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Rdsumd. Nous dtudions un systbme dlastique monodimensionnel dans un potentiel aldatoire.

La r4ponse de ce milieu 41astique k
un

ensemble de centres d'ancrage denses et al4atoirement

r4partis apparait
comme contro14e par des instabilit4s 41astiques. Nous 4tudions le seuil

d'apparition de ces instabilit4s ainsi que leurs propr14t4s statistiques. La distribution des dis-

continuit4s en dnergie et le spectre de puissance de la force d'ancrage suivent tous deux une loi

de puissance. Nous discutons bribvement l'application 4ventuelle de ce
modble k la description

de certaines expdriences concernant la friction solide.

Abstract. We investigate
a one dimensional elastic system in a random potential. The

response of the elastic medium to a set of sharp and dense pinning centers is shown to be

controlled by non linear instabilities. We study the onset of these instabilities and their statistics.

Both the distribution of energy discontinuities and the power spectrum of the pinning force are

found to exhibit a power law behavior. The possible relevance of this model to some experiments

on solid friction is briefly discussed.

Introduction.

Many physical systems consist of interacting particles imbedded in
a

quenched disordered pc-

tential. For instance flux lines in type II superconductors, charge density waves, Bloch walls

in ferromagnets. The understanding of these systems involves at least two main aspects. The

first problem is to understand the equilibrium configurations resulting from the competition
between the interparticle interaction and the interaction with the random potential. Generi-

cally, these systems exhibit
a very large number of possible nearly degenerate metastable states.

A second aspect is the complex dynamics of various relaxation processes connected with this

large number of available states.

It has been suggested that the common important feature of the physics of these systems is

the presence of "avalanches" by which the system relaxes from one metastable state to another.
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These avalanches involve many degrees of freedom. A necessary condition for the existence

of avalanches is the presence of a finite threshold. As a consequence of this threshold, the

collective dynamics exhibits hysteretic behavior. The emphasis
on

avalanches and threshold

was
presented in the paper by Bak, Tang, and Wiesenfeld. [I] These authors have proposed

the name of self organized criticality for this class of phenomena. This viewpoint has triggered

an avalanche of recent work on various systems such as sandpiles [2], flux lines [3, 4], charge
density waves [5], earthquakes [6], and many others.

In this paper, we
study

a
disordered version of the Frenkel-Kontorova model in one dimen-

sion. More specifically,
we

consider
a

houlogeneous elastic chain moving in
a

random potential.
As the chain is pulled from

one
end, stick-slip processes involving avalanches of particle dis-

placements occur. Energy jumps connected to these avalanches are found to exhibit a power
law distribution. Moreover, these jumps induce a finite pinning force. We also study the fluc-

tuations of the force which is required to pull the system. Its power spectrum has the I/ f"
form. The procedure of pulling the chain selects

a
small subset of "physical states" among

the exponentially large number of possible metastable states. Pushing the chain back and

forth through the random potential doesn't generate the same sequence of states. It is worth

stressing that the present system differs in
a significant way from previously studied cellular

automata used
as

models for self organized criticality. These cellular automata are
discrete in

space and time, and
a

threshold enters explicitly in the definition of the dynamics. By contrast,
the present model is continuous in both space and time, and threshold is the result of many
particle effects.

This paper is organized
as

follows. We first define the model, and the iterative procedure used

to generate all the possible metastable states. Instabilities are studied in
a

following section,
with emphasis on an estimate of the threshold for their generation. We then define

a
dynamical

process in which
a sequence of such metastable states is selected, and study the statistics of

energy and center of
mass position discontinuities associated to the jumps from one metastable

state to another. The power spectrum of the resulting pinning force is then investigated. We

conclude by discussing the possible relevance of this model to actual experiments on stick slip
phenomena.

Model.

