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Abstract. The anisotropic kagom6 antiferromagnet is discussed
as a

possible candidate for

glassiness in the absence of disorder. Numerical studies support the conjecture that this system

is not a
conventional magnetic system, and we include

a
discussion of the relevant experimental

system Srcrs-~Ga4+rO19.

1 Introduction.

The ubiquitous phenomenon of frustration ill, with its accompanying degeneracy and metasta-

bility, fascinated Rammal; he studied its manifestation in
a

rich variety of areas
including spin

glasses [2], superconducting and random networks [3], and optimization problems [4]. However,

as
he noted in

a Review just
a

few years ago [5], frustration and disorder usually occur
simul-

taneously and it is often difficult to separate their individual effects. This
was one of his key

motivations for the study of superconducting networks, where a fine tuning of the frustration

can be achieved in the absence of disorder. The anisotropic Heisenberg antiferromagnet on a

twc-dimensional lattice is another system where the effects of strong geometrical frustration

can be studied independent of any randomness, and this will be the topic of our discussion

here.

Rammal
was very generous with his ideas, particularly with young people at the begin-

ning of their careers. When
one

of us (Chandra) told him of the mysterious experiments on

SrCr8GaqO19 described below, he eagerly asked for more details and listened carefully to our

nascent (and heuristic) ideas
on

the subject. He suggested that non-Abelian defects might be

important in this system, and pointed
us to a number of key references on this topic. At the

time his remarks were difficult to understand, though they
were duly noted. Now,

a
few years

later, the presence of non-Abelian defects play
a

key role in our proposed topological transition

of the kagom4 antiferromagnet, and there is even some preliminary numerical support for this

conjecture.
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The kagomd antiferromagnet is
a

clear example of a system where strong frustration in the

absence of disorder has pronounced effects; though its associated theory is still incomplete,
here we describe several of its elusive features. This discussion is not simply abstract; a

real experimental system (SrCr8-rGaq+~O19) exists, and we begin with a discussion of its

measured properties. Next we turn to the theoretical model, asking whether this "disorder-free"

Hamiltonian has
a

chance of displaying glassy behavior. Preliminary numerical diagonistics

are presented that support our
hypotheses, and we end with some conclusions, many questions,

and lots of plans for further study
on this problem.

2. SrCrsGa4O19' An atypical spin glass.

Motivated by the possibility of exotic behavior in highly degenerate spin systems [6-8], Obradors

and coworkers [9] initiated the experimental study of the magnetoplumbite SrCr8-~Gaq+~O19
(SCGO(z)). They attributed its magnetic properties to planes of antiferromagnetically-coupled

chromium atoms on a
geometrically frustrated kagom4 lattice, where each Cr~+ ion is associ-

ated with
an

isotropic spin- moment. Obradors et al. [9] performed linear DC susceptibility
and neutron diffraction measurements on

SCGO(z); they observed the marked absence of
con-

ventional antiferromagnetic ordering down to temperatures T
~-

4 K, despite a large exchange
coupling (J

~-
100 K) implied by the significant Curie-Weiss temperature (Rcw

"
IJS(S+ I)).

The underlying magnetoplumbite lattice associated with SCGO(z) is composed of linked

twc-dimensional spinel structures [10], where crystal-field effects confine the chromium ions to

the octahedral sites [9]. Anomalous behavior in this type of magnetic system was
first rec-

ognized by Anderson, who noted that
a

[iii] projection of the spinel lattice corresponds to

a planar kagomd net [6]. Anderson suggested that spins with nearest-neighbor antiferromag-
netic coupling residing

on
this structure could only maintain good sliort-rouge magnetic order

due to a large ground-state degeneracy associated with
a

finite zerc-temperature entropy [6];
at the time there were no

known experimental realizations of this model. An exact solution

of the Ising kagomd antiferromagnet is
now available [11-13] and, by contrast with all other

known periodically frustrated (nearest-neighbor) 2d Ising lattices (e.g. the triangular and the

fully-frustrated square systems) [14-16] it displays exponential rather that power-law spin cor-

relations at T
=

0 indicating its true lack of zerc-temperature long-range spin order. More

recently the nearest-neighbor Heisenberg model
on a spinel crystal lattice has been called a

"cooperative paramagnet" by Villain [8] due to its large ground-state degeneracy; he has sug-
gested that addition of atomic disorder could transform it into a novel spin glass. In SCGO(z),
steric hindrance effects present during sample growth [17] lead to unavoidable random subsitu-

tion of non-magnetic gallium for the (magnetic) chromium ions, and Obradors and coworkers

[9] thus proposed SCGO as an
experimental realization of Villain's ideas [8].

