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Abstract The order of magnitude of the typical distance £ between steps in MBlLgrown
crystal surfaces is calculated from simple scaling assumptions in the absence of evaporation. This

distance is measurable by diffraction methods and yields access to the surface diffusion constant

D. At the lowest non trivial temperatures the characteristic distance is of order (D/F)~/~
where F is the beam flux. At slightly higher temperature, £ is given by an algebraic formula

which depends on
the lifetime r2 of a bound pair of adatoms at the surface, as

well as of the

diffusion constant D2 of these pairs. In certain ranges, £ varies as
F~~/~

or
F~~/~. At higher

temperatures yet, £ is given by a formula which depends on a larger number of parameters. In

special cases, our
results are in agreement with the classical formulae of Stoyanov and Kashchiev,

but disagree with certain recents works. £ is found to increase with temperature more
rapidly

than
an

Arrhenius exponential. Monte-Carlo simulations are reported and the discrepancy with

certain other authors is clarified.

1 Introduction.

The theory of crystal growth involves three lengthscales: at microscopic lengthscales
one

has

to worry about the chemical properties of the constituents, and this difficult task can only be

numerical, and is different for different chemical species. At " macroscopic" scales, continuum

theories are appropriate, the most popular of which is that of Kardar, Parisi and Zhang ill.
The present work is concerned with what may be called "mesoscopic" scales, I-e- the average
size of terraces of atomic thickness which are growing until they coalesce. This size increases

rapidly with temperature. The mechanism of crystal growth has been described
a long time

ago by Frenkel [2], and then by Zinnsmeister [3], who wrote the appropriate rate equations.
These works have been reviewed by Venables et al. [4]. The rate equations

can
be used to
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evaluate the typical radius I of islands (or "terraces"
on a growing surface, and the results are

reported in detail by Stoyanov and Kashchiev [5]. More recently, the development of molecular

beam epitaxy motivated new investigations, for example by Irisawa et al. [6] and De Miguel et

al. iii who found
a

dependence off on the beam flux F which is different from that obtained by
Stoyanov and Kashchiev. On the other hand, Mo et al. [8] found the same result as Stoyanov
and Kashchiev in the isotropic casei but also investigated growth on an anisotropic surface and

found new results. The anisotropic case is of great interest since Si(001) is an example [8].
In the present work this problem is reinvestigated. Our results are in agreement with those

of Stoyanov and Kashchiev [5] apart from weak correctionsi but new formulae are obtained in

certain cases which were not investigated by these authors. In the anisotropic case our results

do not reproduce those of Mo et al.

Our model of MBE is the following there is a constant flux of atoms hitting the surface

and the sticking coefficient is I ori at least~ independent of the local conditions (step
or not

step). The freshly landed atoms diffuse until they reach
a step. In most of this paper it will

be assumed,
as

is generally done [5] that terraces larger than some critical size (say with more

than I* atoms) do not release atoms and do not move.
At low temperatures, I* is expected to

be equal to I. In the terminology used herei
a pair of adatoms is already a "terrace", although

the words "cluster"
or

"island" will also be used for such small terraces.

The flux of atoms per adsorption site and unit time will be called F. The interesting case is

when F is sufficiently small, so that surface diffusion is appreciable. However, volume diffusion

will be neglected.

To simplify notations, all lengths will be measured in atomic distances, all velocities in

atomic distances per time unit, and the diffusion constant D will be measured in squared
atomic distances per unit time. The number of adsorption sites will be assumed to be equal to

the number of surface atoms on the ideal surface (in Stoyanov's notations, No
=

I). Evaporation
will be neglected,

as
is correct if the temperature is not too high. The absorption probability

of
an

adatom reaching
a step will be taken equal to I. Finally, the model is applicable to the

surface of
an

element rather than a compound
as

GaAs.

