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Abstract. We present a non-linear model of a Fabry-Perot resonator where the stored power can

heat the mirrors and induce thermal aberrations, which, in tum, change the resonant wave. We first

describe a sequential modelling of the temperature evolution, thermal aberrations and stored

power this model is then implemented with the help of a numerical propagation code. We give
numerical examples in the field of cavities involved in gravitational wave interferometric antennas,

for which thermal problems may arise and restrict their sensitivity.

1. Introduction.

In this paper, we present the modelling and the numerical simulation of a Fabry-Perot optical
cavity where time dependent thermal effects can occur and affect the quality of the minors.

These thermal effects are due to light power absorption in the minors which may induce

temperature gradients, then a thermal lensing effect and thermoelastic distortions of the

reflective surface and the refractive substrates. In tum, these thermal abenations decrease the

power stored in the cavity ; the problem is thus nonlinear and it is more convenient to study it

by numerical methods.

This work arises from the preliminary studies of the kilometric Fabry-Perot cavities involved

in the projects of Interferometric Gravitational Wave Detectors, like the Italo-French VIRGO

project or the American LIGO project II ] in the future operation of these Gravitational Wave

antennas, there will be thousands of Watts stored in the cavities and hundreds of Watts

crossing the input minors, making it necessary to investigate the thermal problems in the

planned cavities. In other projects, like the German-British GEO project or the Australian

AIGO project, delay lines are used instead of Fabry-Perot cavities and the thermal problem is

not of the same kind.

More generally, thermal problems in cavities can occur each time high finesse cavities and

high stored powers are considered: high power lasers, high accuracy measurements..
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Actually, several authors have investigated the thermal effects, for example in laser systems,

but in other contexts and with other approximations [2-6] that in our model which is original,

because of the numerical treatment of the time dependancies and because of its accuracy.

The cavity we are going to study is (without loss of generality) a flat-spherical cavity (see

Fig. I), and we limit ourselves to the axi-symmetrical case for the input laser beam and for the

optical system ; the axial symmetry has the considerable advantage of allowing analytical

solutions for the thermoelastic distortion of a minor heated by a Gaussian beam [7-8]. The flat

input minor is a thick cylindrical block of pure silica with a coating on its cavity face this

minor can thus absorb light power in the coating or in the bulk, with uniform absorption
coefficients. The spherical end minor, which is not crossed by light, may be manufactured

from a material other than silica, in particular a material with a very small thermal expansion to

thermal conductivity ratio (e.g. silicon or ULE), so we will neglect thermal effects in this

minor. The minors are supposed to be suspended by thin wires in a vacuum vessel with walls

at temperature To- Heat losses are thus only due to thermal radiation, but we shall see in

section 2 that the model is also relevant for convection losses, because we may linearize the

radiative losses if the temperature increase due to light power absorption is not too strong [7].
We shall first describe the modelling of thermal effects in a cavity, with a sequential model

for the temperature and thermally induced abenations, and then we shall describe the

numerical code we have built and the results we have obtained. We shall finally discuss the

possibility of a general model where axial symmetry is no longer required, for example the

case of a non-uniform absorption in the coating.

- 11 -
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Fig. I. Sketch of the considered Fabry Perot resonator. a and h are the radius and the width of the input
mirror, respectively.

2. Modelling of thermal effects in a Fabry.Perot cavity.

In previous papers [7, 8], we have derived time dependent analytical formulas for the

temperature distribution, thermal lensing and thermal distortion of the coating for a thick plane
minor illuminated by a high power laser beam. We have expressed the temperature as a rapidly
converging Fourier-Dini series like in [5] and in [9] as well as the induced thermal abenations.

The coefficients of these series depend linearly on the power distribution that reaches or

crosses the minor, and we can now develop a sequential model for the temperature and the

thermal abenations.
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2. I SEQUENTIAL MODEL FOR THE TEMPERATURE OF THE INPUT MIRROR. Within the as sump-
tion of axial symmetry (beams and minors), let us recall that we can generally express the time
dependent temperature distribution of the cylindrical input minor, of radius

a and thickness h,

as a Fourier-Dini series, namely (see [7] for notation) :

T(t, r, z )
=

£ [S~~ cos (u~ zla ) + A~~ sin (v~ zla )] Jo (k~ r (I)

p, m

where S~~ and A~~ are (time dependent) real coefficients

u~ is the p-th solution of

u = r Cot
~

(2)
a

v~ is the p-th solution of

and ak~ is the m-th solution of :

xJi(x) rJo(x)
=

o (4)

where r is the reduced radiation constant (if the heat losses are radiative) :

