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Abstract. A minimal model for molecular-bearn-epitaxy in the submonolayer at room

temperature is investigated by simulations and analytically. Aggregation of diffusing monomers

leads to immobile islands which further grow by absorbing deposited and diffusing atoms. In the

interrnediate stage of growth, islands assume a fractal shape similar to diffusion-limited-

aggregates. It is shown that the maximum density of islands in the submonolayer decreases

approximately as a 1/3 -power of the bearn intensity F, in agreement with a prediction based on rate

equations. A detailed analysis of adatom-adatom and adatom-island collisions explains some

discrepancies between simulation data and simple rate-equation results.

1. Introduction.

The fundamental physical process of molecular beam epitaxy (MBE) involves nucleation,

growth and coalescence of two-dimensional (2D) islands in an environment of supersaturated
lattice-gas on the film surface created by the beam [1-9]. An important lengthscale which

emerges in the growth on a high-symmetry substrate is the typical distance I between islands

(or steps). A large I is obviously desirable for device applications. Under favourable growth
conditions, I

can be of the order qf a few thousand angstroms. In general I increases with

decreasing beam intensity F. The precise relationship between I and F depends on the details

of the dynamics of adatom diffusion, adatom-adatom interaction and the adsorption and

desorption of adatoms at the island edges [3-9]. At elevated temperatures (~500°C),
desorption of surface atoms into the vapor may also be relevant [9].

Several theoretical approaches have been advanced to address specific aspects of surface

diffusion and island formation in MBE [3-8]. In the case of high supersaturation, where there is

essentially no energy barrier for the formation of stable islands, a quantitative theory which

relates the island size to the beam intensity and adatom and cluster diffusion constants appears
feasible [3, 4, 8]. However, contradictory results exist in the literature [10,1Ii. Recent

simulation studies by Mo et al. [12], while supporting an earlier prediction by Stoyanov and

Kashchiev [3], have not explored consequences of fractal islands that appear in diffusion-

limited island growth. These fractal shapes have been observed recently for Au on Ru at room

temperature by Hwang et al. [13].
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In this paper we present a detailed analytical and simulational study of a minimal model for

MBE [8, 12]. The model, which will be explained in detail in the next section, assumes that

atoms stick on contact, and that all but monomers are immobile. Such a model is reasonable for

MBE at room temperature, where pair breaking can be safely ignored during the typical
laboratory time of the order of I min. We shall restrict ourselves to the submonolayer

coverage, where multilayer transport plays no role. This regime is an ideal playground for

measuring surface diffusion constant of adatoms, as has been done in several experiments [1,

10, 14]. In general our results agree with those of Stoyanov and Kashchiev, as reported briefly
in reference [8]. However, significant deviations from the behavior predicted by simple rate

equations are also observed. We show here that some of these deviations arise from the

logarithmic anomaly of 2D random walks.

It is worth mentioning at this point the connection between this work and previous studies of

kinetic roughening of growing surfaces in general [15-17] and that of film surface in MBE in

particular [18-22]. The main focus of previous studies has been the self-affinity of surface

roughness and the identification of various universality classes. The models constructed for

that purpose are presumably applicable on a coarse-grained level, e-g., treating each island as a

single block. The present and other recent works [8, 23] can be thought of as part of an on-

going prograrn to establish the missing link between the vast literature on surface diffusion on

the atomic level and the modem theory of kinetic roughening, thereby offering a quantitative
theory of kinetic roughening in MBE. On a technical level, our model belongs to the class of

diffusion-aggregation-growth models reviewed by Herrmann in reference [24]. However, it

differs from the cluster-cluster aggregation models [25, 26] in that atoms are continuously
created on the surface during growth, rather than fixed at a given density.

