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Abstract. We introduce
a

stochastic discrete automaton model to simulate freeway traffic.

Monte-Carlo simulations of the model show
a

transition from laminar traffic flow to start-stop-

waves with increasing vehicle density, as is observed in real freeway traffic. For special cases

analytical results
can

be obtained.

1. Introduction.

Fluid-dynamical approaches to traffic flow have been developed since the 1950's [ii. In recent

times, the methods of nonlinear dynamics were succesfully applied to these models, stressing
the notion of a phase transition from laininar flow to start-stop-waves with increasing car

density [2]. Automatic detection of stronger fluctuations near this critical point has already
been used to install better traffic control systems in Germany [3].

On the other hand, boolean stimulation models for freeway traffic have been developed [4, 5].
For lattice gas automata, it is well known that boolean models can simulate fluids [6]. We

show that indeed
our

boolean model for traffic flow has a transition from laminar to turbulent

behavior, and
our

simulation results indicate that the system reaches
a

possibly critical state

by itself in
a

bottleneck situation (reminiscent of self organizing criticality [7]). This point
together with an extension to multi-lane traffic will be the subject of further investigations
[12].

The outline of this paper is as follows: At the beginning, we
describe

our
model (Sect. 2)

and discuss its phenomenological behavior, especially the transition (Sect. 3). In section 4

results for the bottleneck situation
are

presented. Section 5 contains a discussion of the results

and compares them to values in reality. Sections 6 and 7 give a short conflusion/outlook. A

preliminary account of the model is given in [8].
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2. The model.

Our computational model is defined on a one-dimensional array of L sites and with open or

periodic boundary conditions. Each site may either be occupied by one vehicle, or it may
be empty. Each vehicle has

an
integer velocity with values between zero and vmax. For an

arbitrary configuration, one update of the system consists of the following four consecutive

steps, which
are

performed in parallel for all vehicles:

I) Acceleration: if the velocity
v

of
a vehicle is lower than vmax and if the distance to the

next car ahead is larger than v + I, the speed is advanced by one [v - v
+11.

2) Slowing down (due to other cars): if a vehicle at site I sees the next vehicle at site

I + j (with j < v), it reduces its speed to j I [v -
j 11.

3) Randomization: with probability p, the velocity of each vehicle (if greater than zero)
is decreased by one [v - v 11.

4) Car motion: each vehicle is advanced v sites.

Through the steps one to four very general properties of single lane traffic are modelled on

the basis of integer valued probabilistic cellular automaton rules [9, 10]. Already this simple
model shows nontrivial and realistic behavior. Step 3 is essential in simulating realistic traffic

flow since otherwise the dynamics is completely deterministic. It takes into account natural

velocity fluctuations due to human behavior
or due to varying external conditions. Without

this randomness, every initial configuration of vehicles and corresponding velocities reaches

very quickly a stationary pattern which is shifted backwards (I.e. opposite the vehicle motion)

one site per time step.
The Monte Carlo simulations have mainly been carried out with the choice of vmax =

5 for

reasons stated below. The model has been implemented in FORTRAN, using a logical array
for the positions of the cars and an integer array for the velocities. For the 'realistic case'

of vmax =
5 we made the following observations: in the interesting regime of

a
relatively low

density of occupied sites (usually only about one fifth), an implementation using IF-statements

has been about five times faster than an implementation using only boolean variables and

operations (necessary for multispin coding for 32 cars at once). As the expected gain of

multispin coding would therefore give only
a factor of about six, we

postponed the work on a

bitwise implementation.
The speed on an

IBM-RS/6000 320H workstation
was

about 0.2 site-updates per microsec-

ond, which is about a factor of 7 slower than the speed of a non-vectorized, multispin coding
Ising model [I ii. A significant part of the Monte-Carlo simulation runs have been carried out

on an
iPSC-860 Hypercube using up to 16 nodes, with only slight modifications of the prc-

gram. The model's speed on one processor of the Hypercube was about the same as on
the

workstation.

3. Waific on a
circle (closed system).

In this section
we present results from systems with periodic boundary conditions (thus sim-

ulating traffic in
a

closed loop "as in car races" but only on a
single lane). As the total

number N of cars in the circle cannot change during the dynamics, it is possible to define a

constant system density

N number of cars in the circle
~

L number of sites of the circle '
~~~
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Fig. I. Simulated traffic at a
(low) density of o.03 cars per site. Each new line shows the traffic lane

after one further complete velocity-update and just before the
car

motion. Empty sites
are represented

by
a dot, sites which are occupied by

a car are represented by the integer number of its velocity. At

low densities,
we see

undisturbed motion.

which is usually not possible in reality. Thus, in order to mimick real conditions, we measured

densities (= occupancies) p~
on a

fixed site I averaged
over a time period T:

io+Tv=y ~ n;(f) (2)

where n;(t)
=

0(1) if site I is empty (occupied) at time step t. For large T we have

lim p~
= p. (3)

T-m

The time-averaged flow # between I and I + I is defined by

f
"

~ ~i>I+I(f) (4)
~~~l

where n;,;+i(t)
=

I if a car motion is detected between sites I and I + I.