4 e«T(
a

~ "

~
(5)

(e is the emissivity of the silica,
« is the Stefan-Boltzmann constant and K is the therrnal

conductivity of the silica : K
=

1.38 Wm~ K" ~) or the reduced convective constant (if the
heat losses are convective) :

~ #

~~~~~ ~
(6)

K

(A~~~~ is the surface heat transfer coefficient).
A sequential modelling consists of cutting the time in successive slices of duration

At, and in considering that all the heat sources have the same intensity during At. This requires
that At « t~, if t~ is the evolution time of the temperature (time required to get the stationary
state) ; in [7] we have found in the case of the large Virgo mirrors that t~ is of the order of

several hours, this is clearly not a very difficult condition to fill. For smaller minors

t~ will be much less, and At has to be appropriately chosen.

Then at the time t~ (t~= to +n At), we may express the temperature distribution

T~ as :

T~(r, z)
=

£ [S)[~ cos (u~ zla ) + A)$~ sin (v~ zla )] Jo (k~ r) (7)

p, m

We know the temperature T~ at time t~, and the light powers that reach or cross the minor,
which are supposed to be constant between t~ and t~

~ i, so we can obtain the temperature at

time t > t~ from the resolution of the Fourier equation, the initial condition being :

T(0, r, z>
=

T~(r, z> (8>
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so from [7] we get, if t
~

t~, T(t, r, z) as a steady-state solution [10] plus a transient solution :

T(t, r, z )
=

£ [s)[~ cos (u~ zla + a)[~ sin (v~ zla)] Jo ((~ rla +

m,p

+ £ [u)[~ e~ ~P~~~ ~~~
cos (u~ zla ) + v)[~ e~ ~P~~~ ~~~ sin (v~ zla )] Jo ((~ rla (9)

m. p

where the coefficients s)[~, a)[~, u)[~ et v)[~ can be determined for each heat source and will be

explicited in the following, and :

a~~ =

~

~
[u( +

($] and fl~~
=

~

~
[v( +

($] (10)
pca pca

(p is the density of the silica : p =

2 202 kg m~ ~, C its specific heat C
=

745 J kg K~ ~,

and f~
=

ak~). The reverse of a~~ and p~~ will be refened to as the time constants, the largest

one being, flaw, in our numerical examples.
Then with the

«
initial conditions

» ;

T~(r, z>
=

T(t~, r, z> and T~
~ i

(r, z>
=

T(t~
~ i, r, z> (I I>

we can express T~~i from T~. Indeed, if we write T~~~ as :

T~
~ i

(r, z )
=

£ [S)[+ cos (u~ zla + A)[+ sin (v~ zla )] Jo(k~ r) (12)

p. m

we get from (9) and (11), and using t~
~ i

t~
=

At :

~~~ ~~~ ~ ~pm (~~)
~ ~ i

~Pm " ~pm + ~pm

and

$(n + 1) ~(n) ~ ~
(n) ~- «pm At

Pm Pm Pm (14)
A)[+

=
a)[~ + v)[J e~ ~P~ ~~

when eliminating u)[~ and v)[J we get the recunence relations

~~~
~

~~~ ~~ ) S#
+ ~~~ ~

~~~ ~~

~

~ (n + 1)
~ ~~ ~- flpm At ~(n)

~ ~ (n) ~~ flPm ~~

Pm pm pm

Finally, if we know the temperature distribution T~(r, z) at time t~, we can derive the

temperature distribution T~
~ i

(r, z ) at time t~
~ i =

t~ + At ; all we have to do is to compute the

coefficients s)fl and a)$~ of the Fourier-Dini series of the steady state temperature conesponding

to the minor heated by a given beam of power P~. We will compute these coefficients in later

sections, but let us first derive sequential expressions for the thermal abenations.