2. The nucleation process and the characteristic length I.

I has been defined
as

the typical terrace size. It will be assumed to be also the typical distance

between steps. And it will be assumed to be the
same

in the steady regime of RHEED

oscillations and in the submonolayer regime, when about 1/4 of monolayer has been deposited

on an initially flat substrate. In addition, it will be assumed not to fluctuate by a huge factori

so that the variance of the distance between steps is not much bigger than its average value.

This is
a

reasonable assumption which is equivalent to the statement that nucleation should

take place as soon as a terrace reaches a size of order I.

The deposition of the first fraction (say, 1/4) of monolayer
on

the initially flat substrate

occurs as described by figure I. First (Fig. la) adatoms form "nuclei" (pairs if I*
=

I as in

figure I). This occurs with probability I/Tnuc in the unit time on each site. Then these nuclei

grow by capture of adatoms (Fig. lb). Thus they become "islands" or "terraces" and finallyi
after reaching

a
size of order I, they merge into

a
unique set which, after filling the holesi will

form the first deposited monolayer. This picture implies that terraces reach
a

size of order I

in
a

time of order I/Fi the time necessary for monolayer completion. Therefore the average
number i~ /(FTnuc) of nucleation events in an area ix I during the time I IF should be of order

1.
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Fig, I. Phases of MBE growth, a) Two adatoms diffuse
on

the surface until they meet and form

a stable nucleus (here
a pair, I*

=
I) ,vhile

a
third one evaporates and is pumped by the vacuum

apparatus, b) The nucleus gro,vs by capture of adatoms and forms a terrace, c) two growing terraces

(the atomic structure of which is not shown) have reach such a size that they are going to merge,
while

a new nucleus appears inside one of the terraces. The time between (a) and (c) is of order I IF
if evaporation is negligible.

Thus, the nucleation rate per site I/qiuc
call be related to the typical length I by the

following relation valid in ordcr of magnitude:

~
(1)

An important assumption iii the derivation of this relation is that coalescence of islands
occurs

only near layer completion, I-e- when islands cease to be islands. The alternative method used

by Venables et al, or )lo et al, is equivalent: they write that the density N
=

lli~ of islands

is changed only by nucleationi and not by coalescence.

In deriving (I), it has also been assumed that islands are compact rather than fractal. This

is not true at ;ery low temperature. This point is addressed in section 9. Also, the
case

of

anisotropic diffusion is addressed in section 6.

The strategy is
Dolt, to evaluate the nucleation time Tnuc and then to use

(I), lvlien evapo.

ration is important, formula (I) is not applicable.
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3. The lifetime and density of adatoms.

A freshly landed adatom diffuses during
a time Ti until it sticks to a step.

The density pi of adatoms is equal to the beam flux F multiplied by the "lifetime" Ti

pi "
FTi (2)

In the absence of evaporation, the mean free path of an adatom is of the order of magnitude
of the typical distance I between steps. Therefore, its average lifetime is

Ti Cs
i~/D (3)

where D is the diffusion constant of adatoms on the surface.

According to (2) and (3) the adatom density is equal to

(~ (4)

Even at equilibrium (F
=

0) pi has a non-vanishing value, which is not negligible at high
temperature. Howeveri it will be neglected here for the sake of simplicity.

Relation (4) holds only as an average, since pi is by no means uniform. Its variation in

space and time in the absence of clustering has been studied by Burtoni Cabrera and Frank

[9], whose results are consistent with (4). The symbol"m" means "of the order of magnitude
of'.

4. collisions of adatoms with other adatoms or small adatom clusters.

In order to evaluate the nucleation time Tnuc, which appears in (I),
one needs the rate of

formation of
a

critical nucleus, which may be
a

pair,
a

triplet, etc. A critical nucleus forms

when an adatom hits
a

subcritical nucleus which is
a

single adatom or a pair, etc. Thus
one

has to calculate the number of collisions of an adatom with another adatom or a pair, etc.