We consider
a

harmonic chain consisting of N particles in
a random potential [4]. The potential

energy of the system is defined by

E
=

f
(~ (z;+i z; ~)~ + V(z;)) (I)

I=1
~

Here k is the spring constant, which we set equal to unity, z; denotes the position of the

particles,
a

is the lattice parameter, and V(z;) is the random potential of the following form

V(z)
=

-Ap L exP(-I(z vp)/Rpl~) (2)

The positions yp of the pinning centers are randomly distributed with a uniform density np.
The strength and the range of the individual pinning centers are respectively Ap and Rp.

The minimization of the potential energy is performed iteratively by solving the equilibrium

condition 0E/0z;
=

0 for all I. More specifically,
we

have
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Fig.1. Case of the two particle chain (k
=

1) with
a

single pinning center (Rp
=

0.25): graph
of the position z2 of the second particle

versus
the position xi of the first particle, for different

values of the pinning strength Ap a) Ap
=

0.06 < Aihri under the threshold for elastic instabilities.

b) Ap
=

0.6 > Athri above the threshold for elastic instabilities. xi is
a

multivalued function of z2

-k(z2 xi ~) + V'(zi)
=

0

k(z2 xi a) k(z3 z2 a) + V'(z2)
"

0 (3)

=
0

k(zN-i zN-2 ~) k(zN zN-1 ~) + V'(zN-1)
=

0

No equation is written for the N'~ particle since
we

assumed that an additional force applied
on

the N'~ particle is pulling the system in such a way that this N'~ particle always experiences

a zero net force. We prescribe the position xi of the first particle and express all physical
quantities as a function of xi The physical situation in which particle number N is forced to

move with constant velocity (as in the experiments described in Ref. [7]) can be obtained by
inverting the relation between xi and zN. Even for weak potential V(z;) this relation is found

to be extremely non-monotonous provided the chain is sufficiently long.
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Fig.2. Case of the two particle chain (k
=

1) with a single pinning center (Rp
=

0.25): graph
of the center of mass position zoom versus

the position z2 of the second particle, for different values

of the pinning strength Ap a) Ap
=

0.06 < Aihr~ under the threshold for elastic instabilities. b)
Ap

=
0.6 > Athri above the threshold for elastic instabilities. The dotted line corresponds to all the

possible metastable states. The full line shows the succession of states actually reached upon increasing

z2. This illustrates the existence of jumps in the center of
mass

position.

Generation of instabilities.

In order to gain some understanding of the complex behavior of the large N chain, it is helpful
to start with the simplest N

=
2 case. In figure I, we show z2 as a function of xi, for two

different values of Ap. There is a
critical value A,hr of Ap below which z2 is a

strictly increasing
function of xi When Ap is larger than A,hr, some parts of the

curve correspond to unstable

regions. This leads to jumps in xi when the control variable z2 is smoothly increased. These

jumps
are

the
one

dimensional equivalent of the previously studied elastic instabilities [8]. The

evolution of the center of mass position, and the total energy versus z~ are plotted in figures
2 and 3 respectively, for values of Ap smaller or larger than the threshold value A,hr. The

presence of non monotonous regions in the z~ versus xi leads to multiple functions of the

control variable z2. In figures 2b and 3b, dotted lines represent metastable states, and full

lines the ones
which

are
actually reached as z2 is increased. Upon decreasing z2, a different

path in configuration space is followed. The pattern of figure 3b is quite generic, and will be

pictorially referred to as
the "cat" instability.