2.2 SEQUENTIAL MODEL FOR THE THERMAL ABERRATIONS. We first address the aberrations

due to the thermal lensing effect. When crossing the heated minor, the light sees a phase shift

simply related to the temperature distribution by [7]

q (t, r)
=

~
"

~~ ~~
T(t, r, z) dz (16)

~ ~~
-h/2
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where dn/dT is the derivative of the index with respect to the temperature (also called thermal

coefficient of index) for silica, we have in vacuum and at 1.06~Lm: dn/dT=

0.87 x10~~ K~~ If we consider the sequential model for temperature, the phase shift

q~(r) at the time t~ is :

n
=~ ~~~

~ ~~ $ i S)[1
~~~ ~~P h/2 a

~

~ ~

~~
°

~~ ~~~ (i ~~

So, we are able to compute at every time t~ the abenations due to the thermal lensing effect.

The abenations due to the thermoelastic distortion of the coating can also be obtained by
computing the phase shift seen by the light q~ (t, r for a refraction this phase shift is related to

the coefficients S~~ and A~~ of the Fourier-Dini expansion of the temperature [8] :

~p
(t, r)

=

~ ~~
A R

~

cosh (Ym) IPm ~mj
Jo (~m ~~~~ ~~~~~

~~ ~~~
~~j~~([)~(f

+ y~
~P~ ~

sinh (Ym> ~°~~ ~~~~ ~~

where
v

is the stress temperature modulus, A is the first Lamd coefficient, m is the second Lamd

coefficient (we have for silica : v =
5.91 x

10~ J m~ ~ K~ ~, A
=

1.56 x
10* J m~ ~,

m =

3.13 x
10~° J m~~), and :

u~ cosh (Ym) Sin (fP~ + ~m ~~~~ ~~~~ ~°~ ~~~~
~~~~PPm " u( +

($

v~ sinh (ym) C°S (RF ~m ~°~~ ~~~~ ~~~ ~~~~
~~~~I

=Pm
Vj +

'~

(with : f~
= u~ h/2 a, n~ = v~ h/2 a, y~ =

(~ h/2 a).

At time t~, the temperature is given by (7) and the phase shift is :

2 ara vwn(r)
= j ~ ~ ~

~

~i~h (y~) P~m
~~nj

~°~~ ~~~~ ~P~ j$~j
Jo ((m no) ~~~~x ~( ~j~~ ~y~> cash (y~> + y~

~~
~

Sinh (Ym> C°Sh ~Ym~ ~~

Thus, we are able to compute at every time t~ the abenations due to the thermoelastic distortion

of the coating of the minor. Now we may find the abenations induced by the different sources

of heating.

2.3 HEAT souRcEs AND RELATED ABERRATIONS.- The input minor can be heated by
different sources (see Fig. 2) which may be treated separately, owing to the linear

approximation used in the thermal equations.

2.3.I Aberrations due to a coating dissipation of light power. The coating can absorb

power from two beams : the intra-cavity resonant wave and the (roughly Gaussian) incoming
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Incoming wave

Intra.cavity wave

reflected beaIn

Coating

Fig. 2. Heat sources for the input mirror of the cavity. The mirror can be heated in its bulk by the two

beams which cross it, and by coating absorption of the resonant intra-cavity wave and of the incoming

wave.

wave. We may neglect the contribution of the second one, because of the power resonance in

the cavity. The thermal abenations are then given by (18) and (22) and directly related to the

Fourier-Dini expansion of the temperature; according to the sequential model for the

temperature (9), we need the steady state coefficients s)fl and a)f in order to compute the

temperature and then the abenations at each time t~. We get these coefficients from [7] :

s)f
=

~/)~
#1~°~~~~~

~~ ~
(23)

(~~ + u ) c

ai#
-

~ii~ Pri

lili ij >
(24>

where e
is the power dissipation coefficient of the coating, c~ and s~ are given by :

~~ ~ u)h ~~~ ~~P hla) and s =
i a

~
Up

h
~~~ ~~P hla (2~~

and the p$~~ are the coefficients of the Dini expansion of the power distribution P ~~~ that reaches

the coating at time t~.

P ~~~(r)
=

£ pf) Jo (k~ rla ) (26)

and then :

Pj~~
=

~ ~~ l I a

'~
+

~~~°~'m~ ?
o

~ ~~~~~~ ~°~'m no> r dr ~~~~



N° 3 THERMAL EFFECTS IN HIGH POWER OPTICAL RESONATORS 723

2.3.2 Aberrations due to the bulk absorption of light power. In figure 2 we see that two

beams of roughly the same intensity can heat the bulk of the minor, namely those which cross

the minor : the incoming beam and the beam reflected by the cavity. In order to derive the

thermal abenations induced by the bulk absorption of these two beams, we need the steady-

state coefficients s)Ql and a)[~ which are given by [7] :

4 aa3 sin (u~ h/2 a cos (u~ h/2 a )
~~~ Kh