Further low-temperature measurements on
SCGO(z)

were then performed by Ramirez and

coworkers [17]; they observed distinct zero-field and field-cooled susceptibilities for T < 4 K, a

feature typical of
a

spin glass [18]. The presence of
a

"spin freezing" transition was
confirmed

[17] by the measured nonlinear susceptibility (x3),
a

direct probe of the Edwards-Anderson

spin glass order parameter [19]. In the paramagnetic state, this nonlinear susceptibility is

defined in terms of the magnetization

M
#

XIH + jX3H~ + "

~ X2n-lH" (I)
n=1

in the direction of the applied field. We recall that in
a

spin glass ensemble and "valley"

averages must be performed separately (see Fig. I); close to the glass transition the observed
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nonlinear susceptibilty diverges

W
~-

~((~
~~~~~/ ~~~~

- -°° (T
= Tg) (2)

due to large variation in the moment fluctuations

w
=

/- (y)2
- «

(T
= T~) (3)

between different wells (here N is the total number of spins). Though x3 could diverge pos-
itively in an equilibrium system [20,21], we note that

a
negative divergeance can only

occur

in the presence of free energy "pockets". Thus the observed behavior of x3 in SCGO(z)
firmly establishes its spin glass character; the associated "spin freezing" was confirmed with

quasielastic neutron scattering [22], where a marked increase in intensity at low temperatures

was
observed in conjunction with

a
short spin correlation length (f

~-
6 1) that remained

constant to temperatures well above Tg.

2

~
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t
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Fig. 1. (a) A schematic picture of free energy "pockets" in a spin glass and (b) the determination

of
an

observable quantity.

However there are several experimental features of SCGO(z) that do not fit
a

standard

description of
a

spin glass. For example, quasielasic neutron studies [23] confirm the twc-

dimensional nature of the spin correlations in its glassy state (T < Tg) as first suggested
by Obradors and coworkers [9]. This is

a
somewhat surprising result since the conventional
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insulating spin glass, associated with the formation of low-energy domain walls in a
raudondy

frustrated antiferromagnet, is unstable in d
=

2; for the Heisenberg case
with infinitesmal

anisotropy [24] dj
=

3. Furthermore, in contrast to all known spin glasses, the specific heat

of SCGO(z) is quadratic at low temperatures [17] and is remarkably robust to dilution [25];
this behavior thus appears to be intrinsic to the ground-state, and is reminiscent of a twc-

dimensional antiferromagnet with broken spin-rotational symmetry.

Neutron studies are also consistent with
a

Goldstone mode in the spin channel [22,23] the

inelastic cross-section is frequency-independent down to the lowest measured energies. Such

behavior is expected for a
twc-dimensional Heisenberg antiferromagnet with

a
generalized

susceptibility
(j)

x(q, W) * ~2
f

~2
(4)

q

associated with the Goldstone modes in the vicinity of the
zone center Q with the dispersion

relation wq ~-

c(q Q(I the resulting spin scattering has the form

x" (q, W) >

)~
b(W Wq) (5)

yielding
a

frequency-independent integrated scattering intensity

f(~~~2 ~~~~~'~~ ~ 4~a ~~~

For a conventional Heisenberg antiferromagnet with finite-temperature fluctuations, (6) is only
valid down to an energy scale defined by uJc =

(; in SCGO(z)
a

flat inelastic cross-section (6)
is measured at energies almost an order of magnitude lower than uJc, suggesting the presence

of long-range spin order inaccessible by standard neutron techniques [22,23].
The combined susceptibility and neutron measurements indicate strong antiferromagnetic

correlations (Bcw
~-

-500 K) on length-scales comparable with the planar chromium lat-

tice spacing, suggesting that only nearest-neighbor antiferromagnetic couplings are present;
such glassy behavior resulting from the interplay between static dilution and purely antifer-

romagnetic interactions has only been previously observed numerically [26], with the possible
exception [27] of La(Sr, Ba)2Cu04. The low-temperature (I.e. T < Tg) "spin-glass" phase of

SCGO(z) is certainly unusual; though here frozen moments are
observed with neutrons, they

account for only a small fraction of the observed antiferromagnetic correlations. More specifi-
cally, Broholm, Aeppli and coworkers [22,23] use the fluctuation-dissipation theorem to relate

their measured response function S(q, uJ) to the mean-square of the frozen moment

js2ja-
m

f ))sjq,w) j7)

in the limit A
-

0+ Similarly, the mean-square of the fluctuating moment is expressed as