The paper is organized as follows. In section 2 we define the model and summarize previous
analytical results based on rate equations. Section 3 contains a general description of various

processes during growth as observed in our simulations and the numerical results for the

adatom and island densities at various coverages and deposition rates. Section 4 contains a

calculation which takes into account logarithmic corrections to the collision rates, as well as a

few other effects neglected in the rate equations. The calculation yields a significantly better fit

to our simulation data at early times. A summary is given in section 5. A few mathematical

details are relegated to the three appendices.

2. The model and rate equations.

2. I THE MODEL. A minimal model for MBE on an initially flat substrate can be defined as

follows. Starting at t
=

0, atoms are randomly and continuously deposited onto a square lattice

at a rate F per site. An adatom (or synonymously, a monomer) performs nearest neighbor
hopping on the lattice at a rate 4D in any of the four possible directions. Here

D is the adatom diffusion constant in the usual sense, taking the lattice constant to be the unit of

length. An island is a cluster of atoms on the surface, connected by nearest neighbor bonds. An

adatom becomes immobile when it hits another adatom or the edge of an existing island. (This
further implies that all but monomers are stable and immobile.) Adatoms deposited on top of

existing atoms diffuse in the same way as those in the layer below. They are incorporated into

the film through collisions with atoms in the same layer or by falling onto a lower level when it

wanders out the edge of the terrace. No energy barrier is assumed for the latter process. In

addition, an atom created on top of another adatom immediately forms an immobile dimer with

that adatom in the lower level. In this paper we focus on the submonolayer regimi, where the

total number or deposited atoms is less than the number of sites on the square lattice. Due to

statistical fluctuations, however, there can be a small population of atoms in the second layer.
The model as we defined it can be used for multilayer growth, too.
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It is clear from the above definition that there are only two basic time scales in the model, the

typical nearest neighbor hopping time II (4 D and the layer completion time I/F. If we choose

1/(4D) to be the unit of time, all physical quantities will depend only on the ratio

4 D/F. Nevertheless, we shall keep 4 D in our expressions to facilitate comparison with other

works. The unit of length, however, is taken to be the lattice constant rather than e-g- cm.

2.2 RATE EQUATIONS. The general features of island formation in the submonolayer regime

are captured by the rate equations, (see e-g- Refs. [2], [3] and [8])

dN/dt
=

4 Dp ~

,

( la)
dp/dt

=

F 4 Dp (2 p + N
,

(16)

with the initial condition p (0)
=

N (0)
=

0. Here p and N are adatom and island densities,

respectively. The factor 2 in (16) comes from the fact that two adatoms are eliminated in an

adatom-adatom collision.

The natural length and time scales of (I) are given by

Introducing the dimensionless quantities #
=

I(p, ~i
=

I(N, and I
=

t/ti, equations (I)

become

dir/di
=

#~, (3a)

d#/di
=

#(2 # +
k). (3b)

Solution to (I) can thus be expressed in the scaling form,

N (t
=

(FM D )~~~
k (t /$)

,

(4a)

p (t )
=

(FM D )~~~ # (t fi$) (4b)

i~he short and long time behavior of the solution to (3) can be easily worked out. For

« I, we have

#
=

I, li
=

i~, (5)

while for I »1,

&
=

1/>
=

(3 I)1/3 (6)

The density of islands at ti is of the order

N
i =

ij ~
=

(FM D )~~~ (7)

This is also roughly the density of adatoms at this time. In references [10] and Ill it was

assumed that nucleation stops when the island density reaches this value. However, growth of

N can only be terminated by coalesence. For compact islands, this takes place when the

coverage reaches a significant fraction of the total area of the surface, say Ft~
=

IN.

Equation (6) then yields

N~~~
m

N (t~
=

(FM D )~~~ (8)

This is the result of Stoyanov and Kashchiev [3].
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3. Simulation.

The simulation results reported below are for a system of 2562 sites with periodic boundary
conditions. The ratio of diffusion to deposition rates varies from 32 to about 4 x

10~ in powers
of 2, I-e-, 4 D/F

=

2~,
n =

5,
...,

22. Since the maximum size of islands in our simulation

before coalescence is less than about 20 lattice constants, and the typical diffusion length of

monomers is of the same order except at very early times, finite-size corrections are

insignificant up to 4 D/F 10~. The statistics is made over about 100 samples in each case.