~~
~(

c~ u~
~ ~(

+ u(
~~~~

~(n)
~

~ (~9)
Pm

where a
is the lineic absorption coefficient of the material.

Note that, in this case, if at the initial time to the minor is at thermal equilibrium with the

extemal vessel, then the odd coefficients A)[I always vanish, because of the recunence

relation (15) and because a)[1
=

0.

Moreover, the coefficients p#I
come from two contributions :

p#~
=

wj~l + arj~l (30)

The first term conesponds to the incoming beam ; we have for example, if the latter a pure

TEMOO Gaussian mode, perfectly mode matched to the cavity, with a constant power P, and a

waist w :

~~ ~ $ (((
+

r~)J~(( )2
~~P (~ i'~ J (31)

The second term conesponds to the reflected beam of unknown geometry and has to be

computed at each time t~, using (27).
Finally, using the recunence relations (15), the above formulas for the steady state

coefficients s)[I and a)$I and for coefficients of the Dini expansion of the power distribution, we

are able to express, at each time t~, the thermal abenations induced by absorption of light

power either in the bulk or in the coating of the input minor of the considered cavity. In fact,

what is changing between two sequences (between the time At) is the power distribution that

crosses or hits the minor, and the abenations are perfectly determined from this distribution.

So, we can use this theoretical work in a dynamical numerical code of a Fabry-Perot cavity,

where there is a coupling between the computation of the thermal abenations and the optical
computation.

3. Simulation of a Fabry,Perot illuminated hy an intense laser beam.

It is clear that a non-linear coupling occurs between the thermal system which determines the

optical tuning, and the optical system which determines the rate of heating. We have thus to

build a model of a cavity, considering the action of the wave front thermal distortion of the

stored power and the feedback of the stored power upon the heating rate. This is possible by
mixing the previous sequential model for thermal abenations and a numerical code computing

stored waves and reflected waves in a Fabry-Perot cavity.

3,I DESCRIPTION OF THE NUMERICAL CODE.

3.I,I Optical simulation. The numerical code is based upon a static purely optical code

which is described elsewhere [I1-13]. In a few words, all the transformations undergone by the
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light wave in the cavity are represented by linear operators acting on the amplitude of the

lightwave. This method allows us to consider a large range of defects of the minors : finite

size, curvature enors, abenations, index inhomogeneities, tilts and misalignments.
For example, the propagation between the two minors in the cavity may be written as the

convolution product of the wave amplitude by a paraxial Green function G, which is, in the

Fourier Space ;

L being the propagation length and A the wavelength of light.
The linear propagation operator may be thus expressed as

£.
=

~ GY (33)

where ~ is the direct Fourier transform. This allows us to use FFT routines like in other similar

methods of beam propagation [14].
The refraction and reflection operators associated with a minor having scalar amplitude

transmission and reflection coefficients t and r, are more simply, assuming a ar/2 phase change
for a reflection :

3(x, y>
=

t
e'f~~'Yl d(x, y> and 3l (x, y>

=
ir e'~~~. Yl d(x, y (34>

where d(x, y is an aperture function, f(x, y and g (x, y represent the local phase change due

to either the reflecting surface shape or the variable optical thickness. These functions are fully
explained in [13].

Now, if we consider a whole Fabry-Perot cavity (see Fig. 3 for notation), the continuity
equations verified by the waves on the minors lead to the implicit equation for the amplitude of

the intra-cavity wave 1l'1

Pi
~

ii Pm + 3ll £3l2 £ Pi (35)

INPUTWRROR ENDWRROR

'il~ 'iii y~

Toot 'if4 Y~

Fig- 3. -Waves in the cavity (notation).
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The simulation of a cavity is based upon the resolution of this equation we solve it by
successive iterations from a first approximate solution that we may choose equal to the exact

eigenmode of the ideal cavity, until the required accuracy is reached.

An important point of our model is that we are able to tune very simply the cavity at

resonance, whatever the defects of the mirrors, provided they are small, especially if we

consider the thermal abenations- Indeed a perturbation calculation concludes [13], to first

order, that the cavity is resonant with the Gaussian TEMOO mode if we add to the phase of the

propagation operator the global phase Arg(A ), where A is the Hermitian scalar product :

A
=

(3ti f3t~ « woo woo) (36>

and fl'o~ is the purely Gaussian TEMOO mode of the unperturbed cavity. This method, very
useful in order to servo the tuning of the cavity, requires the simulation of only one round trip

in the cavity and is therefore unexpensive in computer time.

