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R6sumd. Un potentiel semi-empirique, issu de la m6thode des liaisons fortes dans l'approxima-
tion du second moment, est utilis6 pour studier la solution solide Au-Ni h OK. L'6nergie de

formation, le d6sordre topologique et les constantes 61astiques sont analys6es pour toute l'6tendue

de concentration. Les r6sultats sont en trks bon accord avec les donn6es exp6rirnentales disponibles

et peuvent dtre interpr6t6s par une frustration des liaisons atomiques par le r6seau cfc. L'effet de

taille est pr6pond6rant devant l'effet chimique et l'analyse des sites interstitiels montre que
l'environnement chimique local conduit h une lev6e de d6g6n6rescence des volumes t6tra6driques

du r6seau cfc.

Abstract. A semi-empirical potential based on the tight-binding second moment approximation
is used to study Au-Ni solid solutions at 0 K. The energy of formation, the topological disorder,
and the elastic constants are analysed within the whole concentration range. The results coincide

very well with available experiments and may be explained by a frustration of the interatomic

bondings by the fcc lattice. The size effect predominates over the chemical one and the analysis of

interstitial sites shows that the local chemical surroundings lead to a splitting of the fcc lattice

tetrahedral volumes.

1. Introduction.

Computer simulations provide a powerful tool for studying the physical properties of solid

solutions. First principle theory leads to the prediction of the energies of formation of binary
compounds [I]. However, the mixing energy of the solid solution within the whole

concentration range, especially when strong topological relaxation exists, is difficult to

reproduce [2, 3]. Recently, elastic and chemical contributions were considered separately [4]

to predict alloys energetics and the average lattice parameter in the framework of equivalent-
crystal theory. But, within these methods, the local strains were not taken into account and

topological microscopic properties (and their effects) could not be estimated. The use of

interatomic potentials is appropriate for studying this problem and it allows one to extract

statistical information from large systems.
Au-Ni alloys exhibit a miscibility gap in the solid state of the phase diagram which has

stimulated a lot of thermodynamic and atomistic calculations [5, 6, 7, 8]. A continuous
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substitutional solid solution is found at high temperature while an extensive region of

separation into two fcc solid solutions occurs at temperatures below 150 K [9]. The lattice

distortion energy resulting from the strong size difference between unlike atoms (around 15 9b)
is responsible for the segregation behaviour [5, 6].

In this paper, we employ a simple semi-empirical potential based on the second moment

approximation of the tight-binding description of metallic cohesion. With this potential, we

analysed some properties at OK of the Au-Ni metastable solid solution.

Firstly, it is shown that we obtain a reliable potential for the pure metals from fitting data

(cohesion energy, equilibrium lattice parameter, monovacancy-formation energy) and from

Rose's equation of state [10].
Secondly, by introducing interspecies interactions, we detail alloying energies (energy of

formation of the solid solution and compounds, and heat of the solution in infinite dilution

limit), topological properties (deviation from Vegard's law, partial length distributions and

analysis of interstitial sites) and the elastic behaviours (c,~ and bulk modulus). Most of the

results can be directly compared to the experiments and the influence of size effect on these

various properties is clearly shown.

2. Interatomic potential.

2, I GENERALITY. The energy of a monoatomic metal in the second moment approximation
is [I1, 12]

E= (lZAexP~-P()[ -i)) ~Zf~exP~-2q()[
1)))~~~j

(i>

, j ~

where N is the number of atoms in the metal. The normalization of the length is made by

ro which is a fixed parameter equal to the nearest-neighbour distance at 0 K, r,~ is the distance

between the atoms I and j, f, q, A, p are the parameters to be determined. The summation over j

can be extended over several coordination shells (r,~ < r~, cut-off radius). The exponential
functions are truncated at a distance r~ and we interpolate both terms in relation (I) between

r~ and r~ with polynomials of the fifth degree. This ensures continuity and derivability of the

energy (at rt and r~) up to the second order and allows to directly compute the second order

elastic constants of pure components.
Most of the cohesive properties of transition metals are related to the second moment of the

d-band density of states [I I]. The second term of equation (I) corresponds classically to the

width of this d-band.

The same formalism has been applied recently [13] to noble metals (with a full d-band) : the

attractive term could result from the shift of the d-band. This shift is proportional to the square

root of the second moment. The system is stabilized with a repulsive pairwise Bom-Mayer
interaction (first term of Eq. (I)).

