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Abstract. Geometric properties ofdynamically triangulated random surfaces in three-dimen-

sional space can be described by fractal dimensions: the Hausdorlf-dimension with respect to the

embedding of the surfaces, the spectral and the spreading dimension for the intrinsic geometry.
A remarkable dependence of the fractal dimensions

on the bending rigidity is observed, even on

the intrinsic dimensions.

1. Introduction.

The questions which
we want to address in this paper are directed towards understanding the

statistical mechanics of surfaces. We will consider random surfaces
as

two-dimensional
man-

ifolds with spherical topology embedded into three-dimensional Euclidian space. Specifically

we are here interested in the conformational properties. Observables, which describe a confor-

mation and
are

related to the two-dimensional manifold only, will be called intrinsic, those also

related to the embedding extrinsic. All intrinsic observables define the intrinsic geometry of

the surface (two-dimensional manifold). In the
same way, the extrinsic geometry is described

by extrinsic observables related to the three-dimensional embedding. The extrinsic geometry
of

a
surface of given area, embedded in three-dimensional Euclidean space, depends

on
the

bending rigidity. Excluded volume effects will not be taken into account. At high bending
rigidity the surface will tend to be flat. As an example for an extrinsic property, the radius of

gyration Rgyr of
a

surface with area A is then characterized by
a

law

Rgyr c~
A~/~H dH

=
2 + e

(I)

where possibly the surface is still rough ,vith
an effective Hausdorff dimension dH higher than

2 but e > 0 small.
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At low bending rigidity we expect a convoluted surface and it is not a priori clear what the

Hausdorff dimension [I], I-e- the extrinsic geometry of the surface is.

The surface itself can be fluid4ike (in plane diffusion)
or have a fixed intrinsic geometry

(no in plane diffusion). The fixed intrinsic geometry does not necessarily mean an intrinsic

dimension of 2. The surface may well have a higher intrinsic dimension,
as

well as a lower

dimension. Consider
a

percolation cluster [2] constructed on a
simple square lattice transfered

into three-dimensional Euclidean space. This percolation cluster has an intrinsic geometry
characterized by the spectral dimension ds of about 4/3 [3-5] and the spreading dimension

ds m1.46 [6].
For a fluid-like surface the intrinsic geometry can change with the bending rigidity. The

bending rigidity is induced by an extrinsic curvature and we can ask whether the intrinsic

geometry adjusts to the extrinsic geometry.
For the type of model surface which

we want to consider there is the possibility of a
phase

transition at a particular bending rgidity and
we may ask: What is the geometry below, at

and above the transition?

2. The model.

Here the surface, embedded into three-dimensional Euclidean space, is
a

triangulated sphere.
This sphere has N nodes, Ni

=
3(N 2) links, and N2

"
2(N 2) triangles. To study the

intrinsic geometry we
make the surface fluid-like by

a
dynamic triangulation [7-9]. Consider

a

situation as depicted in figure I. The link which connects the nodes I and 3 can be "flipped"
to connect the nodes 2 and 4, enabling in plane diffusion of the nodes. Thus the surface can be

regarded as a
fluid surface. The number of neighbours of a given point on the discrete surface

is not fixed and
can change and adjust to the extrinsic curvature.

2

~, i

>,

3

~,

4

Fig-I. Flip of a link in a
triangulation

The statistical mechanics of the surface is specified as follows. The partition function is

ZN
=

/ d~Xo / fl d~X;e~~ (2)
~~
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Here, the translational mode is integrated out. The action or Hamiltonian (interaction energy)
S is defined as

N ~

S
=

fl L (xi xi)~ + > L (i fi~, ~~, ~y
L log q, ~~~

i,,11 ~,,~, ;=o

~ ~ ,
--

s~ i~ s-

The Gaussian action Sg is
a sum over

the positions X in embedding Euclidian space of all

nearest neighbour nodes, I.e. all links of the triangulation. We shall use fl
=

I, because of the

rescaling invariance of the action. A different value for fl would rescale only the overall size of

the whole surface or equivalently the length scale of the model. This term will give rise to an

average area, which is proportional to the number of nodes N.