3.1.2 Simulation of the thermo-optical coupling. The simulation involves two parts an

optical simulation, described in the previous section, and a computation of the thermal

abenations, described in section 2. The simplest code would consist in computing the intra-

cavity wave at each round trip of the light in the cavity, and to derive the thermal abenations

related to the power distributions reaching the coating or crossing the minor but the thermal

effects are very slow to develop. For instance, if we compute the largest time constant

to

~°
00 ~~~

Hi (/ ~~~~

we note that to is several hours in our examples, and we thus would have to follow the

evolution of the cavity during a time of the same magnitude this would require some billions

of iterations. In fact, because of the large value of to, the evolution of the thermal abenations is

quasi-static with respect to the optical time constants, such as the storage time r~ or the decay
time. This important remark means that during the storage time of the cavity the thermal

abenations remain almost unchanged, and allows the sequential numerical modelling shown in

table I.

This method is of course valid if we choose At larger than the storage time r~ of the cavity :

At
~ r~ (38)

But, in this form, the method is yet too expensive in computer time, and we must find a way to

accelerate the simulation. Fortunately, we may squeeze the time scale ; indeed, the quantities

that appear in the time constants are the radius a of the minor, the thermal conductivity K, the

density p and the specific heat C. The first, two a and K, occur in the expressions of the

amplitude of the thermal abenations, but p and C occur only in the time constants. We may

choose these last two parameters as we want in order to decrease to and all the other time

constants : we shall not change the amplitude of the thermal effects, only their evolution time

scale. Thus we can squeeze the time scale by decreasing the time constants, but we have to

keep the quasi-static evolution property of the thermal system, namely : tow r~.

It is also useful to keep At « to in order to obtain a good accuracy in the time evolution. Note

that this quasi,static approximation does not allow us to study accurately phenomena with a

short time scale (« short
» means very small with respect to to), such as possible short period

oscillations (the code would see only the envelope of these oscillations), or thermally induced

bistability. In principle, it would be possible to look at such phenomena, but, practically, the

quasi-static approximation is needed because of prohibitive computer time.
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Table I. Briefly summarized structure of the loop-over-time of the numerical code.

cmnputafion of the intro-cavity wave and of the inflected wave

as in the simulation (see 3.I.I)

derivation tile coating and
crossing the substrate of the mbrm

calculation of tile Dki expansions of tllese distributions

computation of tile steady state coefficients
each heat source

~~'° ~~'°

derivation of tile new thermal coefficients tile
help of the recurrence mlafions ~~'~ ~~'~

calculation of tile phase lens sumwng the diffiemnt thermal effects

calculation of the new operators associated with the
mhmr of

In the following simulations, we have chosen a squeezed time conesponding to the time

parametqr :
pca~/K

=

I s, and an iteration time At
=

I ms. As we consider a cavity with a

storage time r~ about 0.1 ms, all the previous conditions are fullfilled, and the steady state is

obtained after only a few hundred iterations. Now, we can give some numerical results about

the behaviour of a Fabry-Perot cavity illuminated by an intense laser beam.

3.2 NUMERICAL RESULTS. The code has been implemented with the FORTRAN language

on the Siemens VP200 vector machine at the CIRCE center (Orsay, France), and has been

linked with the vectorized SSL-II library, for use of the 2-D complex FFT and of the Bessel

functions a vector machine is indeed suitable, because the optical part of the code can be

highly vectorized [12, 13] (the optical operators as well as the light waves are represented by 2-

D arrays, and the action of an operator upon a wave is simply represented by a multiplication

between two arrays).
The examples shown in the following sections are chosen in the context of the optical design

of the Virgo cavities. These are 3 km long cavities, with a flat input minor and a spherical end

minor of 3.45 km curvature radius. The minors have a radius of 30 cm and a width of 20 cm ;
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the power reflection coefficients of the minors are 0.85 for the input minor and near unity for

the end minor, the finesse is thus about 40. The walls of the vacuum tanks are supposed to be

at the constant temperature To
=

300 K.

Note that, with such minors, numerically tested convergence and accuracy criteria allow us

to truncate the Fourier,Dini expansions for thermal abenations at about the 50-th order, for