This N-body potential does not have the drawbacks of pair potentials like the Cauchy
relation : Ci~

=
CM for cubic crystal. It has been used successfully to reproduce thermodynam-

ical and structural properties of fcc transition metals [14] and to analyse the (l10) surface

stability in noble metals [13]. (Note that this model predicts the right inward relaxation of the

surface plane contrary to pair interactions which lead to outward relaxations.) The same

authors have tested the anharmonicity of the potential by inspecting dynamic properties in the
first-neighbour approximation (frequency spectrum, thermal expansion and mean square
displacement).

Equation (I) is also in accordance with other potentials used to simulate large systems of

condensed matter physics, for instance, the Embedded Atom Method (EAM) [15, 16] where
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the summation of the band term is replaced by the local electron density and the square root is

replaced by a many-body embedding function. The empirical Finnis and Sinclair (FS)

approach [17, 18] is also very close to this work : a square-root embedding function has been

chosen for both noble and transition metals, but the fitted coefficients are more numerous to

adjust both the equilibrium lattice parameter, the cohesive energy, the three elastic constants of

the fcc structure, a lower bound of the unrelaxed vacancy formation energy and the stacking
fault energy.

2.2 FITTING PROCEDURE FOR PURE METALS. The overlapping of the d-orbitals in transition

metals [11] means that ~ lies between 2 and 5. The direct adjustment, using the Newton-
q

Raphson procedure, of f, q, A, p to get ro, Eo (cohesion energy of the fcc structure), B (bulk

modulus) (See Tab. I for numerical inputs) and one elastic constant amongst cii, ci~,

c~4 or c'
=

(cii ci~ )/2 leads to high Ni values of ~ when the summation is extended beyond
q

the first interaction shell [19]. Therefore, q parameters are determined within reliable values

found in the literature [13, 14].

The three remaining parameters are adjusted on the numerical values in table I of quantities

at 0 K. We have verified that r~ =

1.2 ro is a correct starting point for the interpolation. The cut-

off radius r~ is fixed so that the second derivative of the interpolation function has the fastest

decrease as possible. This criterion is important in order to avoid any instabilities in the

determination of elastic constants (particularly when the bond length distribution is broad).

Table II gives the values of adjusted parameters.

Table I.- The three experimental quantities to be fitted.- ro
(Ji), E~~~ (eV) [42] and

B (10 Pa ) [43].

ro Eo B

Au 2.880 3.78 1.810

Ni 2.489 4.44 1.876

Table II. Values of the potential parameters for the repulsive and attractive terms of the

pure metals. A and fare in eV, p and q are dimensionless and the radii are normalized by the

first-neighbour distances given in table I.

Repulsive term A p r~ r~

«
AuAu

»
0.2316 10.2053 1.2 1.5283

«
NiNi

»
0.1486 9.8858 1.2 1.5390

Attractive term f q r~ r~

«
AuAu »

1.8868 4.3098 1.2 1.5887

«
NiNi

»
1.7521 2.7000 1.2 1.8205
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To check the validity of our potential, we calculate the elastic constants and the vacancy

formation energy. In a centrosymmetric lattice, the atomic displacements follow the

macroscopic strain [20] and then elastic constants can be derived from equation (I). A

simulation is performed to get the monovacancy-formation energy of the pure materials : a

periodic cell of 3 999 atoms and one vacancy is relaxed at zero pressure (relaxation details are

given below). The calculated values are compared in table III with experimental results at 0 K.

The agreement is quantitatively good the largest discrepancy is found for c# although,
c# is quite good. This behaviour certainly depends on the form of the potential which is too

simple (for the bcc transition metals, the second moment approximation does not describe the

density of states sufficiently [21]).

Table III. Calculated pure metals properties of Au and Ni compared with the experimental
values. Elastic constants at 0 K [43] are in 10~~ Pa and the vacancy formation energies in eV

[44, 45].

Cll C12 CM l~~v

Au 2.023 1.703 0.381 0.55

exp. 2.020 1.700 0.450 0.94

Ni 2.266 1.680 0.842 1.37

exp. 2.612 1.508 1.317 1.40

The Rose equation of state [10] describes successfully the relation between energy and

interatomic distance [22] for a large number of phenomena (bimetallic adhesion, cohesion and

chemisorption at a metallic surface). With our notations, the so-called universal equation can

be written as :

E(r)
= Eo(I + a

~ l + 0.05
a

(
~ l

j
exp (- a

~
l (2)

ro ro ro

with
a =

(9 BVo/Eo)~/~, Vo, atomic volume.