The adatom density p (t) and the density of islands N (t are measured at uniform time intervals

up to half coverage. In addition, we have recorded the average mass and radius of each island

during growth. The Hoshen-Kopelman algorithm [27] is used for cluster counting.

3. I THREE STAGES OF GROWTH. Starting from a flat substrate, the formation of islands in

the first layer takes place in three stages, the first and the second according to the relative

population of adatoms and islands, and the third when coalescence becomes significant.
Figure I shows a sequence of snapshots of a

642 system at 4D/F
=

65 536. The coverage
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Fig. I. Top views of a
642 lattice showing different stages of growth. Adatoms are indicated by solid

circles. Here 4 D/F
=

65 536.
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9 is indicated on each plot. Figure la corresponds to the end of the first stage (t
« ti ), where

the number of islands catches up with the number of adatoms. Most islands at this time are still

dimers. In the second stage ti « t « t~, as shown in figure 16, there are much more islands than

adatoms. Therefore most adatoms disappear through collision with islands. However, the

number of islands continues to increase. Figure lc marks the beginning of the third stage
(t ~t~), the coalescence of islands. The size of islands at this time is comparable to the

spacing between them. Finally, figure ld shows the system at half-coverage. The adlayer
consists of an intricate network of densely-packed regions. The characteristic length of this

network is about the same as the average distance between islands in figure lc.

The picture described above is typical for all values of 4 D/F greater than about loo. For

smaller values of 4 D/F, ti is not much smaller than t~, and islands before coalescence contain

no more than a few atoms. Consequently the threee-stage description looses its meaning. This

can be seen from figure 2, where we plotted the density of islands I) N
=

N
i,

when it is equal
to the density of adatoms at t

=
ti (open circles), and it) N

=
N~~~, when it reaches a

maximum at t
=

t2 (solid circles). For 4 D/F
=

4 x
10~, N~~~ is about 6 times Ni, while at

4 D/F
=

128 the ratio is less than 2. More importantly, N~~~ follows essentially the 1/3-law at

large values of 4 D/F as predicted by equation (8), while Ni decreases faster with increasing
4D/F. Deviations from the simple expressions (7) and (8) are also evident. They will be

examined in section 4.
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Fig. 2. The density of islands as a function of the inverse deposition rate 4 D/F. N
i

(open circles) is the

density of islands when it is equal to the density of adatoms. N~~~ (solid circles) is the maximum island

density. Two lines representing a powerlaw behavior N~~~ (4D/F)~~'~ (dashed-dotted) and

N~~ (4 D/F )~~'~ (dashed) are drawn for comparison. The solid line corresponds to equation (15).

Figure 3 shows the full time dependence of p and N for 4 D/F m 024, scaled according to

equation (4). The numerical solution to (3) is given by the two dashed lines. The qualitative
features of the data are well represented by the solution to the rate equations. At early times

t«ti, p(t) increases linearly with t while N(t) increases roughly as a power-law of

t with an exponent close to the value 3 as in (5). The adatom density p (t ) reaches a maximum

shortly before the two curves cross around 2 ti. For the values of 4 D/F considered here the

crossing point is between 1.5 ti and 2.5 ti. For t ~ti, p(t) continues to decrease while

N(t) crosses over to a much slower growth than at earlier times. At a much later time
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Fig. 3. Scaled density of adatoms p
$W

and of islands N
fi

as a function of scaled time

t
fi.

Each curve corresponds to a given value of 4 D/F
=

2~, n =
lo,

...,

22. On the right half of the

plot, 4 D/F increases upwards. Data for N are shown up to half coverage except for
n =

21 and 22. The

dashed lines correspond to the solution to the rate equations (3).

t~, N (t) reaches its maximum value N~~~. However, the absence of a complete data collapse

up to t~ indicates that the scaling forms (4) are not exact.