~~~~~~ (~j>a
~ ~/2~~~'~~

~~~

where the fluctuations are observed on a time-scale t
=

).
At T

=
1.5 K (T < Tg) they

observe no gap in the excitation spectrum down to energy scales A
~-

0.2 MeV (A < f);
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furthermore their combined elastic and inelastic data are consistent with
a

lower bound for the

J~~ (s2) ~ ~

where A
=

0.2 MeV, thus suggesting large quantum fluctuations in the ground-state of

SCGO(z). Since both series expansion [28] and exact diagnolization [29] studies indicate that

the spin- ) Heisenberg antiferromagnet
on a kagomd lattice is disordered, strong quantum effects

in the S
=

)
case are not unexpected.

To summarize, the observed ground-state behavior of SCGO(z) has features mysteriously
reminiscent of both

a
spin glass and

a quantum antiferromagnet. Simultaneously there is two-

dimensional glassiness,
a

short spin correlation length, large moment fluctuations, and strong
indications of

a
Goldstone mode in the spin channel. Several measured properties of SCGO(z)

are surprisingly robust to dilution, suggesting an intrinsic glassiness [25] consistent with the

fact that disorder-induced spin glasses are unstable in two dimensions. Motivated by these

experiments,
we

explore the possibility of
a new mechanism for quasi-2D glassy behavior to

explain this exotic behavior.

3. Glassiness without disorder: why this system has a chance.

Broken ergodicity, the development of free energy "pockets" in configuration space, is a key
feature of spin glasses [30,31] heuristically the system gets "stuck" in a particular free energy

minimum, and thus does not explore all of phase space in the infinite-time limit. It is widely
believed that both frustration and disorder are

needed for the development of this phenomenon;
loosely speaking, the standard notion is that the frustration results in multiple ground-states
separated by a

macroscopic number of large barriers stabilized by disorder. Can frustration

alone satisfy this behavior? Villain has proposed [15] '~fully frustrated models", where each

elementary plaquette is "unsatisfied", as possible spin glasses with non-random interactions,

and there has been much work in this area following his suggestion. Because the effects of

frustration are known to be more pronounced in lower dimensions most of the effort has been

focussed
on

twc-dimensional models with the hope of finding experimental analogues.
Though several twc-dimensional periodically frustrated spin systems display large ground-

state degeneracies,
even

accompanied by extensive ground-state entropies, none to date def-

initely possess a
finite-temperature glass transition. Usually the ground-state degeneracy is

lifted by anisotropic thermal fluctuations; they select and stabilize magnetically ordered spin

states from the ground-state manifold, thus dashing any hopes for glassy behavior. A possible
exception is the twc-dimensional triangular Heisenberg antiferromagnet with Ising anisotropy;
here the original proposal [32] breaks down for the classical case [33], but may remain intact

[34] for S
=

). However, in general, frustration does not seem to be able to produce a suf-

ficiently "rough" free energy landscape necessary for the development of glassiness; though it

often results in a multitude of ground-states at T
=

0, the barriers separating them are not

"high" enough to "localize" the system in pha+e space.

So what is so
different about the kagomd antiferromagnet, and why do we

believe it has a

chance at being glassy without any disorder? In order to respond to this question, we must

examine the effects of geometrical frustration and the nature of the resulting degeneracies in

this particular spin system. Our starting point, the simplest magnetic model for SCGO, is the

twc-dimensional nearest-neighbor classical Heisenberg antiferromagnet (afm)

H=J£S; Sj (10)

"J
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on a kagomd lattice (see Fig. 2);
we

shall discuss our neglect of quantum effects later, once we

have determined the important energy scales of the problem. Energetically, the vector sum of

the classical spins on each triangular plaquette must vanish in the ground-state (I.e. £; S;
=

0);
performing a leading order spinwave calculation within a standard Holstein-Primakofl spin
representation, we can reexpress the Hamiltonian (10) as

H
=

) £ (b)bj
+ b)b;) cos~

]~
(b)b) + bjb;) sin~ ~'~ b)b; cos fl;j

I(I
I)

;j
2

where fl;j =
fl, reflecting the 120° orientation of the spins. In momentum space this Hamil-

tonian (11) on a
kagom4 lattice becomes

l~
=

~j B)hjBq (12)

q

with

B)
= (b)~, b)~,b)~,b-qi,b-q2, b-q3) (13)

where the
sum on q runs over

the Brillouin zone, and

t~
=

~~ 13 + ~q 3(bq ~)
~14~

2 3(( 1) 3 + (

where
I cz cy

is)hq " Cz I Cz

~Y ~~

and Cz % Cos qz, Cy % Cos qy, and Cz + cos(qy qz). Diagonalization of (12) yields the spinwave
spectrum

~~
=

~~ ~
(~~)

~ 2 4 c~cyc~

We see
that this simple calculation yields

a
flat band ofzero-modes in the spinwave spectrum

(uJq =
0), the consequence of a

continuous local degeneracy in the Ndel state on
this lattice.

More specifiially,like its triangular counterpart, the kagomd antiferromagnet admits
a coplanar

ground-state; however its novel geometry permits continuous spin folding zerc-energy modes

that retain the 120° spin orientation. Figure 2 shows
an

example,
a

"weathervane mode";
here the six central spins of an elementary plaquette

can rotate freely about the axis of the

external spins independently of the rest of the lattice. We note, however, that there are

strong interactions between these modes; the rotation of
one star prevents the rotation of

its neighboring ones, since their external spins will
no

longer be parallel. Thus, classically,

we see that for a lattice of N spins there are at minimum N/9 independent local
zero modes,

corresponding to the number ofstars that
are not adjoining

one
another; the zerc-point entropy

per spin then has the lower-bound ofone-nineth that associated with each local "weathervane"

mode.

The presence of a large ground-state manifold enhances the role of high-frequency short-