The values of table I lead to : a~~ =
6.7408 and a~, =

5.0873.

The agreements of the fitted potentials with Rose's curves are verified in figure I.

Reciprocally, the fitted parameters presented irt table II can be extracted directly from the fit of

equation (I) on Rose's curve for the interval [0.8 ro, IA ro]. The equivalence between the

analytic energy-distance relation and the potential derived from the tight-binding model is

numerically verified in this case (see the comments in [23]).
These potentials have been checked with LMTO calculations and the agreement is also very

good [24]. These checks prove that we obtain a realistic potential at 0 K for the pure elements,

even at distances where the long range anharmonic term becomes important.

2.3 FITTING PROCEDURE FOR ALLOYS. A classical procedure, used to predict heteroatomic

interactions [25, 26] involves fitting the like atom potential interactions to properties of the

corresponding pure components (see above) and then averaging the equivalent parameters to

obtain the values of the unlike atom interactions. We get a heteroatomic concentration-

independent potential.
This simple method is applied in this paper. We put r#~~'= (r(~~~ +

rf'~')/2 using an

arithmetic average of p and q and a geometric average of A and f (See Tab. IV).
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Fig. I. The cohesive energy curve versus first-neighbour distance for the pure elements and the

crossed term (solid lines). The minimum of the energy for the interspecies interactions is around
4.137 eV. Rose's equations of state are drawn with open squares.

Table IV. Values of the potential parameters for the repulsive and attractive terms of the
crossed term. A and fare in eV, p and q are dimensionless and the radii are normalized by

ro =

2.6845 Ji.

Repulsive term A p r~ r~

«
AuNi

»
0,1855 10.0456 1.2 1.5336

Attractive term f q r~ r~

«AuNi» 1.8182 3.5049 1.2 1.6780

This approximation may be partially justified [27] for the attractive part of transition metal

alloys without diagonal disorder [28] (when the atomic energy levels are nearly the same). The

dependence of the hopping integrals on the atoms at different sites is only considered as the off-

diagonal disorder.

We plot in figure I the cohesive energy curve of a monoatomic hypothetical fcc system
which would have this average interaction, thus allowing to compare the heteroatomic

potential to those of pure metals.

3. Alloying energies.

The energy of formation (I.e. the enthalpy of formation at zero pressure) of Aui _~Ni~ solid

solution is defined by :

Eiom. (x)
=

E (x) ( I x) E(~ xEi' (3)

where E(x) is the total energy per atom of a chemically random crystal. We obtain

E(x) by a numerical relaxation of atomic positions of an initial system to reach a (local)
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minimum. This initial configuration consists of a large cell with N
=

4 000 sites extended over

the whole space by periodic boundary conditions. The cell is defined by a fcc alloy at a given
concentration with the lattice parameter of Vegard's law (linear interpolation between the

lattice parameters of the pure metals). We randomly choose the chemical nature of the fcc

sites, because the first Warren-Cowley short range parameters are nearly zero [6, 7] as has

been shown experimentally.
By using a Monte Carlo technique, we have built a configuration which has the experimental

Warren-Cowley parameters at the concentration x =
DA where the short range order is known

[6]. Its formation energy has been calculated to be only 3 9b lower than that of the completely
random configuration. This small value has justified the use of completely random alloys in

this study.
The sensitivity towards the number of atoms has been checked and no significant deviation

has been measured.

The reduced co-ordinates (in a unit-length box) and the faces of the orthorhombic cell are

free to move independently during the relaxation at zero pressure (for the constant volume

relaxation used in Sect. V, the box sides are fixed). The minimization of the energy is achieved

numerically using the conjugate gradient method until AE<10~~°eV. So, the local

relaxations are fully treated (without the approximations of [26]).

The energy of formation (at zero pressure and zero temperature) versus concentration is

presented in figure 2. The energy curve is very close to the estimated experimental curve at 0 K

deduced from the measurements of Hultgren at 150 K [9]. This extrapolation at 0 K is done

with the Kirchoff relation and the C~ measurements :

T
AH~

= AH~~ + AC~ dT. (4)

To

The sign of the formation energy agrees with the phase diagram : the simulated alloy is

metastable at zero temperature and is obtained, experimentally, by quenching.