With these definitions, it was easy to perform many simulations with different densities p,
thus after relaxation to equilibrium getting data for the commonly used fundamental

diagrams which plot vehicle flow # vs.
density p.

To be specific, we start with a random initial configuration of
cars with density p and

velocity 0 and begin the collection of data after the first to time steps, where we took to
=

10 x L.

In figures I and 2 we
sho,v typical situations at low and high densities. Whereas we find laminar

traffic at low densities, there are congestion clusters (small jams) at higher densities, which

are formed randomly due to velocity-fluctuations of the
cars.

If one follows (in Fig. 2) one
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Fig.2. Same picture as
figure I, but at a higher density of o.I cars per site. Note the backward

motion of the traffic jam.

individual
car coming from the left, one sees that the car comes in with a speed varying

between four and five and then has to stop due to the congestion cluster. There it stays stuck

in the queue for
a

certain time with
some slow advances, and

can
accelerate to full speed after

having left the cluster at its end. So the cluster represents a typical start-stop-wave as found

in freeway traffic (cf. Fig. 3).

We present the fundamental diagram of our model in figure 4. Whereas the line indicates

the results of averaging
over

10~ time steps, the dots represent averages over only 10~ time

steps and may be compared with results from real data (Fig. 5). It can clearly be seen that

a
change-over takes place

near p =
0.08. Further simulations show that the position and the

form of the maximum of q(p) depend
on

the system size. (Simulations without randomization

do not show a
dependence

on
the system size.) However, it is not clear from these pictures

where to locate an exact transition point.

For an analytical treatment of the circular traffic, one chooses
as

starting point the case

vmax =
I, where the situation simplifies considerably. Here step one

of the four update steps is

trivial since every car can accelerate in only one time step to its maximum speed vmax =
I and

therefore, before step two, every car
has speed I. The question in the update procedure then is

simply if the next site is free (step two) and if the speed is (randomly) set to zero (step three).
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Fig.3. Space-time-lines (trajectories) for
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from Aerial Photography (after [16]). Each fine

represents the movement of one
vehicle in the space-time-domain.
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Real Traffic
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Fig.5. Traffic flow q (in cars per hour)
us. occupancy (in cars per hour) from measurements in

reality. Occupancy is the percentage of the road which is covered by vehicles (after [17]).

For speeds larger than I an additional parameter for the current speed is needed which gives
serious difficulties for analytical treatments. However, even in this case a

kind of mean-field

approximation is possible and the results will be reported elsewhere [12].
For direct calculations the easiest way to formulate the dynamics is

on
the basis of a master

equation with continuous time and random sequential update. This makes of course a
difference

to the parallel updating (which
can simply be seen by simulating the two different updates)

but the results should be qualitatively similar and the randomization parameter p plays a

particular simple role for random sequential update.
With the use of the more familiar spin variables a; =

+I with +I for occupied and -I for

empty sites, the transition probability W(-a;, -a;+i la;,«;+i) from («;, a;+i) to (-a;, -a;+i)
(I.e. a car moves from I to I + I) simply reads

W(-«;,-«;+il«;,«;+i)=(I-P) @
(5)

With periodic boundary conditions this transition probability ensures the conservation of the