wavelength fluctuations in the kagomd antiferromagnet; their associated fluctuation free-energy
often selects spin configurations that break the underlying lattice symmetry [35-37]. In the

quantum case, these states minimize their zerc-point energy, thereby maximizing their number
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(a)

(b)

/

/

/

/

/

/

/

,

Fig. 2. (a) A "weathervane" mode; the six central spins
can rotate freely about the axis defined by

the parallel external spins, here indicated with a dashed line. (b) A schematic view of the orientation

of the spin plane during the rotation.

of zero modes. This phenomenon, first discussed by Villain [35], of "order from disorder"

is somewhat counterintuitive: normally stability is associated with rigidity. In frustrated

magnetic systems, Villain has turned this standard argument on
its head: he has observed

that the "most flexible" spin configurations
are least affected by the presence of fluctuations,

and thus outlast their more "rigid" counterparts in the degenerate ground-state manifold [35-
37].

Because "order from disorder" plays an important role in the highly degenerate kagomd
antiferromagnet, let us take

a
brief moment to look at this fluctuation-induced ordering effect

in
a

simple illustrative example (Fig. 3). We turn to the twc-dimensional frustrated square
Heisenberg Hamiltonian

H
#

Jl ~ S; Sj + J2 ~ S,Sk (17)
ij ik

with nearest and next-nearest neighbor couplings Ji and J2 respectively; in the limit q =) « I this simple model has a ground-state with a continuous global degeneracy [38]. For
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Fig. 3. Fluctuation-selection ofground states in the 2D frustrated square Heisenberg antiferromag-

net. Note that though fluctuations lift the continuous degeneracy of the classical manifold, a discrete

22 degeneracy remains.

q > I, the classical ground state has conventional Ndel order, but when q < I the two sublattices

become decoupled and
can

have arbitrary angular orientation with respect to one
another. The

spinwave spectrum, which is sensitive to short-wavelength fluctuations, suggests that "order

from disorder" effects could occur; in the limit q « I it is given by [37]

uJ(q, fl)~ =
(4SJ2)~ Ill + n(a

cos q~ + fl cos qy)]~ [cos qzcosqy + q(a
cos qy + flcos q~)]~)

(18)
where (a,fl)

= (cos~ ),sin~ )) and fl is the angle between the twc-sublattices. The angle-
dependent part of the classical fluctuation free energy, 6F(fl)

=
F(fl) F(0)

can
be estimated

to leading-order by incorporating the zerc-temperature spinwave dispersion(18) into

F(fl)
=

T~j In "~))~~ (19)

q

which, upon integration, yields

6F(T, fl)
~-

-E(T)(I + cos~ fl) (20)

for q < I where E(T)
=

0.636q~T.
The fluctuation free energy (20) clearly favors spin configurations where cosfl

=
+I

(Fig. 3), thereby retaining a discrete twc-fold degeneracy in the ground-state manifold. It

selects states that break 24 lattice symmetry; the spins are ferromagnetically aligned (uJ ~-
k~)
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in one lattice direction, thereby maximizing the coupling between the two sublattices and min-

imizing the overall dispersion. From
a more technical standpoint, the coupling between two

antiferromagnetic sublattices enters as oft-diagonal matrix elements in a standard spinwave
calculation; thus maximum coupling lead to a minimization of the dispersion, and thus the free

energy.

Let us now return to the kagomd spin system, and discuss the effects of "order from disorder"

here. We have already mentioned that the special geometry of this structure yields continuous

spin folding
zero

modes that preserve the ground-state 120° spin orientation: spin folds
can

be "open", traversing the entire lattice (Fig. 4a) or they can be "closed" weathervane modes

(Fig. 4b). In particular, we note that spins along fold lines share
a common orientation; thus

two folds with noncollinear spin axes can only intersect in a coplanar region. Specifically, the

presence of a
spin fold "stiffens" all intersecting folds, increasing their frequency; the kagomd

magnet thus acquires
a geometric spin rigidity similar to that of

a paper Origami structure.

In a
coplanar spin state overlapping

zero modes are
energetically decoupled to Gaussian order,

maximizing their number. These configurations therefore minimize zerc-point energy and thus

are fluctuation-selected from the ground-state manifold.

,la)
:......""

16)

Fig. 4. (a) Open and (b) Oosed ("weathervane") spin folds in the states ofuniform and staggered
spin chirality respectively. Spin orientations in diagram denote orientations in the internal spin space.

A weak zy anisotropy aligns the
z

axis of the internal spin space with the physical
z axis.

Quantifying these remarks, we have calculated the energy barrier associated with the cre-
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ation of
a

spin fold semiclassically. Gaussian order spin wave theory for all fully coplanar
classical ground states is formally identical; intersecting spin folds

are
independent, consistent

with
a zerc-energy spinwave band. If the plane is uniformly bent, the spin configuration be-

comes
still in the direction of

zero curvature, replacing the flat band by a
line of gapless modes

in momentum space. The zerc-point energy is

V
=

E E~i
=

~j
con + O(J) (21)

n

where Ecj is P(JS~) and the urn (O(JS)
are the Bogoliubov quasiparticle energies in the

standard Holstein-Primakofl jepresentation. A spin fold through
an

angle # introduces
a

phase
factor 1h

-
e~"A to the magnon pairing field on one side of the fold; i-folds are thus invisible to

spinwaves. Intermediate fold angles (0 < # < x) constitute
a

degenerate perturbation within

this manifold; for small # all intersecting folds have
an

increased frequency 6uJn
~-

JS(6#(.
The resulting energy barrier appears in the simple illustrative example of applied uniform

curvature; for the planar configuration with only open folds (Fig. 4a),
a

uniform phase gradient
V #(x)

=
ifi is introduced to the magnon pairing field along

a
crystal axis. A projection of the

Hamiltonian into the low-energy subspace yields H
=

£~A~7iqAq, with

]j ijl~jt~[j ~~ ~