~

0.16

~
O.14 unrelaxed fcc

g 0.12

~
O-1

0.08
~~~~~

~d ~~

~ 0.06

~ 0.04 *

# 0.02
li

~

0 0.2 0A 0.6 0.8

Ni atomic concentration

Fig. 2. Formation energies of the Aui JQi~ solid solutions and glasses versus Ni concentration. The

crosses ix) indicate the results obtained in this work (with 4000 atoms) : the unrelaxed energy is

calculated with Vegard's law lattice parameter, this is the initial state for the relaxation at zero pressure.

The dotted line extrapolates at OK the experimental results of Hultgren (see text). Three computed
metastable compounds are drawn on this figure (white rhombus initial state black rhombus relaxed

state).
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The decrease of energy between initial and relaxed configurations is very large in this

system. This shows the importance of accurately treating the local relaxation effect, otherwise

the energy could be overestimated by a factor of two.

The alloy heats of solution for single substitutional impurities (I over 4 000) are computed
with a zero-pressure relaxation. These quantities allow a test of our interactions whereas they

are input parameters for EAM potentials [15, 16]. The available thermodynamic data [9]

concem the high temperature range (1 150 K) and no attempt has been made to extrapolate
those values to 0 K. For the Au in Ni, the calculated (resp, measured) value is 0.389 eV (resp.
0.285 eV) and for the Ni in Au : 0.227 eV (resp. 0.221eV).

To show that the segregation behaviour is induced by the frustration effect, we also

evaluated the chemical driving force without this lattice frustration.

The interaction potential (I) depends on the reduced variable r;j/r~~ where A and B (Au or

Ni) are the types of atoms I and j respectively. To calculate the energy of a hypothetical fcc

unfrustrated lattice with a given chemical configuration, we compute the energy using
equation (I). The parameters of tables II and IV depend on each pair type but are normalized

for each distance
r~~

by the same arbitrary unit length ro. This cart be considered as the energy
of a lattice with distance distortions that cancel the frustration effects. Of course such a lattice

cannot exist in a 3D Euclidien space but this trick removes the
«

size effect
»

resulting from the

potential. The energy of formation is computed from equation (3) for the whole concentration

range (a small relaxation is still present since the environment of each atom is generally not

chemically centrosymmetric). Now, this energy of formation exhibits a negative sign,
demonstrating an heterocoordination tendency (the ordering energy computed with potential
depths of figure I is in agreement with this behaviour). Thus the segregation tendency in the

Aui _~Ni~ solid solutions is due to size effect frustration (« elastic effect ») exceeding the

heterocoordination tendency (« chemical effect »).

We have also built Au
i

_~Ni~ amorphous structures using numerical relaxation. The starting
configurations are dense random sets of 4 000 positions with exclusion distances (~ and with

Ni concentration x. Figure 2 shows the energy versus concentration. The glass structure is less

stable than the fcc solid solution. However, since there is less frustration in the amorphous

state than in the fcc lattice, the formation energy of the glass structure (referred to the pure

glass constituents) is twice as small as that of the crystalline structure.

Finally, the metastable compounds AuNi(Llo) and Au~Ni, AuN13(L12) are computed, and

depicted in figure 2. The second moment approximation is in principle not sufficient to account

properly for chemical ordering effects [28], and this potential certainly not. But it is reasonable

to get compounds which are slightly more stable than the solid solutions. Some authors suggest

their formations [29] from successive annealings at various temperatures.

4. Topological properties.

The Aui _~Ni~ system is, to our knowledge, the only fcc metallic alloy with EXAFS data

available for the whole composition range [7]. The lattice parameter a is measured from X-ray
diffraction and, in the simulation, is computed from the size of the periodic box which gives an

averaged first neighbour distance al
/. We can also define an average lattice and, figure 3

shows the corresponding displacement distribution for an equiconcentration alloy.
Figure 4 shows that the positive deviation of the first-neighbour distance from Vegard's law

is well reproduced. This deviation has been predicted by a mean field theory [30] and its

extensions [3 II- The infinite dilution limit leading to the strong asymmetry of the curve has

also been reproduced quantitatively when x-0 (resp. x- I), the simulation predicts
da/dx

=

0.42 (resp, da/dx
=

0.79) and the experiment 0.4 [7] (resp. 0.8).
