systems.

In the companion paper [21], we use the wave automaton to analyze quantitatively the time

evolution of the spreading of a wave packet in a 2D disordered system.
In a work in preparation, we will explore another class of parameters for the wave

automaton, such that the continuous limit of the model yields the hyperbolic wave equation
and the Klein-Gordon equation, Taking time reversal invariance breakdown (due to the

presence of a magnetic field for instance) into account, loss, gain and various types of

nonlinearities are also possible and are under active study.
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Appendix A.

Relation between the scattering matrix (S-matrix) representation and the usual transfer matrix

(T-matrix) representation :

T-matrix (see Fig. I) :

iii) Tiiii

with T
=

"~ fl~ (symmetry condition )
a p

a a
*~ p p *~

=
l and a p

=
p a

(unitarity condition

S-matrix :

iii) suit

with S
=

jj,

r, r', t and t' are related to a
and p by the relations :

L= (a*)-' p*
L'=P(a*)~'

M
=

(a*~)-'

~,
~

~t

Appendix B.

List of the different sets of parameters possible for the parametrization of S-matrix that

describes isotropic scattering, that is to say, with L
=

L', M
=

M' and

Mj,=M~~=Mi~=M~,. Essentially, the first condition gives two branches: either

p =
p'+ ar/2, y =

y',
=

0',
a =

a' and cos 8,
=

0, or a =

a'+ ar/2, y =

y' and

p =
p'; then, condition Mj~

=

M~j gives y =
0 or y =

ar/2 ; finally, M,i
=

M~~ sets a choice

either for or for 8 (resp. 3~) and Mi,
=

M
j~

reduces again to three or two the number of free

parameters.

p =
p' ± ar/2 p =

p' ± ar/2

y =
y'= 0 y =

y'= ar/2

a =

a'
~ a =

a'
~ 8,

= + ar/2
~~

8,
=

ar/2

=

ar/4 or 3 ar/4
= + ar/4 or 3 ar/4

8~
=

0 8~
= ar

~ ~
l

~2< la +p> I j1
2 -1

gives and

~
l ~2<« (1 1j~
2
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p =p'±ar/2
p =p'±ar/2

y=y'=0
y= y'= ar/2

~~ a =a'
~ a =a'

8,
=

ar/2
~~

8j
=

ar/2

=
ar/4 or 3 ar/4

= + ar/4 or 3 ar/4

8~= ar 8~=0

~
l

~2<(« +pi I jl
2

gives and

~
l

2<« (1 lj
~

2
~

l

P =
P' ± ar/2

p
=

p'± ar/2

y =
y'=

~ar/2 y =
y' j 0

~
8

'~= +~r/2 ~~~
8

'~=
-'~ar/2

= + ar/4 or 3 ar/4
=

armor 3 ar/4
8~

=
0 8~

= ar

~
~

~
I ~2,~« + pi j- i jl
2

gives and

~
~

l ~2,« (1 lj
2p

=
p'± ar/2 p =

p'± ar/2

Y =
Y'

= ~ar/2 y =

y' j 0

~ 1'~=
+~ar/2 ~~~ 1'~= -~j/2

= + ar/4 or 3 ar/4
=

ar/4 or + 3

4~

82
= 'T 82

=

0

=

e~'~" +P~ (~
gives and

fit _1~21«
(1 lj

2lP =P'

y =
y'=0

2a-
a =a'+ ar/2

8j
=

0

= + ar/4 or 3 ar/4

j
~~~,

ll cos 8~ e~'P (I + cos 8~ e~'P
)j~ ~

2
~

(l + cos 8~ e~'P ) I cos 8
~

e~'P

gives and

~ ~~~ ~~ ~~'~~~ ~ ~~
~
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=

P'

Y= Y'=0
2 b

a =
a, + ~r/2

81=
ar

= + ar/4 or -3 ar/4

j
~,~

( l + cos 8~ e~'P ) (- I + cos 8 e~'P
~ ~

2
~

(- l + cos 8~ e~'P) (I + cos 8~ e~'P)

gives ~~~

J~
=

j ~j~ fi ~2'(a'~PJ (I 1)2 ~ l

p = p , ~i ~
, « jars

e2 iP cos 8 +
e2 'P

Y =
Y'

=

° ~ ~
2

~

cos 81 +
e~'P

cos &, e~'P
a =

a' + r/2
2 c

~~ ~
gives ~"~

=

ar/4 or + 3

4~

M
~ + i ~~~ ~' ~~ ~~

~ ()

Y

~ '~~
° ~

~~'~
~~~ ~ ~~~ ~~ ~

+

~~~~

2 d " " " ~ ~~~
gives and

~

~~ °~+
3 '~/4 ~'" + ~~~ ~' ~~~~

~ )

P =
P'

y =
y'= ar/2

2e-
a

=a~+ ar/2

8j
=

0

=
ar/4 or + 3 ar/4 ~i ~,~

(I cos 8~ e~ ~P ) I + cos &~ e~ "'
~

2
~

l + cos 3~ e~'P (I cos &~ e~~P)
and

~~~~~
i

~ ~~, ~ ~ j
I I

~
" ~ i ~~~ ~~ ~

i

P =

P'

y =
y'

=
ar/2

2 f
a =

a'+ ar/2

8j
= ar

=
ar/4 or + 3 ar/4

~,~
j- I + cos 8~e~'P (1 cos 3~ e~'P

)j~ ~
2

~
(l cos

~
e~ '" ) I + cos 8

~
e~'"

and
~~~~~

j+ ~
'

j ~i~ 8 ~21(o'+P> (~ l)
2 ~ l
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P "
P'

y =
y'

=

ar/2

2 g a =

a' + r/2

8~
=

0

~ ~~~ °~ ~ ~~~

j
~,~,

cos 8j +
e~'P (cos 8, +

~'P)j
~

2
~

(cos 8
j

+
e~'P ) cos 8, +

e~'P

gives ~~~

~
2

~~~ ~ ~~'~'
l I

P =
P'

y =

y'
=

ar/2

2h a =
a'+ ar/2

8~
= ar

~ ~~~ ~~ ~

~~

~
l ~2,«

~~~~ ~ ~
~'~~

~~~ ~ ~ ~~~)

2 cos 8 + e 'P (cos 8, + e 'P)

gives and

M
=

i sin 8, e~'~' ~ )
2

Changing the condition on a
by

a =

a' ar/2 gives eight other solutions 2' a 2' h obtained

from the previous ones by changing the sign of M. The solution used in this work corresponds

to solution 2'e when setting p to 0.

Eight other solutions exist in branch 2, where 8j
=

0 or ar, 8~
=

0 or ar
and is a free

parameter, but give M
=

0, meaning that the two directions ignore each other completely : in

this case, the 2D system degenerates into two independent classes of I D systems along the two

orthogonal directions.
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