~~~)

where q
+

=
q+ ifi, aq =

fib ( defines the zero mode at each site I
=

(1, 2, 3) in the unit cell

and 1 =
~(~. Using the convention -q3 " qi + q2, and denoting sj =

sin qi, the eigenvector
ii

= St
/fi. The

zero
point energy of this band is V(#)

=
iL J sin flq per fold of length

L, where cosflq
=

fq~ fq-. For a curvature along the
z

axis, ifi
=

(~, 0); this function is well

approximated by V(#)
=

qL( sin #(, where q =
21 J (T7z(q( =

0.14JS. At finite temperatures,

V(#)
~-

TLln[2 sinh (fin sin #(] (23)

indicating
an

analogous entropic selection of coplanarity, recently confirmed by numerical

studies [39,40]. xv anisotropy bJz
=

-cJ could also yield a coplanar state (V(#)
~-

LCJS~
sin~ # ); the latter will be fluctuation-selected only if c < c* e (/JS~. c* is a fluctuation-

indoced anisotropy; as for
c

# 0, out-of-plane spin fluctuations acquire
a

frequency A
~-

/* JS,
that sets the scale (7

~

A) for the planar spin stillness.

"Order from disorder" at the Gaussian level cannot distinguish between coplanar states

and
a

residual local discrete degeneracy remains; is there further fluctuation-selection within

this manifold? Each coplanar configuration
can be identified with

a
ground-state of the Potts

model on the kagomd lattice; there are
W~ states where W

=
1.1833.. and N is the number of

sites. [41] Loops of alternating spin orientations (~bab..), x-folds,
are

observed in all coplanar
configurations (see Fig. 5); loop-flipping (I.e. ~b~b

-
b~b~) at zerc-energy cost thus allows

the system to explore its many ground-states. Numerical studies indicate that the typical
coplanar state has loops on

all length scales; more specifically the probability distribution for

the loop length passing through
a given site is

a power-law distribution P(L)
~-

L~' with

(
~-

1.34(+0.02) in agreement with a recent SU(3) symmetry analysis by Read [42]. The

number of loops greater than
a

lower cutoff length Lo through
a given site is then

n(Lo)
=

£ P(L)dL
~-

Lpi (24)
L>Lo
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(a)

~~~

/
~~~

~W

Fig. 5. A typical Coplanar state (a) and two states (b) and (c) related to it by r-folds (shown
shaded)

on different length-scales.

. A

3 B

O C

n(L)
=

1.63L-fi

=
0.32

o-1

0.001 o L
=

~

d D L
=

~

~~ l 0-5 . L
=

72

x L=36

lo-?

l 100 10~ 10~

L

Fig. 6. (upper) A typical loop in
a

coplanar state where the thick line indicates the loop perimeter
(lower) The total number of loops n(L) greater than length L as a function of lattice size.

JOURNAL DE PHYSIQUE I T 1, N' 2, FEBRUARY ml ?'