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Fig. 3. Histogram of the atomic position deviation from the initial unrelaxed state for x =

0.5 along the

[100] direction of the cubic cell (the results are similar for the [010] and [001] directions).
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Fig, 4. Deviation from Vegard's law of the Au
j

JQi~ solid solutions versus Ni concentration. Open
circles represent numerical simulation and crosses the experimental results of Renaud [7].

The reduced partial pair correlation function g~~(r) is related to the radial distribution

function dN/dr (N is the average number of B-atoms contained between the two spheres of

radius r and r + dr and centered on an A-atom) :

~
"

~ "P B
~~ ~AB (~) (5)

A and B are Au or Ni elements, p~ is the atomic density of the B atoms.

In spite of the large displacements of the atoms, the peaks of the partial pair correlation

functions correspond to those of the fcc lattice. The first neighbour co-ordination shells can be

isolated clearly from the second ones for the whole concentration range (the same applies to

larger distances).

The partial pair correlation functions restricted to the first neighbour shell are shown in

figure 5 for equiconcentration. A lot of information is contained in these curves.

First of all, we deduce the partial averaged first-neighbour distances #~~ plotted in figure 6
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Fig. 6. The mean Au-Au (rhombs), Au-Ni (squarer) and Ni-Ni (circles) nearest neighbour distance in

the Aui _~Ni~ solid solutions versus Ni concentration. White symbols represent simulation and black

symbols experimental data [7].

(R~~
=

r~ g~~(r) dr/r~ g~~(r) dr where the integration is done over the first peak). The

agreement between simulation and EXAFS experiments [7] is noteworthy. Then, we plot the

second and third moment of these distributions («,
=

((r k~~l'), I
=

2, 3) in figure 7.

These results which measure the widths and asymmetries respectively are also in quantitative

agreement with the measurements of Renaud et al. [7]. For the equiconcentration, the

experimental measurements are :
«f'~'ne 13 x

10~~ Ji~, «(~~'= 7 x
10~~ Ji~, «)~~"

=

3 x lo" ~ Ji~, «(~~~= II x lo" ~ Ji~, «)~~~= 5 x
10~~ Ji~, «)~~~= 2 x

10~~ Ji~ and these

values are close to the simulated ones.

In agreement with the results of Renaud et al. [7] and Wu and Cohen [6], the width and the

asymmetry of Ni-Ni pair distribution functions are larger than Au-Ni ones which are also larger
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Fig. 7. -Second and third moment of the partial pair correlation functions in the Aui-xNi~ solid
solutions model versus Ni concentration showing evolutions of the widths and asymmetries of the three

pair correlation functions.

than Au-Au ones. Moreover RAU-Ni is always closer to #~~_~~ than to k~~_~~. These trends of

distance distributions can be understood by considering that the Ni atoms can adjust to the

topological frustration more easily than gold atoms, because the energy cost is higher for

contraction than for dilation due to the anharmonicity of the interatomic interactions (see
Fig, I).

A new description can be developed from the study of interstitial sites. The 3 N interstitial

sites (2 N tetrahedral and N octahedral, if N is the atom number) in the perfect lattice are

exactly known. For the distorted structures, two types of analyses are performed : first, the

Voronoi polyhedra [32] which consider only positions of atomic sites and secondly, radical

planes [33]_ where size effect may be introduced. The bond lengths of figure 6 are an excellent

example. These constructions define partitions of the whole space and tetrahedron networks

are associated with them (Delaunay's network in the case of the Voronoi construction). These

tetrahedron networks also form partitions of space and allow the definition of the interstitial

sites [34].

These two different approaches lead to the same conclusions :

(I) The initial tetrahedral sites are still present in the relaxed state (the two lists of atoms

defining the relaxed and unrelaxed tetrahedral sites are identical).
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(it) Each initial octahedral site is transformed into a distorted octahedron which can be

decomposed into 4 tetrahedra or in few cases into 5 tetrahedra.

The histograms of the volumes of the tetrahedral sites (see Fig. 8) can be decomposed into

partial distributions of the volumes V~~~ ,~~~
(i

=
0.. 4) corresponding to the five chemical

arrangements : Au~, Au~Ni, Au~Ni~, AuNi~, N14 (the octahedral analysis can be performed
with the same method, however it is more complex because of the larger number of possible
combinations). The average positions of these five peaks are plotted in figure 9. They are

distinct from the simple predictions of the tetrahedral volumes :