The adatom diffuses during
a

time t
= Ti During the time t it

moves
by

a
distance R(t)

defined by R~(t)
m 4Dt, where D is the surface diffusion coefficient. In two dimensions, the

probability that R
=

0 at time t is well known to be of order I/Dt. Thus the average number

of times the adatom visits its landing point is of order In (Dt). This should also be the order

of magnitude of the number of times the atom visits all sites visited. Since the adatoms makes

Dt jumps in the time t, the average number of sites visited in the time t is approximately v(t)

m Dt /(In Dt). This derivation is approximate because the average of the reciprocal number of

visits is not the reciprocal of the average number of visits. Howeveri the result turns out to be

exact [10]. More precisely, the number of sites visited in
a random walk of n steps is for large

n

~(n)~ '~

~

'~~
~

'~~
(5)

In(n) In(12) In(Dt)
Replacing t by Tii the probability that an adatom collides with

a
motionless species of low

density pn is seen to be
~~

~" ~
In (D~i)~" ~~~

This formula yields the number of collisions of an adatom with a pair (n
=

2) or a triplet,
etc. Adatom-adatom collisions (n

=
I)

are given by an analogous formula (in principle with
a

slightly larger coefficient). Indeed it is possible to repeat the argument in the frame of reference

in which one of the adatom is motionless.
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5. Low temperatures : the
case I*

=
1.

The temperatures considered in this section are such that I) there is no evaporation. ii) pairs

are stable and immobile. This case has been considered by many authors [5,8] and their results

will be re-established here as an exercise.., and with a logarithmic correction.

If condition (it) is satisfied, the nucleation rate is equal to the rate of adatom collisions. It

is therefore the product of pi by the rate F of inconfing atoms per sites. Using (6), (5), (3)
and (4) one obtains

~ ~~
~ ~~~ ~ l~~l)~~ ~

j~ i~)
~~~

Insertion into (I) yields
~6 ~

In (12)
~

F
~~~

This formula has been obtained by several authors [5,8] apart from the logarithm. However

the logarithmic correction is small in all cases of practical interest, and the usual formula

~ * (D/F)~~~ (9)

is in practice acceptable. For instance, if F
=

I Hz and D
=

10~~ Hz (which is certainly
a strong

overestimation at low temperature), (9) yields I
=

100 interatomic distance and In(i~) ci 9. At

low temperatures where pairs are stable and (7) applies, the diffusion coefficient is expected to

satisfy D < 10~ Hz, and the logarithmic correction in (8) is less than 3.

Note that a number of quantities of order of magnitude I have been omitted in (8), which

are present in the formula of Stoyanov and Kashchiev.

Formula (9) disagrees with that of De Miguel et al, iii and Irisawa et al. [6] who find an

exponent 1/4 rather than 1/6. As discussed in section 9, this disagreement is probably due to

the small size and short times used in simulations.

6. Anisotropic diffusion.

From now on, logarithmic corrections will be disregarded.

6, I INFINITELY ANISOTROPIC DIFFUSION AND STICKING. It is of interest to treat the
case

of
an

anisotropic substrate like Si [8]. Let the anisotropy be assumed first to be infinite. Each

atomic row is disconnected from the others. The problem is
now

one-dimensional, but it is of

interest to call d' the dimension of the space where diffusion takes place. In this subsection,
d'

=
I, while the previous sections correspond to d'= 2. Equations (2), (3) and (4) are correct

for any value of d'. However, equation (I) has to be generalized
as

I/Tnuc m

j,
(lo)