Se is an edge extrinsic curvature term [10-17] ~~,,~ denotes
a

summation over all adjacent

triangles which share an edge (I, j). The product fi~, -id, is the scalar product of the vectors

normal to the triangles with the common edge (I, j).
The third part of the action S is the measure action Sm. Let q; denote the number of nearest

neighbours of node I, then a; = q; /3 is the volume of the dual image of node I and the discrete

analog of the invariant volume Jd~f@ with metric g [7, 9, 18, 19] Sm is derived from the

discretization fl; dX;a;~/~ of the invariant Fujikawa measure [20]. Therefore we used o =

~

throughout this work.
~

This model shows
a

peak (cusp) of the specific heat at Ac m 1.47, which is interpreted as

a phase transition [21-28]. Below Ac the surface is collapsed while above the surface may be

essentially flat. This is in sharp contrast to self-avoiding fluid surfaces, which cannot collaps,
but are expected to form branched polymers at length scales larger than the persistence length
[29).

We use the standard Monte Carlo algorithm [30-32] to calculate thermodynamic averages.
One Monte Carlo sweep is completed when each triangulation point was given the chance for

a
displacement in the embedding space (AXf E [0; 0.2] at

=
3.0, AXf E [0;0.9] at

=
0.0)

from its previous position and the edges of the triangulation were given the chance to re-connect

or
flip to an orthogonal position.
For the simulations presented below we used the parallel transputer machine of the In-

terdisziplinires Zentrum ffir wissenschaftliches Rechnen as well as a cluster of workstations.

Because of the dynamic triangulation with link flips we could neither vectorize nor parallelize
the program. Thus on each of the processors we run one set of data to obtain independent

measurements. The performance was approximately 0.001 s per update of a node on a work-

station. At
=

0 the performance was about two times higher. One T800 Transputer was ten

times slower than a workstation approximately.
We decided not to use the parallel link flip method [33, 22], because this method produces

#~-graphs including tadpoles and self-energy parts. The dual meshes (I.e. triangulations)
are

different from the ones prepared with the single link flip method. In addition, the acceptance
rate of link flips decreases down to I§l at the phase transition m 1.5 [22], which is much

smaller than the value of about 30il for the single link flip method.

We simulated surfaces with up to 25596 triangles for the sphere. Up to one million Monte

Carlo steps per node for each N and were necessary to obtain good averages. The simulations

started with systems, which were equilibrated during several tenthousand steps per node,
depending on the size and rigid ity. These clearly exceeds earlier simulations, except simulations

in space dimensions D
=

0, -2. In those cases, the recursive sampling technique [33-35] enables
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one to handle more than one million triangles. Unfortunately, this method is not applicable to

positive space dimensions up to now.

2. I EXTRINSIC FRACTAL DIMENSIONS. To investigate the extrinsic geometry of the surface

we imagine the nodes of the surface to form
a cluster in the embedding space. We can then

calculate the cluster fractal dimension [Ii as the dimension characterizing the surface. The

usual definition for the fractal dimension (which we take
as

the HausdorR dimension dH for

random surfaces [19,36-39]

~~
~ l~b~« [in (R~l ~~~

But there is an ambiguity in measuring the linear size R of
a

random surface. One can use

the radius of gyration Rgyr as a measure

IN~~~Y~~ N(N 1)
( ~~ '~~) ~~~

R2,1=0.0 O
R(,1=0.0 D

R,1=3.0 x
R$,1=3.0 li

lo

j~2 j~2
, a

i

o

10 100 1000 10000 100000

N2

Fig.2. Size dependence of the radius of gyration (Eqs. (5) and (6)) at the highest rigidity

1
=

3.o [R~(x),R$(li)] and zero rigidity1
=

0.0 [R~(O),R$(D)]. Statistical errors are smaller

than symbol sizes.
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In this definition all nodes are treated as
equal, regardless of the intrinsic geometry. We may

take the intrinsic geometry into account and define the radius of gyration Ra as a
weighted

cluster radius

(R$1" ~/~/_
~~

If
°"I(x'~

j)~)
(6)

,<,

with the intrinsic
area

element proportional to a;.

Another possible choice for the linear size is the box radius B

B=sup([X;-X;[:j=I.. N,I<j) (7)

The fractal dimension may be computed
as

the asymptotic slope of a log-log plot as in

figure 2. Table I shows the results for the Hausdorff dimensions as a function of the extrinsic

curvature for two of the possible choices of linear size. For the box radius
we

find that

(B~) lx (R~y~) In N (8)

for all less than
or

equal Ac, in agreement with the results for fixed triangulations at zero

rigidity [40, 41].