~~~4
6~'

~~~3~'
~'

~~~2~'2 ~~~ ~~~ ~
~~~~ ~~~

based on the partial first-neighbour distances : a =

k~~, b
=

#~~ and c =

#~~ (the other

volumes are obtained by permutation).

«
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Fig. 8. Histogram of the tetrahedral volumes for x =

0.5 decomposed in the partial volumes of the

tetrahedra Au4, Au3Ni, Au2N12, AuN13 and N14. The lines are weighted smooths of the data.

G 3
4 Aa~
fl 2.8

«I ~ 2.6
~ Q A~2N'

'I ~'~ AQ2N[
#

~

i ~ ~ ~°~

i~ 2 Ni~
&$

1.8

0 0.2 0A 0.6 0.8

Ni atomic concentration

Fig. 9. Averages volumes of each type of the tetrahedral sites in the Auj ~Ni~ solid solutions versus Ni
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This discrepancy results from the correlation between the length of the atomic pairs and the

tetrahedron types (this correlation is weaker in the amorphous structure [34]).
The analytical expressions give the correct volumes only when the matrix effect is low I-e-

when the considered tetrahedron is in a majority : near x =

0 (x
=

I for V(~~(V(~~), near

x =
I/4 (x

=

3/4) for V(~~~~(V(~~~~) and near x =

1/2 for V(~~~~~.

It is noteworthy that the behaviour of the interstitial volumes described in this text affects the

diffusion properties of solid solutions.

5. Elastic behaviour.

5, I COMPUTATIONAL METHOD. At zero temperature, three main numerical methods can be

used to evaluate the elastic constants of an ideal crystal (having one or several atoms per unit

cell) or inhomogeneous systems (for example grain-boundary superlattices [35]) : (I) the local

elastic-constants tensor [36] (it) the lattice-dynamics [36] (iii) the finite-strain method. This

third method is applied to the large systems in this paper.
The equilibrium states are relaxed at zero pressure Eo is the energy and Vo is the volume per

atom. We apply small strains by changing the shape or the volume of the periodic cell which

contains the N atoms and afterwards we relax the system, keeping this new cell fixed. These

strains may be defined with only one distortion variable
e by a matrix J(e) transforming the

box (and lattice) vectors [37, 38]. This matrix defines the Lagrangian strain ~1(e)
=

(J~J -1)/2 where I is the identity matrix.

The cubic macroscopic systems only have three second order independent elastic constants.

Using the macroscopic deformation matrix :

I + &ie &~e &~e

J(e)
=

S(e) &~e I + &~e &~e (7)

&~e &~e I + &~e

we can get AE/Vo in terms of J(e).
The shear moduli c'= (cii c12~/2 and c~4 can be extracted with the strains defined by

parameters &i and the normalization function S(e) given in table V (*). Strain number

Table V. Strains to isolate elastic constants (see text for notations). Strains number I and 2

are volume-conserving and strains number 3 and 4 are not.

Strain &1 &~ &~ &~ &~ &~ S(e) AE/(Vo e~)

I 0 0 0 0 0 (1 + e)~ ~~~ (cii ci~)/2

2 0 0 0 (1 3 e~
+ 2 e~)~ ~~~ CM

3 0 0 0 0 0 )cii

4 0 0 0
~B

(*) The lower-case letter indicates that elastic constants are computed in a non-primitive set of axes of

the fcc structure, I.e. the cubic axes ([100], [010], [001]).
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(related to c') only involves tensile strain along the cubic axes. Strain number 2 (related to

c~4) leads to a distortion of the orthorhombic box.

It is more convenient to choose an initial cell constructed in the set of perpendicular axes :fi
ii To i,

j
ii iii, j

iii ii and to apply the strain :

2 6 3

I + e 0 0

J(e)
=

(1 3 e~ 2 e~)~ l/~ 0 + e 0 (8)
0 0 2 e

Another macroscopic deformation is necessary to separate cii and ci~ from c'. It may be done

with the strains 3 or 4 (see Tab. V). Strain 3 allows us to obtain directly cii and strain 4 yields

the bulk modulus B (cubic lattices satisfy the relation B
=

(cii + 2 ci~)/3).
The magnitude of e chosen to compute cjj must be large enough to neglect residual

numerical errors and small enough to neglect non-linear effects due to higher elastic

contributions. The second order elastic constants are deduced from the energy-deformation

curves E(e). The anharmonic term leads to a first error bar for the determination of elastic

constants this contribution is quite easy to extract with the curves E (e ). A second one comes