On the other hand, (5) is to be replaced for d' < 2 by

v(t) m (Dt)~'/~

~~~ ~~~ ~~

pi > Pi (DTI)~'~~
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Using (3) and (4) which are still correct, (7) becomes

te Fpi * Fpi (DTI)~'~~ *
Fpii~'

53
F~i~+~'ID (lla)

Tnuc

and insertion into (10) yields for d'=

I te
(D/F)Q~ (12)

This result is correct in the stationary regime. Mo et al. treated the growth of an initially
flat surface and, for a coverage @<1/2 they found I m (D/F)~/~@. Our result (12) corresponds
to ml /4, and therefore disagrees with the result of Mo et al. Indeed, these authors use an

expression of the nucleation rate I/Tnucj which would be correct in the absence of islands. Then,
in a

d'-dimensional space, an
adatom visits (Dt)d'/~ sites in a time t. The probability that

an
adatom meets another adatom in the time t is therefore pi(Dt)d'/~. Mo et al, introduce

a

nucleation-limited lifetime Tn corresponding to this probability being of order I, hence

1/Tn m Dp]/~'

Then they write that the nucleation rate per site and unit time is

Pi/Tn
=

Dp(+2/d' (iib)

This is correct when there are no islands yet. However, in the steady regime, the adatoms

are mostly swallowed by steps before being able to form new nuclei, and the correct formula

for the nucleation rate per site is (lla) and not (I16). Both formulae turn out to coincide in

the isotropic case
d'

=
2 when (4) is applied. The computer simulations published by Mo et

al. seem to be in good agreement with (12).

6. 2 INFINITELY ANISOTROPIC DIFFUSION WITH ISOTROPIC STICKING. Mo et al. noticed

that anisotropic diffusion does not produce anisotropic islands. Anisotropic islands result from

anisotropic sticking coefficients, when adatoms diffusing along a row
do not stick to the island

growing on the other row. It is of interest to treat the case of
an

infinitely anisotropic surface

diffusion and
an

isotropic sticking. Then (11) is valid with d'
=

I, but (10) should be applied
with d'= 2. The result is

I ru (D /F)~/~ (13)

7. The case I* =2.

In this section
i

two effects neglected in the previous section will be taken into account:

I) When the temperature is increased, pairs are no
longer stable. More precisely, their decay

rate I/T~ becomes too high to be neglected.
ii) The assumption that pairs do not move is not correct. The pair diffusion constant D2

has to be introduced.

Let a rate equation be written for the density of pairs p2. lkiplets will be assumed to be

stable. The variation rate fi2 is the sum of the following terms where logarithmic corrections

are
neglected:
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I) The creation rate by adatom collisions. It should be equal to the rate of collision of

adatoms per site and unit time, which is pif or, according to (6) and (2) and neglecting the

logarithmic correction:

(@2)1 "
Dp( (14)

it) The inverse process corresponds to a term

(P2)2
"

~P2/T2 (~~)

iii) The nucleation of stable triplets by adatom-pair collision is equal to minus the rate p2F
of adatom-pair collisions per unit time and per site, or according to (6) and (2) and neglecting
the logarithmic correction

(P2)3
"

~~PlP2 (~~)

iv) The destruction ofpairs by absorption by a bigger terrace yields a term

~~~~4 ~P2/T#'~

where Tf~~ is the time necessary for
a

diffusing pair to reach a terrace. This time is just given
by (3), where D has to be replaced by D2. Thus

(#2)4
"

~P2D2/~~ (17)

v) There is
a term analogous to (14)1 but with the opposite sign, due to coalescence of two

diffusing pairs
(P2)5

"

~~2P( (~~)

Addition of all terms yields

P2 "
I~P~ P2/T2 l~PlP2 P2~2/~~ ~2P( (~~)

One will now write that
a

steady regime has been reached, in which (19) vanishes. As stressed

in section 5, the densities vary in space and time as testified by RHEED oscillations [11,12].
Therefore, only the average densities pi and p2 may be assumed to satisfy the stationary form

of (19), namely
~P~ P2/T2 ~PlP2 P2~2/~~ ~2P(

"
° (~°)

The nucleation rate is the
sum

of (fi2)3 and (@2)s, namely

m Dpip2 + D2p(
Tnuc

and, according to (1)
:

Dpip2 + D2P(
=

Fli~ (21)

The 3 quantities pi1P2 and I are given by the 3 equations (4), (20) and (21). Note that there

is
some

ambiguity
on the meaning off: is I the average distance between terraces including

pairs
or not including pairs? This difference may be expected to be irrelevant because pairs

are
rapidly transformed into triplets which

are
transformed into bigger terraces, etc., so that

there are much less pairs than bigger terraces. In other words

p2i~ « (22)
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This relation will be proved
a

few lines below. A related problem is whether D is the diffusion

constant of an adatom
on

the ideal, high symmetry surface,
or

should take into account the

fact that
an

adatom can temporarily form
a

dimer before diffusing to a
stable terrace, either

after dissociation of the dimer, or inside the diffusing dimer. Again this question is irrelevant

if (22) is satisfied, since most of adatoms reach a
big terrace without forming

a
pair.

It will
now be proved that the last term of (20),

as
well as the second term of the left hand

side of (21),
can

be neglected in an
order-of-magnitude calculation, provided D2 < D. To

prove this, it is sufficient to show that

D2P2/Dpi < 1. (23)

Actually, (20) implies

Dp( Dp(
~~ ~

l /T2 + Dpi + D2112 + D2P2
~

Dpi ~~

This proves (23) provided D2 < D. This inequality can reasonably be expected to hold in

most cases. It may occur, however, that D2 > D. Anyway, our treatment is
an

improvement

on the usual theory in which D2 is assumed to vanish.

Now, (23), (21) and (4) imply

~
F 1

~~~ ~ Dpi ~ 12

and this proves (22).
Using (23), elimination of p2 between (20) and (21) yields

~~P~
~ /~2

1/T2 + Dpi + D21i~

The equation for I is now obtained by inserting (4)

F~i~ ID
~_

(24)
1/T2 + F12 + D21i~ '~

Various limiting cases may be distinguished.

I) If

Fi~
> 1/T2 and D21i~ (25)

relation (9) is recovered. Insertion into (25) yields

DF~T( > (26a)

and

D~F > D( (26b)

This regime is reached if F is large enough. Remember, however, that F should be smaller

than D, as
noted in section I.

ii) If

1/r2 >
Fi~ and D21i~ (27)
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relation (24) reads

~ i/8

iru ~
(28)

F T2

Insertion into (27) yields the conditions

DF~T( < 1 (29a)

and

F~D(T# < D (29b)

These conditions
are always fulfilled, in principle, if the beam intensity F is low enough.

iii) If

D21i~ >1/T2 and Fi~ (30)

relation (24) reads

~ ~ l/10

I
SQS

(@) (31)

Insertion into (30) yields
D~F < D( (32a)

and

F~D(T( > D (32b)

This is only possible if

D2T2 > (D/D2)~/~ (33)

Relation (31) does not seem to be mentioned in the literature although condition (33) looks

physically reasonable. Relation (28) has already been obtained by Stoyanov and Kashchiev [5].
These authors introduce

a
number of parameters which have been approximated by I here. In

addition, they do not introduce directly D and T2, but the activation energy for diffusion, Ed,
and the binding energy of

a
pair, E2. Ed is defined by

D
=

Doexp (Ed/I(BT) (34)

where Do is a constant. The relation with our notations is easily established, but some care

is necessary. In (20), the first two terms which correspond to pairing of adatoms and to the

reverse process respectively should satisfy the detailed balance relation

DT2
=

(P2/P()~
" exp (E2/1(BT) (35)

where the subscript "eq" denotes the equilibrium value and E2 is positive. Note that (35) is

the expression of DT2, not of T2.

The question naturally arises, whether the previous calculation can be extended to higher
values of I*. The

answer is yes, as seen in the next section. As in the present section, certain

approximations will be made. However, they will not be justified as precisely.



2116 JOURNAL DE PHYSIQUE I N°11

8. General rate equations.

In the previous sections it was
assumed that trimers, tetramers, etc., were unable both to move

and to dissociate. In the present section their motion and limited lifetime will be taken into

account. The general rate equation for a n-mer (I.e. a terrace of n
atoms) will be assumed to

have the following form for n < I*.

fin
=

Dpipn-i (i/Tn)pn Dpipn + (i/Tn+i)pn+1 (Dnl12)pn (36)

The first and third terms correspond respectively to the creation of n-mers by collision of
a

(n I)-mer with an adatom and to the disappearance of
a n-mer giving a

(n + I)-mer by a

similar process. The last term represents coalescence of a diffusing n-mer with
a

bigger terrace.

Dn is the diffusion constant of n-mers. The previous term corresponds to the dissociation of a

(n + I)-mer into an adatom and a n-mer. The second term corresponds to the decay of a n-mer

with production of an adatom. The lifetime Tn of a n-mer has no relation with the identical

notation used in section 6 and taken from ref. 8. Detailed balance implies the following relation

with the equilibrium densities p[

i/Tn
=

DPIPI-i/Pl

Equation (36) implies
a

number of approximations which have been justified in the previous
section in the special case (Dn

=
I/Tn

=
0 for

n > 2). Their validity for the general case

will not be justified in detail. For instance, the creation of a
(n + m)-mer by coalescence of

a

n-mer
with

a m-mer has indeed been omitted if
n

and
m are both bigger than I. Note that

the equation (36) is to be applied only to smaller terraces, not to bigger terraces for which

I/Tn
=

Dn
=

0. The effect of those big terraces on small terraces is summarized by the last

term in (36). Note that Venables et al. [4] give equivalenti but somewhat different-looking
equations where big terraces are included in detail.

Averaging over the sample
,

the )[s may be assumed to vanish. Replacing I* by M for

typographic reasons, the resulting equations
are

Dp( (1/T2)P2 DplP2 + (1/T3)P3 (D21i~)p2
"

0

DplP2 (l /T3)P3 DplP3 + (1/T4)P4 (D31i~)P3
"

0

~PlP3 (l/T4)P4 l~PlP4 + (1/T5)P5 (1~4/~~)P4
"

0
~~~~