In the case of a longer chain, the multivalued nature of the energy and center of mass position
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Fig.3. Case of the two particle chain (k
=

1) with
a

single pinning center (Rp
=

0.25): graph of

the total energy Etot versus the position z2 of the second particle, for different values of the pinning

strength Ap a) Ap
=

0.06 < Athri under the threshold for elastic instabilities. b) Ap
=

0.6 > Athrs

above the threshold for elastic instabilities. The dotted line corresponds to all the possible metastable

states. The full line shows the succession of states actually reached upon increasing z2. This has been

labelled as the "cat instability" because of the shape of the Etot(z2)
curve.

as a function of TN becomes
more

dramatic with
a very large number of folds. However, this

intricate pattern can
be decomposed in a series of nested elementary cat instabilities. A

qualitative understanding of this behavior
comes

from the fact that if say xi lies within the

range of
a

pinning center, it generates displacements in zp which grow linearly with p. As

a result, the probability for particle number p to sweep through
a

pinning center increases

with p. In order to compensate the pinning force acting on particle number p, zN oscillates

with an amplitude proportional to N p. Furthermore, the corresponding displacement in xi

required for particle number p to sweep through the given pinning center goes as
I/p. After

inverting the zN versus xi curve, this leads to small and
numerous cat instabilities induced

by particles close to particle number N, superimposed
on

larger and less frequent instabilities

due to particles closer to particle number I. This phenomenon is well illustrated on figure 4,
where zN and total energy are plotted as as function of xi The oscillations in figures 4a and

4b lead to the multivalued energy function E(zN) shown in figure 4c.

As shown in figure 4c, because of these jumps the energy, E,o,, as
function of zN has always

an
upward curvature locally. Hence,

a
finite average force is required in order to induce

a
global

displacement of the chain. This is the microscopic origin of a finite friction force between the
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chain and the disordered substrate. The threshold for onset of these instabilities decreases as

N~~, where a =
3/2 in agreement with the general argument as follows. Instabilities occur

when dzN/dzi becomes negative. We have

Iii
=

i + k~
(

Pv"(zN-P) ~ili~ 14)
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Fig-b- Dependence of the threshold for elastic instabilities Athr on chain length N. Parameters

are: np =
0.5, Rp

=
0.25, k

=
1. This log log plot shows the scaling Athr

~

N~~'~

dzN/dzi is able to change sign when the variance of the second term in the right hand side of

equation number 4 is equal to I. In weak disorder,
we may assume

the derivatives dzN-p/dzi
to be of the order of I. Furthermore,

we assume
the different V"(zp) to be independent random

variables for different values of p. This leads to a
variance proportional to N~npRp~A(k~~

Hence,
A,hr

~-
np~'~ Rj'~kN~~'~ 16)

This scaling for A,hr
can

also be derived from
a

criterium
on

the magnitude of the square

displacements of the individual particles (see Ref. [10]). Figure 5 shows an
example of this

scaling of A,hr with the chain length N.

Dynmnics.

In this section,
we

study the motion of the chain
as zN is gradually increased by applying

an

external force
on

particle number N so
that the system is always in equilibrium. The previous

discussion has shown that the evolution of the system cannot be always smooth. Jumps have

to occur, corresponding to cusps in the energy as a
function of zN. However, because of the

large number of metastable states, an
additional prescription is required in order to determine

the final state after a jump. It certainly depends on the specific choice of dynamics. For the

sake of simplicity,
we

wanted to construct a
dynamics which can be directly related to the

knowledge of the various equilibrium states of the system. Our criterion of selection has been

to pick the states which minimize the jump of the center of mass position. This simple criterion

corresponds to choosing
a

situation where the center of
mass

dynamics is
over

damped. This

a priori is not equivalent to assuming that each particle motion is itself over damped. It

would be interesting to study the influence of the chosen dynamics on
the behavior of the

chain. However, this requires
a

full simulation and we would loose the simplicity of the present

approach. The implementation of
our

criterion is illustrated in figure 6. Figure 6a shows the

center of mass position zoom as a
function of zN The corresponding energy branch is displayed

as
the full drawn line in figure 6b, where the dotted line refers to the full set of metastable

states.