602 JOURNAL DE PHYSIQUE I N°2

as shown in figure 6. The probability distribution associated with a loop length
on

the lattice

is
@

~(~)
" ~

~fl (~5)

L

leading to

(L)ia< =
§)1(~

=

ii
= (1)~.,~ (26)

so that though the average loop length through any given lattice site is finite, the average loop
length in the lattice is short; this is another way of saying that the typical state has a

finite

but small number of loops of length the lattice size. The presence of these "infinite" loops (in
the thermodynamic limit) will play

a
crucial role in our discussion of possible glassiness;

we

argue that the associated energy barriers scale as E
~-

L" and are macroscopic, thus providing

a necessary means for "system localization" in phase space.

Each triangular plaquette in a coplanar configuration
can

be characterized by its chirality

(43]

~

sin~120°~(~~
~ ~~~ ~~~~

J,

where cross-products are
evaluated in a clockwise sense around plaquettes; Ta = Ta TV

is the chirality difference on
opposite sublattices. Ta is the chiral analogue of the staggered

magnetization, and geometrically one can show that its values are constrained to +6. The

chirality-chirality overlap between neighboring triangular plaquettes vi r2 " cos fl gives us a

flavor for the "chirality ordering" in this system; here fl
=

0 and fl
= x

correspond to states with

staggered and uniform chirality respectively. In the pure Potts model our numerical studies

(Fig. 7) yield
a

ratio @
=

)
:

), suggesting that the T
=

0 Potts model on
the kagom4 is a

zerc-temperature chiral glass.
Is it possible to preserve this "glassy" behavior at finite temperatures? For the Potts model

the answer is no; at finite temperatures the energy cost of
a

defect (~b~) on a
triangular

plaquette is offset by the associated entropy, and the typical state no longer has loops
on

all length scales. In particular, it does not have loops that span the entire length of its

lattice, and thus does not have a
finite number of macroscopic free-energy barriers crucial for

glassiness. Is the situation different for
a continuous order parameter where spinwaves might

"delocalize" the entropy of such a defect? In general, there will be two contributions to the

anisotropic fluctuation free energy in the coplanar manifold of the Heisenberg kagom4 magnet:

one
associated with the discrete in-plane degrees of freedom which we have just discussed, and

the other with out-of-plane continuous angular fluctuations? What is their combined effect?

Numerical results for the "chirality overlap" are shown in figure 7 for the full Heisenberg model

at low temperatures; a
sole peak at P(0) corresponds to the ground-state of the triangular

antiferromagnet and the development of
a

magnetic moment. We see that the distribution is

certainly shifted from the Potts case, but is inconclusive about the nature of the ground-state.
Analytically the nature of the ground-state is a difficult question to tackle, since the coplanar
degeneracy persists to Gaussian order. Nevertheless, several groups have tried to tackle this

question from a variety of perspectives. Using
a

large N approach, Sachdev [44] finds that the

staggered chiral state is selected from the manifold, though the value of the zerc-temperature

moment p is a
subtle point due to an

order of limits issue (T
-

0, p -
0). Series expansion

calculations by Berlinsky and coworkers [45] also reached this conclusion; they studied the

modified aJ triangular-kagom4 model and then took the limit
a -

0,
a

procedure that may
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Fig. 7. The chirality-chirality overlap between neighboring plaquettes in the Potts (T
=

0) and

the Heisenberg (T/J
=

0.005) models where P(0) and P(r) refer to the staggered and uniform chiral

states respectively.

not be appropiate if
a =

0 corresponds to an unstable fixed point. Recently two groups have

reported that higher-order spinwave fluctuations stabilize the magnetic staggered chiral state

in a
local minimum [46,47]; because the self-energy corrections for arbitrary wavevector are

very complicated for arbitrary wavevector the issue of the global minimum is still outstanding.
Let us recall our goal:

a possible mechanism for finite-temperature glass behavior in the

absence of disorder. This whole issue of the true thermodynamic ground-state of the Heisenberg
kagomd antiferromagnet can be sidestepped by the addition of a

small zy anisotropy (c) to the

Hamiltonian

H
=

J £ S, S~ cS] Sj (28)

;,j

thus putting
an energy cost on

out-of-plane fluctuations and favoring the "typical" coplanar
spin configuration. In such a state there is equal probability for spins of three orientations to

reside
on a single sublattice; this is seen

numerically (Fig. 8) in Monte Carlo simulations of the

anisotropic kagomd antiferromagnet (28) at low temperatures, thus suggesting that the order

parameter is
a

planar triad of vectors with a
director normal to the plane. The associated

tensor order parameters, described by three unit vectors iA (A
=

1,3) with £ dA "
0, have

discrete hexagonal C3h symmetry

iS"(z)S~(Y)S~(z)) =t(z,Y,z)foP~?t?I?i

iS"(z)S~(Y)) (6"~(Siz) S(Y)) =qiz Y)ifi"fi~ (1/3)6°~i ~~~~

where fi is the director normal to the spin plane and fap~
= (cap~( is the fully-symmetric

tensor. We note that
x

rotations of fi about the i~, do not commute, and the homotopy group
associated with the allowed point defects of (29) is non-Abelian [48,49,50]. Thus we expect
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Fig. 8. A polar plot of the spins on a single sublattice of the anistropic kagomd antiferromagnet with

e =
o.01 and T/J

=
.005; the three spin orientations appear with equal probability, thus suggesting

three-spin ordering.