3.2 FRACTAL ISLANDS. The islands shown in figure lc have a fractal shape. Since most of

the atoms on an island up to this time arrived as random walkers, it is not surprising that our

islands resemble clusters obtained from diffusion-limited-aggregation (DLA) [28]. Figure 4

shows the average mass per cluster as a function of the average radius of gyration up to

t
=

t2. Each curve corresponds to a given value of 4 D/F m 024. The lower envelope of the

curves appears to converge to a power-law with the fractal dimension d~ =1.72 of DLA
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Fig. 4. Average mass per island versus average radius of gyration for t ~ t~. Each curve corresponds to

a given value of 4 D/F. The dashed line shows a power-law with an exponent d~
=

1.72 as for the

diffusion-limited aggregation.
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(dashed line). However, as t increases towards t~, the lines curve upwards, indicating that

islands become more compact.

4. Random walks revisited.

The rate equations (I) neglect completely the spatial and temporal correlations of adatom and

island positions. In this sense they are mean-field equations. Furthermore, islands are treated

as point objects, which is a good approximation only when their size is much smaller than the

spacing between them. We discuss here possible improvements based on a more detailed

analysis of adatom diffusion, as proposed first in reference [8] in a similar context.

4, I VERY SHORT TIMES. In the regime t ~f ti, each adatom explores a territory much smaller

than the area per adatom or island. A stable pair forms when two such territories overlap. The

probability that three or more adatoms explore the same territory is much smaller.

Within the approximation that the pair-formation rate in a dilute lattice-gas of adatoms is

given by a linear superposition of the collision rate of independent random walkers, standard

results for 2D random walks can be applied [29]. These results are rederived in appendices A

and B for completeness, tailored to our needs. In terms of the probability P (t r) that an

adatom landed at time
r « t collides with any of the preexisting adatoms of unit density within

a time interval t r, the number of pairs formed in a time t is given by

N (t)
=

~
F drp (r P (t r

) (9a)
o

Similarly, we write the density of adatoms at time t as

p(t)=Ft-2 j'F drp(r)p(t- r)~ j'F drN(r)pi(t- r). (9b)

o o

The last term in (9b) accounts for the loss of adatoms to the islands, treating islands as point-

like objects. Since most islands are dimers in this regime, this is not a bad approximation. Here

P
i

is given by P with the substitution 2 D
~

D in (B I I ). (In the eye of an adatom, the diffusion

rate of another adatom is twice its value in the rest frame.)

Equations (9) can be solved by performing Laplace transforms. The results are given by,

after the transformation,

N QY)
=

~ ~~ ~~'~
,

(10a)
p~1+2FP~p)+F~P~p)Pi~p)

p ~)
=

~

,

(lob)
p~l +2FP~p)+F~PQY)Pi~p)

where P ~p is given by (89). Here and elsewhere we use the same symbol for a function and its

Laplace transform, but the distinction should always be clear from the context.

To obtain the inverse Laplace transform of (10) is not easy. However, by observing that

C ~p
m

p~ P ~p ~/ (8 D )
=

ar/In ~pe"/64 D ) (I1)

is a slow-varying function in the regime I/D « I/p « t
i, an approximate result can be obtained.

Within the present degree of accuracy we can also write Pi ~p)=4 DC ~p)/p~. Treating

C ~p) as a constant, the inverse transform can be readily carried out. The result is given by

N (t )
=

(FM DC )~~~ N * (t $@)
,

(12a)
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p (t )
=

(FM DC )~~~ p * (t $@)
,

(12b)

where

N *(x)
=

sin (x
fi)

sin (x
fi)