We observed that the states which are selected by this procedure differ qualitatively from

the typical metastable states. For instance, we
have checked that in these selected states zp

is an increasing function of p. However most typical states do not satisfy this property. The
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Fig.6. Selection of states in the over damped center of mass dynamics. The parameters are the

same as in figure 4. a) Position of the center of mass zoom versus TN- When the system jumps, it is

assumed to select the closest value for z,om associated to the
same TN

b) Total energy Eiot
versus

TN Note that the selected states after
a

jump are neither the closest nor
the lowest ones in energy.

fact that the states selected in different dynamics differ has already been observed in other

complex systems such
as

charge density waves [9]. However, in the work by Tang et al, the

preparation method is quite different than ours. It would be interesting to investigate if our

models exhibits this phenomenon of pulse memory.

As already stated for the two particle case, the motion of the chain is strongly hysteretic.
If the control variable zN is cycled in a fixed interval around a given initial value, the system
evolves in the following way. After the first cycle, it does not return in general to its initial

state. However, it afterwards evolves along a
closed loop in configuration space. We show an

example of this behavior in figure 7. We should also note that these periodic cycles depend on

the minimal and maximal values of zN.

Statistics of discontinuities.

In the present section, we discuss the statistical properties of the motion of the chain. In partic-
ular,

we are
concerned with the discontinuities in the total energy and center of mass position

which occur as the system jumps from one
metastable state to another. The distribution of

energy discontinuities is shown in figure 8 for different chain lengths.

power law behavior is observed except in the high energy region. The exponent of the scaling



N°2 INSTABILITIES OF AN ELASTIC CHAIN IN A RANDOM POTENTIAL 619

14

/
12

io

14 16 18 20

Xf~
Fig.?. Hysteretic behavior. Center of mass position z~om as a function of TN, with the same

parameters as
in figure 4. Note that after

a
first cycle in TN, the final state is in general different

from the initial state. However,
a

second identical cycle in TN, starting from this new state leads to a

closed hysteresis loop.

region, b m 0.8, is within the numerical accuracy independent of Ap, np, Rp and N (see Fig.
8). The cross over from scaling for higher energies seems to be related to depinning events

involving
a

single or a
small number of pinning centers. To check this idea, we have calculated

the distribution of displacements of individual particles during jumps. This shows that high

energy events are
connected with

a
broad distribution of displacements centered around

zero

and with
a

width of order several times a. The low energy discontinuities
are

connected with

a narrow displacement distribution centered around zero. Intuitively, displacements induced

by few pinning centers can propagate far away and grow linearly with the distance to the

relevant pinning centers. This corresponds to the high energy events, which then resemble to

the elementary cats discussed above. By contrast, low energy events involve many pinning
centers, so that induced displacements cannot propagate very far. A more

systematic study of

this cross over from scaling to high energy regimes is in progress. One trend, among others, is

the increase in the cross over energy upon increasing Ap, as can be seen in figure 8.

The corresponding distribution of discontinuities in the center of mass, D(Xcom), is nearly
uniform (over

a range from about 10~~~ up to about ~/2) for the events in the scaling region
of D(AE). An example of this behavior is given in figure 9. The local peak in D(AE) is

connected with
a

peak in D(X~om) at about ~, thus corresponding to large energy events.

Power spectrum of pinning force.

The actual pinning force Fp(zN) is obtained as

N-I

Fp(zN)
"

~ V'(z;)
=

-k(zN zN-1 ~). (6)

I=I

We have found that Fp(zN) exhibits
a

similar saw-toothed behavior (see Fig. 10) as was

observed in the experiments on solid friction [7]. It is then illuminating to calculate the power

spectrum as
shown in figure 11. This is done with the assumption that the chain is pulled at a

constant velocity, so that zN is proportional to time. We find a
I/ f~ ~ behavior for frequencies

smaller than the characteristic frequency, f2, connected with the duration of the sawtooth, and
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=
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=
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=

10, Ap
=
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=
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=

o.01. The three
curves

have been arbitrarily shifted vertically for the sake of clarity. This log log plot shows the power law

behavior in the low energy region.
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Fig.9. Distribution of discontinuities in the center of mass position zoom. The parameters are the

same as in figure 8. Again, the three curves
have been arbitrarily shifted vertically for the sake of

clarity.

larger than a frequency ii which decreases as N increases. The exponent 1.5 in this scaling
regime appears to be independent of the system size N and the pinning strength Ap. For f
larger than f2, the power spectrum follows a power law decay, with an exponent between 2

and 2.5. This exponent seems to decrease when N is increased, and to saturate at the value

2 in the large N limit. For f smaller than ii, we find a white noise, I.e. a power spectrum
independent of f.