Dpipm (i /T~)p~ Dpipm + (i /T~+i)pM+i (D~ /12)p~
=

o

The additional equations are
(I) and (4) and an equation which is to generalize (7). This

equation is obtained by writing that the nucleation rate is equal to the rate of formation of

(M + I)-mers, since those and higher order terraces are stable. Therefore

* DpIPM (38)

Combining with (I)i Tnuc can be eliminated. Furthermore, pi may be replaced by its ex-

pression (4). One obtains

-(i/T~)P~ Fi~P~ + (1/T3)P3
(D~li~)P~

= jF~i~/D
Fi~p2 (1/T3)P3 Fi p3 + (1/T4)P4 (D31i )p3

=
0

Fi~p3 (l/T4)P4 Fi~p4 + (1/T5)P5 (D41i~)p4
"

0

(39)

F~~PM (I/TM)PM Fi~PM + (I/TM+i)PM+i (DM/~~)PM
"

0

Fi~pAf
# j~
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The last equation results from (38)1 (1) and (4). This system of M linear equations in

the (M I) densities p2,P3>P4, PM- i, PM has a solution if its determinant vanishes. This

condition, which yields I, is

-F£2 D2£~2 1/r2 1/r3 0 0 F2£4 ID
F£2 -F£2 D3£-2 1/r3 1/r4 0 0

0 F£2 -F£2 D4£~2 1/r4 0 0

0 0 0 -F£2 DM£-2 1/rM 0

0 0 0 F£2 -F/£2

(4°)

I

Fig. 2. Full
curve:

Qualitative shape of the function £(T) for fixed F, assuming it is given by (9)
at very low temperature and by (28) at higher temperature. Dotted curve: the function (9) outside

its range of validity. Dashed curve: the function (28) outside its range of validity.