(13a)fi fi ~

~ ~~~~
2

~l
~~~ ~~ ~ ~

~~
2

~l
~~~ ~~ ~ ~~

~~~~~

The parameter C in (12) has a weak dependence on t. In view of (I I), it is reasonable to write

C (t )
=

ar/In (cDt ), (14)

where c is a constant.

Equation (12) is to be compared with equation (5) obtained from the rate-equations. For

x « I, N * (x) and p * (x) have the same leading-order behavior as
li (x) and # (x ), respectively.

The logarithmic corrections enter only through the scaling factors. Figure 5 is a modified

version of figure 3, using the scaling parameters according to (12) and (14) with

c
=

2. The data collapse at early times is much better than in figure 3. The scaling functions

(13) are shown by the dashed lines. They agree well with the data for t « ti, but deviate from

the collapsing curve as ti is approached.

~~i
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'f lo°
,.

~ '

c io~~
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Fig. 5. Replot of figure 3 using modified scaling parameters. Two dashed curves correspond to

equation (13).

Equations (12) also implies that the time at which N (t)
= p (t) varies as t ti In~~~ (4 D/F ),

in qualitative agreement with what we have seen in figure 3. The density of islands at this time

is given by

Ni
=

No(FM D )~~~ ln~~~ (2 D/F
,

(15)

where No is a proportionality constant. Equation (15) is represented by the solid curve in

figure 2, which compares better with the simulation data than a simple power4aw.
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4.2 PAIR FORMATION IN THE ISLAND GROWTH REGIME. In contrast to the early time regime,
the spatial distribution of adatoms for t ~ ti is much influenced by the presence of immobile

islands which act as traps. The density of adatoms thus becomes inhomogeneous, being lower

close to the islands. The inhomogeneity may possibly change the numerical factors in (I).
However, the main correction to (I) comes again from improved estimates for the adatom-

adatom and adatom-island collision rates considered below.

Since both p and N vary on a time scale much longer than the lifetime
r

of adatoms in this

regime, an adiabatic approximation which treats adatom diffusion in a fixed landscape of

islands is in order. By definition we have p =
Fr. To create a new island, an adatom must

make a collision with another adatom before its lefetime expires. This renders the following
estimate for the pair-formation rate,

~'~
=

FpP (r)
=

~ "~~
(16a)

dt 2 In (ci

p~F
)

A factor 1/2 is included to avoid double counting. As shown in figure 6a, equation (16a) is

well-satisfied by the simulation data for ti « t « t~. The left end of each curve corresponds to

t close to t~, where coalescence starts to decrease the number of islands.

A second relation between p and N is needed to solve (16a). The adiabatic approximation
applied to (16) yields pN

=
F/(4 D). This relation is equivalent to Dr

=

(i12)~
as one would

get by equating the lifetime
r

of an adatom to the diffusion time over a distance

i12. However, there is a logarithmic correction to this result when the dimension of islands is

much smaller than their spacing. In appendix C we evaluate the mean density of adatoms in the

steady-state for two different geometries, I) the islands are points arranged in a periodic array

with a lattice spacing I; it) the free space for adatom diffusion is a strip of width

I. Adatom-adatom collisions are ignored in the calculation. (This is reasonable because there

are less adatoms than islands.) Within this approximation, the mathematics is reduced to that

of the Coulomb problem, I-e-, the density of adatoms satisfies the lattice Poisson equation with

the boundary condition that the potential is zero at the sites next to the islands. We expect that

the irregularity in the location and shape of the islands does not influence the average value of

the adatom density away from the islands dramatically. For the average density of adatoms, the

following results are obtained,

(Fi~/2 arD (0.306 + In I ), case I)
,

~ Fi~/12 D
,

case it)
,

respectively. The first formula is more accurate when the typical extension of islands

R is much smaller than I, while the second one is better when R
=

I. A simple interpolation of

the two limits is given by

p

=$
In [f/R]

Writing N
=

i~~, the above equation becomes

Np
=

~
In [NR~]. (16b)

Figure 6b shows that this equation describes the simulation data well when 4D/F is

sufficiently large and when t is not too close to ti. The left end of each curve, which

corresponds to t
=

ti, is significantly lower than the value given by (16b). This is because

quasiequilibrium adatom population has not been established at this time.
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Fig. 6. Pair forrnation rate and adatom density in the regime t, ~ t ~ t~. Each curve corresponds to a

given value of 4D/F ml 024. (a) Scaled inverse pair forrnation rate versus adatom lifetime

r =
p/F. Time increases from right to left. (b) The product pN versus area per island showing the

logarithmic correction predicted by (16b). The noncollapsing part of the curves corresponds to

t t~. A line of slope I is drawn for comparison.

To complete the calculation one has to determine the function R(t). For compact islands,
R~ is roughly the average number of atoms per island. Since most atoms deposited are on the

islands for t ~ ti, we may write

NR~
=

F t (compact islands) (17)

In this case equations (16) can be integrated to give

N~ In N
=

~ ~~
fln~ (Ft) 2 In (Ft) + 2] + Const (18)
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The constant of integration is determined by matching equation (18) to the value of

N close to ti. The adatom density p (t) can be obtained from equations (16b)-(18).
For fractal islands, equation (17) should be replaced by

NR~
=

Ft/mo (fractal islands)
,

(19)

where d~ is the fractal dimension of an island, and mo is a proportionality constant. Since

R enters equation (16b) only through the logarithm, the result for N (t ) in this case is essentially
the same as for compact islands, except that Ft inside the logarithms on the right-hand side of

(18) is to be replaced by

NR~
=

F t (4 DF t~
)~~