total magnetization £; «; in the system. The master equation for the probability P((«;),t)
to find configuration (a;) at time t is given by

~~~jl'~~ =

~ W(-a;, -a;+i la;, a;+i) P(ia;, «;+i,11
;

+
~

~i~(°I> °"+1( °i> ~°"+l) l'((~°i> ~°i+I f)). (6)
;

From this formula it can easily be seen that the factor I p) only gives a
simple scaling factor

of the time axis. Therefore, in continuous time, the systems with different p < I are equivalent
in the sense that they have the same equilibrium distribution. Analyzing this equilibrium
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distribution one
finds that, given a fixed total magnetization, every configuration of the spin

is equally probable. Therefore, in this simple situation,
one has

q = p (i p) (7)

which is just the probablity that a car has a free site in front of it. The property that every

configuration of the cars is equally probable is certainly not true for vmax > 0. The parallel
update gives a different function q(p) but it is also symmetric with respect to p =

1/2 [12].

4. Waific in
a

bottleneck situation (Open system).

For this section, we apply different boundary conditions, leaving the rest of the model un-

changed:

.
When the leftmost site (site I) is empty, we occupy it with a car of velocity 0. As

our traffic is going from left to right, one may imagine
a

bottleneck situation where a

saturated twc-lane-street feeds
a street of only one lane (which

we
simulate).

.
At the right side (I.e. the end of the street),

we simply delete cars on the rightmost six

sites, thus producing
an open boundary. (This simulates the beginning of an expanded

(four-lane) freeway.)

Our simulations included grid length up to 10000 sites with durations up to 5 x
10~ time

steps. After relaxation, the model shows traffic at a
density of <pc> =

0.069 + 0.002 and a

flow of <qc> =
0.304 + 0.001.

Again the situation here simplifies considerably for vmax =
I. The case of random sequen-

tial update is exactly equivalent to an
asymmetric exclusion model investigated in detail in

references [13, 14] where the equilibrium distribution in a system with open boundaries is

calculated. The case tx =
fl

=
I (in the notation of Refs. [13, 14]) corresponds then to our

bottleneck situation. It can
be seen that in this simple case the system drives itself to the state

of maximum flow at p =
1/2. However this seems not to be a general property also valid for

larger vmax > I (cf. Fig. 6).

5. Quantitative comparison with realistic tra%c.

In this section, we make some rough arguments concerning the length scale and time scale

of the simulation model. The easiest approach to scale the model is the claim that in
a

complete jam each car occupies about 7.5m of place, which is thus the length of one site.

As the average velocity in free traffic of 4.5 sites per time step should correspond to a velocity
of about 120 km/h (in Germany),

we arrive naturally at a time for one iteration of

7.5 ~3 x4.5
"~~~ /(120/3.6) ~ (8)

site time-step m

m (I second per time-step) which agrees with [5].
A second possibility is to scale the model by the position of the maximum in the fundamental

diagram. From traffic measurements, this maximum is found at about p r-
(30 vehicles per

lane and kilometer)
=

(0.225 vehifles/7.5 m), which is by
a

factor of about 2 higher than the

position of the maximum in the scatterplot for our model.

Similarly, freeways have a maximum capacity of about (2000 vehicles per hour and lane)

=
(0.56 vehicles per second). As our maximum of the flow is only 0.32 vehicles per time step,
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Flow-density relation: High Resolution near rho=0.08
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Fig.6. Interesting part (near the change-over) of figure 4 (only long time averages). The cross

indicates the point from the bottleneck situation (I.e. open system with maximal input of cars from

the left and an
absorbing boundary at the right,

see
text); tips of the arrow indicate the

error of

p. The error of q is too small to be visible on this scale. The simulation clearly indicates that the

self-organ12ing bottleneck state does not correspond to the maximum of the flow,
as

it is the
case

for

Vmax =1.

our
model time step should cot-respond to 0.32/0.56

m 0.5 seconds, thus being by a
factor of

two lower from the value presented above.

A fourth possibility uses the value of the velocity of the back-travelling start-stop-waves,
where a value of about 15 kin/h m 4.2 m/s has been measured on freeways. As the maximum

capacity of our simulated system is about 0.3 cars per time step, the maximum speed of

the backpropagating wave is 0.3 sites (m 2.25 m) per time step (I.e., about every third time

step a new car arrives at the back of the traffic jam). This would fix one model time step at

2.25/4.2
m 0.7 seconds, thus yielding a value between those of the first and of the third method.

Thus all these estimates agree in order of magnitude: time steps correspond to seconds.

Another interesting result of the last argument is that start-stop-waves might intrinsically be

a
queueing phenomenon where only the formation takes place dynamically: once a congestion

cluster of length L has formed, there is a
probability p~~~ per time step that a new car arrives at

the end, and a
probability p~~P per time step (determined in a nontrivial way by the dynamics

of the model) that a car
departs at the front of the jam (cluster). As p~~P at one cluster dictates

p~~~ for the next cluster, all clusters act like queues at the critical threshold where p~~~ =
p~~P.

But the formation of the flusters as well as the self-organization of the critical value of p~
take place without external control.

One should note that, contrarily to intuition, the parameters for
a discrete traffic flow model

are
relatively fixed

once one accepts "one car per lattice site in
a

jam". The parameters used

for the simulations seem relatively reasonable.

6. Conclusion.

It has been shown that
a

discrete model approach for traffic flow is not only computationally
advantageous [5, 4], but that it contains some of the important aspects of the fluid-dynamical
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approach to traffic flow such as the transition from laminar to start-stop-traffic in a natural way

(see particularly the end of the last section). Thereby, it retains more elements of individual

(though statistical) behavior of the driver, which might lead to better usefulness for traffic

simulations where individual behavior is concerned (e.g. dynamic routing).
An additional interesting observation is that sand falling down in a

long and narrow tube

shows very similar behavior, I-e- "start-stop-waves" originally caused by fluctuations in the

velocity of the freely moving particles. In the case
of sand these fluctuations are due to

dissipation at the boundary [15].
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