It is tempting to compare our results for this simple model to some experiments on solid

friction. It is first useful to note that the I/f~ behavior observed at high frequencies in our

model is
a

simple consequence of the fact that the pining force is
a

discontinuous function of

time. Indeed, the power spectrum generated by
a

single kink is I / f~, and at high frequencies,
we

can
neglect interferences coming from different kinks in the calculation of the power spectrum.

In the experiment of reference [7], such a
I/ f~ is observed at high frequencies. This is likely

to stem from the fact that in the actual experiment, the jumps occur on distances much larger

than the substrate roughness. We think that observation of a I / f~ behavior at high frequencies
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Fig. ll. Power spectrum for the pinning force. The parameters are the same as in figure 8. The

chain is assumed to be pulled with
a constant velocity,

so
that the frequency f can be interpreted as

an inverse length scale for zN. This log-log plot shows
a

II f~ ~ in an intermediate frequency range.

for both
our

model and the experiment is not relevant in order to probe the collective nature

of solid friction. In the intermediate scaling regime ii < f < f2> the power law reflects some

correlations between different avalanches, due to the fact that the same impurity configuration
is at the origin of the many metastable states sampled during the system evolution. This may

be observed in
a solid friction experiment similar to the one described in reference [7], provided

the force measuring apparatus is sensitive enough to measure small jumps so that the memory
of the substrate configuration is not lost after each jump.

Conclusions.

In conclusion, we have investigated one dimensional elastic systems in random potentials. We

found that the response of an elastic medium to a set of sharp and dense pinning centers

is controlled by non-linear instabilities. We studied the statistics of the instabilities in the

case where the system is moved through the random potential. We found that the energy
discontinuities obey a power law distribution. The power spectrum is also characterized by

the presence of a non trivial scaling regime. We should stress that these results do not seem

a priori obvious. The existence of instabilities
can be rather simply established analytically
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because of the one dimensional nature of the system. However, it is much more difficult to deal

analytically with the hierarchy of different metastable states which are generated as the system
size or

the strength of the pinning potential are increased. Our results indicate the existence

of avalanches on all length scales in the thermodynamic limit. It would be interesting to try to

extend the present approach to higher dimensions. A first possibility would be to couple several

chains together. However, the dimension of the parameter space becomes much larger, and

some new features are expected. For instance, we no longer expect the system to be attracted

by hysteresis loops after one one cycle as is the case for
our

model.

It may be worth noticing that the present model is strongly reminiscent of the picture already
proposed by Cou16mb to explain solid friction [I I]. The idea

was that two random surfaces had

to glide on each other, the threshold being the force needed to unlock the asperities. However,
it is known that for most of metal-metal friction coefficients, this picture is incorrect. The

solid friction then comes from the necessity to shear the plastic junctions between asperities
[12]. But for strong metals with

a non
plastic oxide layer

as
chromium,

or
with ceramics [13],

or in the case of hard metals
on emery paper [14], the picture proposed by Coulomb may

still be relevant. Our model could be meaningfully compared with experiments consisting in

studying the friction force and its noise
on

such friction couples, with
no

lubricant, and
a

low

load. It is encouraging to notice for instance that in the case of friction on emery paper [14],
the experimental results

are
in qualitative agreement with what our model would predict: the

higher the elastic modulus of the metal, and the smaller the grain size of the emery paper, the

lower is the resulting friction force. This suggests that careful noise measurements would be

interesting to perform.
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