The formulae of Stoyanov and Kashchiev [5] for Dn
=

0 are
easily recovered as a

special case

[13]. A qualitative feature of the function I(T) at fixed flux F is the following: it increases with

T more
rapidly than an Arrhenius exponential. This property (already contained in Ref.5) can

be seen in the simple case
(Fig. 2) when I is described by (8) at low temperatures and by (28)

at higher temperatures. One can assume Arrhenius laws for D and T2

D
=

Doexp (Esd/I(BT), T2 =
T(exp (E2/1(BT).

(29a) implies 3E2 > Esd. Then the variation off is shown by figure 2 and has the above stated

property. This is consistent with the experimental results (Fig. 2a) of Mo and Lagally [8].



2118 JOURNAL DE PHYSIQUE I N°11

io~~

~
~j ~

~~ O
','

Ooj
O

',~$10~~
~

j",
-~

',
~

%~ ~

~ ~"'
°',

#~ ~"

~$ ~Q~3 ~"~,
~ 'b,
~ 'O

~ '~'
~

~°
10~ 10~ 10~ 10~ 10~ 10~ IQ?
~

4D/F

Fig. 3. Black points: maximum island density determined by computer simulations. Empty circles:

the density £[~ defined in section 9. Only at very weak fluxes there is a good fit with (9) (dot-dashed
line)

or
(42) (full line). A logarithmic correction

as
in (8) would give

a
comparable agreement. There

is clearly no agreement with the formula Nmaz 53
@ proposed in references 6 and 7 (dashed line).

9. Sin~ulations for fi.actal terraces.

As mentioned in section 7, simulations with diTerent results have been reported [6, 7, 8].
Therefore we performed our own computer experiments. Like other authors, we started with a

perfectly smooth surface, a L x L square lattice ii,ith L
=

256. Atoms
are

randomly created at

a rate F. Each of them performs nearest neighbour hopping
on a

lattice with
a

waiting time

satisfying the Poisson distribution. Any adatom of the first layer becomes immobile when it

hits another adatom or the edge of
an

existing island. Adatoms created in the second layer
diffuse in the

same way as
those in the first laj'er. They

are
incorporated into the film through

collisions with atoms in the same layer or by falling
over

the edge of an island in the layer
below.

This process corresponds to the case I*
=

1 addressed in section 5. Ilowever, since atonis

incorporated to a terrace cannot move, small terraces have the fractal dimension dr
=

I-I

which corresponds to D-L-A- in tit,o dimensions. If fractal terraces coalesce when they reach

the diameter I, this occurs after
a

time id'-~ IF instead of I IF. Therefore (I) does not hold

but should be replaced [13] by
I /Tnuc

=

Fli~' (41)

Combination with (7) yields, neglecting the logarithm:

I m
(D/F)~/(~+~J)

m (D/F)~/~.~ (42)

The quantity which has been extracted from simulations is the number N(t) of terraces per
unit area. This quantity has a maximum (corresponding to RIIEED oscillations) which can be

identified with i~~ iii order of magnitude. The numerical results are displa»ed in figure 3 for

4D/F
=

2", with
n =

10,11,12,..., 22. Thc cur;e is clearly not in agreement with the claim

ice (D/F)~/~ of references [6-7]. There is
a

good fit with (41) for large I, but it is impossible
to discard (8). )lore precisely, for D IF > 10000, the following form of (42) is fitted within lit:

I m
0.445(D/F)~ /~.~ (43)
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L=64, 4.D/F=a192, Ft=1/32
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40
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Fig. 4. - The etwork of small

figure 4D IF = 2 x
64~.

Since the
distance lusters is small (of

order (D IF) ~/~,

here about 8 atomic
stances)

the aking
place for t > fi is

ubject
to trong finite size effects.