that these allowed non-Abelian textures, unlike their U(I) counterparts, will affect the local

spin state, possibly leading to a
large ground-state degeneracy and to glassy behavior.

It is well-known that exponentially small amounts of zy anisotropy are sullicent to drive

the spin correlation length of a
twc-dimensional Heisenberg antiferromagnet to infinity [51],

thereby leading to a true Kosterlitz-Thouless phase transition at T
=

TKT. The development
of a

low-temperature "typical" coplanar state demands the entropic selection of the coplanar
manifold (Fig. 9) that must occur at a temperature where its free energy is lower than that

of its competing ordered states. In the worst case
scenario, this coplanar degeneracy may be

lifted by higher-order fluctuations that favor
an

ordered configuration with an energy AE
~-

J

(per site) relative to that of the "typical" state [52] with
an entropy In W. However, if

TKT > To
=

$
(30)

the system will cool into a "typical" configuration with
a

macroscopic number of infinite energy
barriers; as in conventional window glass, stability becomes

a
kinetic not a

thermodynamic issue

and the "typical" state is the effective ground-state (Fig. 9).
We would like to associate the Kosterlitz-Thouless transition in this system with the binding

of non-Abelian defects, and a proposed phase diagram is displayed in figure 10. The finite zy

anisotropy (c) provides
a new length-scale lo

~- a ~-

/ beyond which renormalization of the

spin stillness is suppressed; in other words, there is
an energy cost for rotating

a
spin cluster

of length lo out of the plane. The phase diagram is generated by comparing lo with the other

length scale of the problem f, the spin correlation length. If f is less than lo (T > T~, the

defects are free. However if lo > f (T~ > T > TKT) they bind (similar to mesonsl) to avoid

anisotropic energy costs; since
a

small number of "quarks" still exist due to "meson-meson"

scattering, T~ is only
a crossover temperature. Eventually at T

=
TKT the spin correlation

length diverges and all defects
are

bound.

This proposed binding has several distinctive features that are different from those observed

in
a

conventional Kosterlitz-Thouless transition [53]. First of all, it is a true lattice symmetry-

breaking (second-order) transition, and thus is accompanied by a specific heat divergence.

Next the gradient field associated with the 120° defect is
a

third that of
a

standard 360°
one,
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Fig. 9. A schematic representation of the kinetic stability of the typical coplanar configuration.
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Fig. 10. The proposed phase diagram for the anisotropic kagomd antiferromaget, with superimposed
numerical dates points for the Kosterlitz-Thouless temperature TKT

as a function of anisotropy (e).

leading to a
reduction of the transition temperature by

a
factor ). Finally we believe that the

low-temperature phase will be determined by the detailed braiding of the defect paths; unlike

the conventional case, the ground-state configurations cannot be characterized by two winding
numbers due to the non-commuting nature of the allowed defect structures.
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4. Preliminary numerical diagonistics.

In the last section we put forth many ideas about the anisotropic kagom4 antiferromagnet;
let

us now try to test them. Unfortunately the proposed three-spin ordering is inaccessible

from existing mean-field treatments of magnetism and may require a new type of gauge theory,
but further characterization with "numerical diagonistics" is possible before plunging into

new analytic technology. Following this approach,
we are currently performing Monte Carlo

simulations
on

the classical Heisenberg kagom4 antiferromagnet with a weak zy anisotropy
6Jz

=
-cJ. Typically, arrays of108, 432 and 864 spins

are
sequentially cooled from

a
random

configuration with 1.25 x
10~ spin flips per site per temperature, and thermal averages are also

performed
over

periods of1.25 x
10~ updates [52]. Monitoring local spin current fluctuations,

we can measure the spin stillness1 [54]; we identify
a

jump in this stillness (Fig. ll) with

the Kosterlitz-Thouless transition, and note that 1 -
0 for

c -
0. For finite

c we
observe

a

divergence in the specific heat at T
=

TKT, in contrast to the conventional Kosterlitz-Thouless

case [53].
Could this specific heat behavior be due to an

"order from disorder" Ising transition? Per-

haps, but figure 11 (lower) makes it clear that chirality is certainly not the relevant order

parameter. The generalized Edwards-Anderson order parameter, xch "
)(L; Ta)~ measures

the overlap between of
a

given state with one of uniform staggered spin chirality (T~ = Ta Tp);
at low temperatures xch remains finite indicating the absence of magnetic ordering. By con-

trast, w~ fluctuates rapidly at a temperature T < TKT, suggesting the possibility of glassy
behavior. Figure 11 (lower) also displays the distribution of xch at low temperatures that is

similar to that of the typical Potts state at T
=

0 on
the same lattice (P(xch)