Table I. Cluster fracial dimensions (Havsdorfl-dimension) dH.

0.0 0.50 1.0 1.47 1.75 3.0

dH[Ra] 7.2(3) 6.7(6) 5.8(4) 3.0(4) 2.09(2) 2.08(3)
dH[R] 7.6(6) 7.7(7) 5.5(8) 3.0(4) 2.13(2) 2.12(3)

For > Ac all three definitions of the linear size of the random surface result in the same

value dH within
errors. In the limit of infinite rigidity the surface is flat, dH(A

-
cc)

-
2.

A remarkable result is, that even at zero Hgidity (A =
0) dH is still finite. This is in agreement

with the prediction of a scaling phase for D
=

3,
=

0 and tx =
[9]. Our model neglects

excluded volume effects and thus allows for HausdorR dimensions above 3. A finite HausdorR

dimension is in sharp contrast to models using Regge calculus [42] and to random surfaces with

fixed connectivity. There one finds dH
" cc (R(y~ lx log N [14, 40, 41, 43, 44]. Dynamically

triangulated surfaces show an extraordinarily large but still finite fractal dimension below the

phase transition. Our data exclude a logarithmic fit (dH
"

cc), which was prefered by Renken

and Kogut [25] and Baillie et al. [27]. This can be explained by the fact, that they used

triangulations with up to 288 (144) nodes only. At
=

0 the asymptotic scaling regime starts

there.

There may be
a

jump in dH at the critical point Ac m 1.47. For > Ac the surface is

essentially flat. Of course, the surface may be rough, leading in our estimate of the HausdorR

dimension to a
higher value than 2. At Ac the value is higher than 2 and increases with

decreasing bending rigidity. Considering the different discretization of the extrinsic curvature

term, the result dH[R]
=

2.I(I) at
=

1.5 on
#~-graphs [22] seems to confirm this prediction.

Baillie et al. [27] predicted a change of dH from 2 at large to 4 at the transition, but they
used tx =

-1.5 and smaller triangulations. In a
later work [24], they excluded dH

"
4 at the

phase transition after
an

analysis of simulations with
tx =

-1.5,0,1.5.
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Using much smaller meshes and less Monte Carlo steps, Billoire and David [19] reported
dH[Ra]

=
4.2(5) in D

=
12 space dimensions at zero rigidity. This is comparable to the result

dH[Ra]
=

4.9(1) in D
=

10 of Jurkiewicz, Krzywicki and Petersson [45], who also measured

dH[Ra]
=

8.3(1) in D
=

3. This value may be to high, because the used triangulations with

N2
"

100, 196 for their analysis too, which are not in the asymptotic regime (N2 > 200,
=

0).

2.2 SPREADING DIMENSION ds. Contrary tO regular and fixed triangulated random surfaces,
the intrinsic dimension is not known

a priori, not even at vanishing rigidity, but may be

described by the spreading dimension ds [6].
Within the context of percolation clusters, the spreading dimension is determined by the

average number An of distinct sites that are accessible from a given origin along cluster bonds

in at most n steps, n large: An lx
n~~ For a

regular and fixed triangulation with coordination

number q =
6 the number An of distinct nodes connected to a fixed node grows as

n

An=6+12+18+. +6n=6~jz=3n(n+I)ocn~ (9)

~=i

and the spreading dimension is two. This may be verified also by the scaling of the length I(n)
of the boundary at distance n, which scales

as
I(n)

=
6n, reproducing dH

"
2.

Because of the periodic boundary conditions resulting from the spherical topology of the