which the double precision (15 digits) is reached for the computation of the temperature as well

as of the thermal abenations ; the speed of the numerical code is thus mainly limited by the

optical part and particularly by the many double precision complex 2D-FTT'S we have to

compute.

3.2, I Cavity with a fixed tuning. We may first simulate the behaviour of a free cavity, I,e.

without servo ; the cavity is first tuned on its fundamental mode, with the help of the fast

subroutine described in section 3.I.I (Eq. (36)), and then illuminated by an ideal TEMOO
Gaussian beam, which is perfectly adapted to the ideal cavity.

A numerical result is shown in figure 4 ; the incoming power is equal to 250 W and the

coating absorption coefficient is 10~4, which is a conect order of magnitude for cunent

technology. Note that we have neglected the bulk absorption, since it is weak compared to the

coating absorption. We see a straight decrease of the power stored in the cavity, which

stabilizes after about 40 mn of operation.
The power falls mainly because the cavity goes out of resonance, due to the thermal

distorsions of the heated input minor, but we can servo the tuning of the cavity.

o.o io.o ao.o w.o 40,o

time (mn)

Fig. 4. Evolution of the stored power when the cavity is tuned at resonance at the initial time. The

incoming power is 250 W and the coating absorption is 10~~

3.2.2 Cavity with a servoed tuning. The servos have response times much shorter than the

thermal characteristic times and even than the storage time of the cavity, so that we may

consider that the cavity is at resonance at each time. Thus, we simulate a servoed tuning by
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adjusting, at each occunence of the optical code, the resonance of the cavity, with a subroutine

based upon the method outlined in section 3.I.I (see Eq. (36)).

In figure 5 we present a numerical result obtained with an incoming power of 250 W and

coating absorption coefficients of 10-~ and 10~5. In the first case, there is a decrease of power

but less than in the example of the previous section (there is a factor between initial intracavity

power and steady-state stored power instead of a factor 5). This reduction is now only due to a

decreasing coupling between the incoming pure Gaussian wave and the resonant mode of the

cavity (note that more than two hours are needed to reach the steady state). In the case of a

10~5 absorption, the decrease of power appears negligible. We also give in this case the

3000.
o-o 43.o eo.o t33.o too-o

time (mm

Fig. 5. Evolution of the stored power with a servoed tuning of the resonance of the cavity. The

incoming power is 250 W and the coating absorption is 10-5 (upper curve) or 10~~ (lower curve).

picture (Fig. 6) of the evolution of the temperature (modulo To) of the
«

hot point
»

of the

minor, naniely the center of the coating, using expression (7) ; finally, figure 7 shows the

evolution of the sagitta of the minor, computed as the maximum of relative displacement on

the minor surface.

An important consequence of these numerical examples is that Interferometric Gravitational

Wave Detectors like LiGO or VIRGO could be found to work well, if coatings with intrinsic

absorption less than 10~5 could be made over large surfaces. This seems to be now feasible, if

we can extend the best coating technology up to tens of centimeters. For instance, total losses

(absorption and scattering) of about 10-6 have been recently measured on small coated minors

[15].
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Fig. 6. Evolution of the temperature of the
«

hot point »
of the mirror, in the case of a servoed tuning

of the cavity, a 250 W incoming power and 10-5 coating absorption.
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Fig. 7. Sagitta of the heated mirror as a function of time, in the case of a servoed tuning of the cavity, a

250 W incoming power and 10-5 coating absorption.
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4. Possibility of a numerical simulation without symmetry hypothesis.

In this section we want to discuss the possibility of a more general code where we no longer
restrict ourselves to the axially symmetrical case. In this symmetrical case, we have found

analytical solutions for the temperature distribution, thermal lensing and thermoelastic

distortion of a cylindrical minor heated by a laser beam. When axial symmetry no longer
applies, for instance when the absorbed power distribution is no longer a purely radial

function, we have to express the temperature more generally :

T(t, r, 8, z =

£ (A~~~ cos (u~~ z) + B~~~ sin (v~~ z)) e'~~ J~(k~~ r (39)

m, n, p

We shall refer to this expression as a generalized Fourier-Dini series.

As an example, it is straightforward to verify that the steady-state temperature distribution of

a cylindrical minor heated by a laser beam and with a non-uniform coating absorption
e(r, 8 ) or (equivalently) a non-radial power distribution P (r, 9) is :

~- <mn h'2 ~ (~~
T

) e
~~~~ ~ ~~

+ ~~~ ~ ~ ~~
~~~ ~~