~~~~ ~ (20)

The final expression for N is given by

N (t)
=

(FM D)~~~ (3 t
fi@)~~~ ~~ ~~~~~ ~~~

,

(21)~~~
ar/3 In

F~ ~4 ~~~'~

valid for ti <l t « t~.
It tums out that equation (21) does not compare well with our simulation data on a

quantitative level. The problem has partly to do with the fact that equation (16b) holds only for

t » ti. In addition, we have omitted various constants that enter the logarithms, and the

constant of integration in equation (18). Although equation (21) should give the leading order

contribution to N (t for ti « t « t2 when the beam is sufficiently weak, it seems not to be so

accurate on a quantitative level even for 4D/F ~10~.

Finally, let us consider the maximum island density N~~~
=

N (t~). Using the condition that

N~~~ is reached at R
=

I
or

NR~
=

I, equation (20) yields,

F t~
=

(FM D )° ~~~~~ ~ ~~ (22)

Substituting (22) into (21) yields

N~~~
=

(FM D )~~~ ~ ~~~ ln~ ~~~ (4 D/F ) (23)

This equation was obtained by Villain et al. [8] apart from the logarithmic correction.

5. Conclusion.

The main conclusion of this work is that a previous theory by Stoyanov and Kashchiev, based

on a set of mean-field-type rate equations, offers a good description of island nucleation and

growth in the submonolayer regime. The maximum density of islands N~~~ decreases

approximately as the 1/3 power of the ratio between layer completion time and the adatom

hopping time, 4 D/F. However, significant deviations from the behavior predicted by the rate-

equations are also observed. Some of these deviations can be explained quantitatively by
including logarithmic corrections to the adatom-adatom and adatom-island collision rates.

When the islands are far apart from each other, they take a fractal shape. The fractal

dimension of these islands are found to be comparable to that of DLA, in agreement with

experiment [13]. By taking into account the fractal shapes, Villain et al. arrived at a modified

formula for N~~~ in the submonolayer regime. Our simulation shows that, when the final size

of islands is not much larger than about ten lattice constants, other (logarithmic) corrections to

the simple power-law predicted by the rate~equations are also important on a quantitative level.
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Upon completion of the paper I learnt from J. Villain that there exists a recent paper by
Ghaisas and Das Sarma [30] where the functional dependence of the atomic diffusion length on

the deposition rate in the (multilayer) steady-state was investigated.