dynamically triangulated surface, we used
a

slightly different definition [19] using the number

N2 of triangles

~~
)~f~co1$~)

~~~~

using the mean geodesic distance

(d;>1 =

~ ~ d(I,ill. (iii
;,;

The geodesic distance d(I, j) between two nodes I and j describes the minimal number of links,
connecting the two nodes.

In figure 3, the size dependence (d;;)(N2) is shown for the highest and
zero rigidity. The

results of runs with up to 25596 triangles and one million Monte Carlo steps per node for each

N2 and are
summarized in table II.

Table II. Spreading dimension ds of dynamically tHangvlated random surfaces at different
bending rigidities.

0.00 0.50 1.00 1.47 1.75 3.00 regular
ds 2.62(3) 2.61(4) 2.57(8) 2.29(2) 2.27(1) 2.24(1) 2.00

Because of the periodic boundary conditions and the term proportional to n in equation
(9),

even
(d;;(N2)) for

a
regular triangulated torus approaches the ideal power law behaviour

from below. Of course, the deviations of the effective exponents from the exact value are very

small: ds[200. 512]
=

1.988 and ds[512.. 1800] =
1.996 The data underlying table II are

well fitted by a pure power law, at least above N2 * 100.
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1
=

o.0 O
1

=
3.0 D

to

Id,>)

10 100 1000 10000 100000
N2

Fig.3. Size dependence of the
mean

geodesic distance (11) at the highest rigidity 1
=

3.o (D) and

vanishing rigidity 1
=

0.o (O). Statistical errors are smaller than symbol sizes.

It is surprising, that the strength of the bending rigidity introduced by the extrinsic curvature

term influences the intrinsic geometry also: the surface becomes more flat. Although an

extrapolation
- cc to infinite bending rigidity suggests a

flat surface with respect to the

embedding, dH(A -
cc)

=
2, it does not suggest a

intrinsic flat surface: ds(A
-

cc) > 2.2. This

>-dependence of ds has important consequences. For instance, within the framework of finite

size scaling the correlation length f is compared to the linear size L of the system. Usually
scaling was done with N2, but the intrinsic size of a random surface is related to the intrinsic

area N2 by L m
N~/~' and therefore depends on A.

It is interesting to compare these results in three-dimensional space with those in D
=

12. At

zero rigidity, Billoire and David [19] reported ds
=

2.0(2). This value changes to ds
=

3.2(2),
if

tx
equals zero.

If an Ising model is coupled to #~ graphs, I-e- dynamically triangulated
random surfaces in D

=
0, one

obtains ds
=

2.78(4) [46] Coupling to C
=

-2 matter results

in ds m 2.5 or
ds m 3.5 [35], according to the measurement of the number and the total length

of boundaries at the distance
r or

the number of triangles within the distance r
respectively.

Suprisingly, for simulations in D
=

0 with the parallel flip and the recursive sampling technique

no scaling behaviour was found because of an
anomalous increase of the number of branches

[33, 34, 47].

2.3 SPECTRAL-DIMENSION (. The different properties of fractals may not be described

by the spreading dimension ds alone. Another important intrinsic property is the spectral
dimension, which may be definded by the exponent dw, describing the long time behaviour
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(r~(I))N~~f~H 001 64 O
108 +
144 Q

268 x~jf 432 /l

£~
j~

~

x

0001
0001 0.01 0.I 10

fp~-2/d.

FigA. Scaling plot (Eq. (14)) for the spectral dimension is at the highest rigidity 1= 3.o.

t
- cc of the mean

end-tc-end distance (r~)(t) of a random walk with t steps on the triangu-
lation:

jr2)(1) cc
12/dw

,

(i
-

ooj. (12j

Computing the spectral dimension ds also requires the Hausdorff-dimension dH of the surface

[4, 5]

is
=

~ ~~
(13)

In general, this quantity may differ from the spreading dimension, for example for percolation-
clusters [6].

Starting with (r~(t))
lx

t~>/~H
,

one can describe (r~(t)) with the crossover scaling form [48]

(r~(t))
=

N~/~H J~ (t N~~/~~) (14)

One has J~(x) lx
z~~/~H for

z « I and because of the periodic boundary conditions of

the spherical topology for
z » I J~(z)

=
const The crossover time

r =

N~/J~ is nearly
reached, if the random walk length equals the number of nodes of the surface. In a scaling plot
following equation (14) the Hausdorff-dimension dH and the spectral dimension are determined

by collapsing all the data onto one master curve.
Figure 4 shows this for the highest rigidity

=
3.0.
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Table III. Spectral dimensions i~ of the sphere.

0.00 0.50 1.00 1.47 1.75 3.00 regular

is 1.75(10) 1.8(1) 1.8(2) 1.85(15) 1.83(5) 1.90(5) 2.00

The results of the scaling plots are tabulated in table III.

These results should be compared with those of dynamically triangulated self-avoiding vesi-

cles is
=

2.02(4) [48].
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