e~ ~~ Jn ( ~mn ~~~T(r, 9, z)
~

~ ~~~~

K ((mn + ~~~ ~~mn ~~~ ~
~~~~ ~

(40>

with the same notation as in the previous sections, and where the coefficient (~~ is the m,th

zero of :

xJ~_ i(x> + (r n>J~(x> (41)

and the p~~ are the coefficients of the generalized Fourier-Dini expansion of the absorbed

power distribution :

~

2 '$n
I I

j~
"

j~ ,~g
~~ t$n

+ T
~ n~ J~(<~~ )~ 2 ara~

0 0

~ ~~~ ~ ~ ~~~ ~ ~ ~~ ~~~~ ~~~ ~ ~~ ~° ~~~~

if we use the normalization property of our particular set of Bessel functions [16].
Hence, following the method described in [7], expanding the hyperbolic functions of

z

appearing in (40) as Fourier series, we can derive the general time-dependent temperature
ab initio :

-
2 ~~ z

p j
I

- ~
~~"

~~ m, n, P ~~
~~n + ~j ) Sp

~~~~ p~a~ ~~~~ ~ ~~~

~~~~ P~a~ ~~~~ ~ ~~~

~~~
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A similar expression can be obtained in the same way for inhomogenous power absorption in

the substrate of the minor. From these expressions for the temperature, and by analogy with

equation (16), we may find the thermal lens profile, I,e. the total optical path distortion, after a

single pass through the minor, due to thermal lensing in the substrate of the minor

~~ h/2
~ ~~' ~' ~

dT
~~~

~~~' ~' ~' ~ ~~ ~~~~

which can be explicitly calculated.

Therefore, we have shown that, in the general case of non-uniform absorption of the light

power, we can derive analytical formulas for the temperature distribution and for the

abenations induced by the thermal lensing effect. As in section 2, we are also able to derive a

sequential model for the temperature distribution and for the thermal lensing abenations and

find recunence relations similar to equations (15).
But addressing the transient thermoelastic problem is another story. To our knowledge of the

literature in this field of Physics, only Cutolo et al. [9] have considered this 3-D case for heated

minors and computed the general solution for the steady-state temperature, but they restricted

their study to axial symmetry (and steady-state) when they tackled the thermoelastic problem.
The point is that there is no general analytical solution to the 3-D elastic problem, even for a

simple solid like a cylindrical minor (except if it can be approximated by a 2-D model like a

plate (h ~S a), or like a rod (h ma ), but this is not our case, and generally not the case for

cavity or laser minors). The best we can do is to show that solutions exist [17]. An altemative

numerical solution would be, for exaniple, to add to the code a routine computing the

thermoelastic deformation of the minor surface by a finite-element method this routine would

take the data given by the analytical calculation of the temperature field, evaluate the local

temperature gradients and finally derive the shape of the reflecting face of the minor.

In principle, such a code should work, but it would be much slower, firstly because of the

computation of the generalized Fourier-Dini series for the temperature and the thermal lens

expressions (the computation requires one more loop, conesponding to the angular Fourier

expansion), and secondly because of the computation of the thermoelastic distortion of the

minor by a finite-element method. But this code could test the thermal behavior of cavities or

lasers with more complex geometries, when the minors are tilted with respect to the beam

axis, as in ring resonators for example. We are going to develop such a numerical code and test

it.

5. Conclusion.

In this paper, we describe a non-linear model of Fabry-Perot cavities where thermal effects

induced by the stored power are taken into account. Some numerical results have been obtained

in the cases of fixed tuning as well as servoed tuning. Some ideas conceming the realisation of

a more general numerical code have also been given in section 4, where we propose the use of

a finite-element method in order to compute the thermoelastic distortion of the minor.

The results are important in the field of gravitational wave interferometric detection, where

the sensitivity dramatically depends on the power stored in the kilometric cavities. We have

shown that thermal problems vanish for the first generation of gravitational antennas if

coatings with intrinsic absorption less than 10-5
can be used but for the potential next

generation of antennas, with a better sensitivity and a conespondingly higher optical power (a

gain of one order of magnitude in the sensitivity needs a gain of two orders of magnitude in the

stored light power), these thermal effects would be a very important problem therefore, it is

necessary to start studying ways of compensating for them, both by numerical investigations,

as we have begun to do, and by experimental studies.
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