from the statistical error made by choosing an initial chemically random configuration. To

estimate these errors, we have computed the elastic constant c' and the bulk modulus B at

x =

0.5 for five initial random configurations and five deformations ranging from 0.05 9b to

0.5 9b (a classical value being around 0.1 9b). A maximum margin of error of 2 9b on the elastic

constants has been found and the error bars are reported in the figures lo, 11 and 12.

5.2 RESULTS. The elastic constants shown in figures lo and 11 may be compared to the

experimental results of Golding et al. [5] (measured at room temperature for x « 0.42) and

Renaud et al. [7] (at room temperature for x =
0.20). The samples do not have the same

metallurgical treatment: Golding's sampler are directly quenched from the complete

miscibility range and Renaud's samples exhibit the short range order of the miscibility gap

after an ageing at 520 K. For these particular concentrations, the elastic constants always have

the same signs of deviation from the linear interpolations which are in agreement with our

results cii, c~4 and c' are softened by the solid solution effect whereas ci~ is enhanced. The

simulation predicts furthermore that the maximum is around x =

0.65 (see Fig,12). The

~

o.9

0.8

~~ $~ o 7
~44

f I
0.6

- ~o
~ 0.5

-
Q~

~ 2 0.4

o
f

,[
-

0.3 C

(
0.2

W 0.1

0 0.2 0A 0.6 0.8

Ni atomic concentration

Fig. 10. Elastic constants c~~ and c' in 10~~ Pa calculated with volume-conserving strains number I

and 2 of table V. See text for error bars. The lines are only a guide for the eyes.
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Fig. I I. Elastic constant cii and bulk modulus B in 10~~ Pa calculated with volume-non-conserving
strains 3 and 4 of table V. See text for error bars.
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Fig. 12. Elastic constant cj~ in 10~~ Pa calculated from the relation c12 =

(3 B cjj )/2 (dark rhombs)

and from ci~ = cii 2 c' (open rhombs) with the data of figures 9 and lo. See text for error bars.

quantitative agreement between the calculated and experimental elastic constants corresponds
to the one obtained above for the pure crystals. This is only a rough comparison since the

experiments are not at OK- For instance at x =
0.2, we get :

c((~~. =

l.99, c(('
=

1.96 and c(I
=

1.95 (10~~ Pa)

c(~~'= l.71, c((I
=

1.58 and c(I
=

1.68 (10~~ Pa)

cjf~.
=

0.43
,

c@
=

0.51 and c(1= 0.42 (10~ Pa).

The behaviour of the bulk modulus B is more complex : starting with a softening, it is

followed by an enhancement, but this effect is small. The Debye temperature 0~ can be

calculated [39] from the elastic constants and the vibrating free energy can be deduced. This

allows one to compute the miscibility gap [40] of the system.
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6. Conclusion.

This paper deals with the alloying, topological, and elastic properties of the Au~Nii
_~

solid

solutions at OK studied by numerical relaxation.

The empirical interatomic potential is based on the second moment approximation of the

tight binding theory of metallic cohesion. With a very simple average rule for interspecies
interactions, it is shown that the local relaxation is of paramount importance on the alloying

energy because of the large difference between atomic sizes of individual species.
The available experimental results are checked by the potential and the evolution of the

properties are extended over the whole concentration range.
The formation energy of solid solutions agrees with the extrapolation at OK of the

experimental measurements. The relative phase stability of glass and compounds is studied

with the same method.

The bond length distributions compare well with EXAFS experiments and Johnson

embedded-atom potential [41]. It is confirmed that the bonding frustration by the lattice plays

an important role (previously called the elastic effect).
Moreover, a new study of interstitial sites shows that the chemical effect induces a splitting

of the tetrahedral volumes. This allows a characterization of the structure and may have

implications for the interstitial diffusion.

Finally, we analyzed the influence of the topological disorder on the elastic constants. This

effect is found to be low.
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