~-

e~XCh'X° with

xo ~-

3.29). xch can also be monitored
as a

function of time (Fig. 12); preliminary results sug-

gest a hierarchy of time-scales in the problem, probably associated with the freezing of loops on

different length-scales. The loop distribution
can be be determined from the power spectrum

of this data; early results suggest that it is very similar to that of the T
=

0 Potts model,
and that somehow its continuous degrees of freedom permit it to have a

"spin roughening"
transition at finite temperatures.

5. Discussion.

At this point, the numerical results clearly indicate that the anisotropic kagomd spin system
is not a

conventional antiferromagnet. Numerical noise spectra and multi-spin overlap studies

are currently in progress to further characterize the low-temperature phase of this system. We

believe that this system is one-spin disdordered, twc-spin glassy and three-spin ordered, but

require further "diagnostics" before
a

detailed description of the ground-state(s) is possible.
In many ways, the challenge of this model is to maintain the spin Goldstone mode at low

temperatures despite the presence of a
discrete transition with many relaxation time-scales;

we are
still far from this goal.

Here, following the ideas of Villain [55] and De Sze [56], we
have once again raised the

controversial issue of glassiness in the absence of disorder, bringing together several preexisting
themes in the literature. The binding of non-Abelian defects has been already proposed several

times as a mechanism for
a

glass transition [57-61], and the anistropic kagomd spin system may

provide a
natural setting for the realization of this scenario. The importance of chirality in

vector spin glasses was
originally discussed by Villain [43] with much subsequent work by

Kawamura [62], who has also been interested in the connection between multi-spin ordering
and glassiness in vector spin systems. To our knowledge the discussion of defect topology in
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spin glasses was
initiated by Toulouse [63], followed by Henley's extensive computer search [64]

for defect structures in the d
=

3 Heisenberg spin glass. We do not know of any similar studies

for twc-dimensional periodically frustrated systems, and are currently beginning such
a project

for the kagom4 case. The hope is that
once we can classify its allowed defect structures, we

will

be closer to understanding its low-temperature behavior; perhaps we could then even develop

a analytic description of this phenomenon.

There
are

already several aspects of our quasi-two dimensional picture of the kagom4 system
that pertain directly to the SCGO(z) measurements. Of course, we

have not included dilution

in our discussion that is bound to have consequences. In particular, a defect centered
on a

vacancy will have
a

reduced core energy leading to a
finite density of unbound pinned vortices;

in short,
we

do expect the character of the problem to be affected by disorder. However, the

fully-occupied anisotropic kagomd antiferromagnet is a good start as a
first step, and even here

there are plenty of unsolved questions. We do argue that
our

semiclassical approach to the

"simplified" problem is justified for the experimental parameters, because the classical energy

scale is set by the reduced Kosterlitz-Thouless temperature TKT *
~P

"
fl where i is

the spin stillness. The upper limit for the stillness is the pure zy case where1
=

~)~; the

resulting energy scale TKT
"

~~'
*

if is within the mysterious low-temperature regime
of SCGO(z). Heuristically,

a
finite

c
could easily originate from site (dilution?)

or bond

anisotropy, and provides the small energy scale associated with the ratio of the glass and

the Curie-Weiss temperatures. In
our

scenario the "freezing" of the typical state results in
a

negative divergence, as observed, of the nonlinear susceptibility: here higher-order fluctuations

will generate a
chirality coupling E

= ao La
v

(ra
rv oc xch between neighboring plaquettes,

so that the energy per site has
an

exponential distribution P(E)
~-

P(aoxch ). Within any given
coplanar configuration, the kagomd system has

a
frozen moment and thus

a
Golstone mode in

the spin channel, consistent with the T~ specific heat and the flat inelastic neutron scattering

cross section. The field-dependence of the glass transition Tg is
a

definite test of our ideas;
in

a conventional spin glass an external applied field suppresses Tg, whereas in the picture
of topological freezing such

a
field increases the anistropy, thereby enhancing the transition

temperature.

Clearly at this time there are many more questions than answers, though there
are lots

of ideas. We would like to believe that the strong frustration present in the kagomd anti-

ferromagnet stabilizes
an

exotic three-spin order parameter that permits
new types of defect

and possibly a new class of phase transition, but there is much work to be done before this

conjecture
can

be confirmed. As Rammal would tell us, "Allons-y!"
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