IIowever,
for

too
high fluxes (D IF < 10000) there is a lear between the com-

puter
results and t-he forinulae (8), (9)

and
(41). In the we try to

explain this.

At the
beginning

of the
iiuulation,

the density
N(t) of

terraces
(which are mostly pairs)

is
smaller

than the density
pi of adatoms, and

most of adatonis die
by pair

than
by absorption

by terraces. In owest order in t, pi (t) is
equal

to Ft. Thus

N(t) 53 p2(1) 53 DF~I~/3 (44)

at
third

order. The
third order

pi (t) ci Ft - p2(t)/2 m Fi - F~t~

This
eginie is very from the steady

ii,hen pi «

ends when i(I) ci N(i). Tile
orrespon(liiig

time, given by
(45) and (44), is

ii * till

and

to

pi(ti) *
N(ti)

Thus, the formula I
m

D/F)1/~

of
eferenccs

pairs were negligible
fter the

time ii . As seen
fi.om

figure 3, omputer simulations tell us

indeed very
few more pairs are

ormed
F/D is not very

mall,
at least if only the

considered. I?or F/D > 0.05
indeed,

the ximum value of N(i) does coincide w.ith
the alue

at the time ii at whidi pi " N.
This

is not very
surprising since the

time
ii "see" a etwork

(Fig. 4) of
lusters at a

distance given by (4G),
namely

fi
StS

(D/F)~H
(47)
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With respect to the cells of that network, finite size effects may be expected if ii is smaller

than 10, I-e- if D/F < 10 000. Thus, the condition for the validity of (9) is that (F/D)~H
should be small, a stronger requirement than the smallness of F/D!

As seen from figure 3, our numerical results fit (47) with
a

coefficient near to I if F/D is

smaller than 0.001. For larger values there are important corrections. No part of the log-log
plot corresponds to I being proportional to (D/F)~H llowever, for D/F < 1000, I is closer

to (D/F)Q~ than (D/F)~/~ In that sense, our results may be considered in agreement with

references [6-7].
Detailed reports on simulations will be presented elsewhere.

lo. conclusion.

Using the same
conceptual frameii,ork

as Stoyanov and I(ashchiev [5], we have obtained several

new results. The most important
one

is that cluster diffusion, and in particular pair diffusion,
has been taken into account. The mechanism which gives rise to pair diffusion is the same as

the one which allows clusters to rearrange and to take a compact, rather than fractal shape.
Indeed in both

cases atoms are ablc to move although they keep contact with other atoms of

the same
cluster. Thus, the usual derivation of the standard formula (9), which assumes both

compact terraces and no diffusion of pairs, is not correct! Therefore,
our formula (24) is of

practical use, as
well as its special case

(31), whicli yields I
~-

F~~/~, and its generalisation
(40). All those formulae are new.

Another important contribution of the present work is that the discrepancy between certain

simulations and the theory of Stoyanov and I(ashchiev has been clarified. lve are
indebted to

Prof. Stoyano,, for ha,,ing suggested this explanation. IIis suggestion was of great help in the

interpretation of
our

numerical data.

Our other
new

results are of lesser practical importance: the logarithmic correction in

(8) does not modify the order of magnitude. The calculation of section 6, where a mistake

of reference[8] has been corrected, has no experimental application in the present state of

surface science:
e,,en

if anisotropic diffusion does take place
on semiconductor surfaces, many

complications of semiconductors (such
as

the weak sticking coefficient of adatoms to terraces

in certain directions) ha;e not been taken into account in the present work.

It would be desirable to understand the disagreement of the theoretical formula (9) with

experimental results in metals [17]. A complete discussion is beyond the scope of this article,
but the assumption of immobile pairs is not necessarily correct for metals even at low tem-

perature. If they
are

mobile, forinula (9) should be replaced by (31)
or

the more complicated
expression (40).
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