Appendix A. Diffusion in the presence of traps.

Both pair formation and island growth can be thought of as a first-passage time problem for the

adatoms. The mathematical problem of a single particle diffusing in the presence of traps can

be formulated as follows. Let 1S be the set of traps, and d~ (r, t) be the probability that the

particle has coordinates r at time t, we have

~~ ~~'~~
=

z J(r r') 4~ (r', t) zJ(r'- r) 4~ (r, t) (1 8~ ~). (Al)
~~

r'<~ r

Here J(r-r')=J(r'-r) is the hopping rate to a site r from r', and 8~
~ =

l for

r e1S and 0 otherwise. Equation (Al) is generally known as the master equation for the

diffusion process.
Introducing the Laplace transform

w (r, p )
=

j~ dt e~P~ 4~ (r, t
,

o

Equation (Al) can be rewritten as

P# (r, p) + £J(r r') j# (r, p) # (r', p)j
=

~
4~ (~, 0) + z J(r r') i~b (r, p) 8r,

~
ib (r', p) 8r', ~i (A2)

Equation (A2) can be solved formally by using the Green's function for the problem of no

traps,

~~~~ ~~
~~)~

p

~~ ikl' (A3)

where k is a wavevector in the Brillouin zone and

A (k)
=

z (i e-'k r) J(r) (A4)

The result is given by

fb(r,p)= #(r,p)&r,~+ZG(r-R,p)4l(R,o)-p £ G(r-R,p)#(R,p). (A5)
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For r e1S, the above equation reducbs to

£ G (r R, p ) # (R, p )
=

£ G (r R, p ) d~ (R, 0) (A6)

R e ~
P

R

The complete solution to (A2) can be obtained by first solving the set of linear equations (A6)

on1S and then using (A5).

Appendix B. Adatom-adatom collision.

In relative coordinates, adatom~adatom collision can be described by equation (Al) with

J'(r)
=

2J(r). Since two adatoms form a pair when they become nearest neighbors, the

diffusion process is stopped when r reaches any of the four nearest neighbors of the origin.
These four sites make up of the set 1S. In the following we shall focus on the case

j, ~~ ~, j2
D, if r and r' are nearest neighbors ; ~~~~

0, otherwise

Here D is the diffusion constant for a single particle.
The probability that two adatoms separated by a distance R at t

=

0 have formed a pair at a

later time t is given by

Pa(t)
=

£ d~~(r, t), (82)

with the condition that d~a(r, 0)
=

8~,a. We are interested in calculating the probability
1I(p, t) that an atom landed at t

=

0 forms a pair with any of the preexisting adatoms of

uniform density p within a time interval t. In the low density limit and for not too large

t it is reasonable to write

H(p, t)
=

£ Pa(t)
=

pP (t), (83)

with R being a set of randomly distributed points of density p. Here

P (t )
=

£ d~ (r, t )
,

(84)

r e ~

with d~(r, t) being a solution to (Al) under the initial condition d~(r, 0)
=

1.

The Laplace transform of P (t ) can be obtained by summing both sides of equation (A6) over

r e 1S and using the condition £ G(r R, p )
=

I/p,

R

~~~'~=~l'~~~'P~=/Go~p)+2Gi~p)+G~~pl' ~~~~

where

1"
dki

" dk~
~°~l'~

"

~

G
~

G
p + 4 D (2 cos ki cos k~) '

j" dki j" dk~ cos (ki + k~)
~~ ~~'~

~

2 ar
~

2
ar p + 4 D (2 cos ki cos

k~l' ~~~~

j" dki j" dk~ cos(2ki)
~~~'~

~

2 ar
~

2
ar p + 4 D (2 cos ki cos k~)
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The above expressions can be reduced to complete elliptic integrals. In particular,

~°~~'~
8 D~+

p

~
l +

l18
D '

~~~~

where K(k) is the elliptic integral of the first kind. Using the symmetry properties of the

integrals in (86), we write

j" dki j" dk~ (cos ki + cos k~)~
~°~~'~ ~ ~ ~~ ~~'~ ~ ~~~~'~

~

2
«

~

2 « p + 4 D (2 cos ki cos k~)

2~$
~

~
~D ~~

l +
l18 D)

~~~~

Substituting (88) into (85) yields

~~~'~ (~~~P
2 ~j

~~~~

~ ~8D
ar I+QY/8D)

The behavior of P (t) at lajetermined by P QY) at small p. Using the expansion of
K(fi) for k'« I, K( k'2)

=

In (4/k') +
O(k'~ Ink'), we obtain,

~ ~'~
~ f l~

j~~~~
D

~~~~~

The inverse Laplace transform of (B lo) is given by, for Dt » I,

P (t )
=

8 arDt/In (32 e~ " Dt (B I1)

We have not attempted to evaluate the coefficient inside the logarithrn accurately.

Appendix C. Steady.state in a periodic array of traps.

Let us now consider adatom diffusion with 1S being a periodic array of points commensurate

with the underlying lattice. Pair formations are ignored.
Since (Al) is linear, we can also think of d~ (r, t) as the density profile of an ideal gas of

adatoms diffusing in the presence of traps. Let us now consider the time evolution of such an

ideal gas of uniform density at t
=

0. For simplicity we take d~(r, 0) =1. Due to the
translational symmetry of the problem, (A6) can be easily solved for r e1S,

# (r, p)
=

(
Q~p), (cl)

with

~

~ ~~ ~i~ ~ ~~'~~
~iP + (q)

~~~~

Here and elsewhere the sum over q is restricted to the reciprocal lattice vectors of

1S which lie inside the Brillouin zone of the original lattice, and M is the number of such

wavevectors. Substituting (A14) into (A5) yields, for r $1S,

i Q ~p ) z
e'~'~~ ~°~

(c3)ib r, P = I w
~

p + A (q) '



N° 4 ISLAND FORMATION IN SUBMONOLAYER EPITAXY 949

where Ro is any point in 1S. Obviously #(r,p) has the translational symmetry of

1S.

The adatom density at a constant deposition rate F can be obtained by integrating
d~(r, t) overt,

p (r, t)
=

~
F dt' 4~ (r, t'). (C4)

0

The Laplace transform of p (r, t) is thus given by

F Q ~P ~ l ~~~ ~~ ~°~
(C5)~ ~'~ ~ ii

~

P + A (q)

In the limit p ~
0, Q ~P =

Mp, and p (r, p )
= p ~(r Yp, with

~iq. jr -Ro>

~~~~~
~

~ ~o
A (q)

~~~~

being the steady-state adatom density. The average density of adatoms is given by

Ps
=

F [ (
(C?)

Let us now consider two special examples of1S, with A (qi, q2)
"

2 D (2 cos qi cos q2).

In the first example we take 1S to be a square lattice with a lattice constant I times that of the

underlying lattice. The sum over q =

(qi, q~) is limited to qi =

2 armli, q2 "

2 arnli,

m, n =

0,
,

I I. Equation (C6) can now be written as

~ i i i i

~~
2 D

~l~~
I cos (2 armli )

~ ~~ l~~
2 cos (2 armli ) cos (2 arnli )

~~~~

=

~~~
In I

+
I

+ y + In
~

+ 2
(

~
+ O (Ill )

2 arD 6 ar
~ ~,

n e "~ l

Here y =

0.5772... is the Euler constant.

In the second example we let 1S to be a set of equally spaced lines of distance

I parallel to the x-axis. In this case the sum in (C7) is taken over qi =0 and

q~ =

2 arnli,
n =

I,
,

I
=

I. Using the identity

I,
I cos (2 n

«Ii 6 '

we obtain

p~
=

~ ~~~ (C9)

This result can also be obtained by solving the steady-state equation for p~(r) directly [3 Ii.
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