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R6sumd. Dans le cadre de la th60rie 61astique isotrope, nous avons r£cemment montr6 qu'il est

possible d'obtenir, h partir de l'6nergie totale d'interaction entre les diff£rentes partielles, une

d6termination analytique simple de la configuration d'dquilibre de la dislocation de Lomer-

Cottrell. Nous avons ainsi £tabli que, contrairement h ce qui 6tait g6n6ralement admis, celle-ci

devait dtre asym6trique. En utilisant la mdme proc£dure, nous reconsid6rons dans cet article les

configurations d'£quilibre de dissociation des diff6rentes barribres de dislocations les plus
probables dons la structure cubique h faces centr6es (82-86). Nous montrons que, comme pour la

dislocation de Lomer-Cottrell, la configuration d'6quilibre de la barribre 82 doit dgalement due

asym6trique. Les formes d'£quilibres obtenues pour les autres bambres (B~-86) sont trouv6es en

bon accord avec l'ensemble des calculs ant£rieurs.

Abstract. In the frame-work of the isotropic elastic theory, we have recently shown that it is

possible to derive, from the total interaction energy between the partials, a simple analytic solution

for the equilibrium configuration of the Lomer-Cottrell dislocation. We have established, contrary

to what is generally believed, that it should be asymmetric. By using the same procedure, we

reconsider in this paper the equilibrium configurations of the extended dislocation barriers (82-86)
in the face centred cubic (f.c.c.) structure. As for the Lomer-Cottrell dislocation, the equilibrium
configuration of the 82 barrier must be also asymmetric. The equilibrium shapes obtained for the

other barriers (B~-86) are found to be in good agreement with all previous predictions.

1. Introduction.

Composite dislocations are believed to play an important role in the plasticity of f.c.c. metals,

and because they are sessile, they are often invoked in work-hardening theories [1-4].

Numerous observations of Lomer dislocations have been made with transmission electron

microscopy (TEM) [5]. These dislocations are generally considered to be dissociated in a

Lomer-Cottrell (or Bj, where Bi-B~ refer to barriers as defined by Hirth and Lothe [6])

configuration because of their rectilinear character. Direct evidence of this dissociation was

(*) Now at : LEM, CNRS/ONERA, 29, av. de la Division Leclerc, 92322 Chitillon Cedex, France.
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supplied for instance by Komer and Kamthaler [7]. Other types of dissociated locks, such as

the B~, the 84 18], and the 82 19] have also been reported. Recent high resolution electron

microscopy (HREM) observations have shown the 82 core structure to be very compact in

Ni~Al [10] and asymmetric in silicon [1Il.
It was generally well accepted that among the six most probable barriers, the Bj-84 were

symmetric while the B~ and 86 were asymmetric [6]. However, in the framework of the

anisotropic elasticity theory, Komer et al. [12] have shown that, contrary to previous
investigations [13-16], the split configuration of the Bi and B~ locks in the f-c-c- structure

should also be asymmetric.
In a more recent study [17], using isotropic elasticity, we have demonstrated that the Bj

dislocation is also asymmetric with a ratio 8 between the two fault widths which is material

independent. These results were found to be in good agreement with the anisotropic
calculations [12]. In addition, the mean dissociation widths calculated by both theories were

observed to be proportional to each other, for a number of pure metals and alloys, with

stacking fault energies ranging between 5.6 and 125 mJ/m2.

The purpose of this paper is to apply the same simple method of calculation [17] proposed
for the Bj, to predict the isotropic splitting configuration of the five other barriers (B~-86) in

the f-c-c- structure, and to compare the results of this new theoretical approach with the other

calculations available in the literature.

2. Method of calculation.

Although extended locks involving extrinsic stacking faults have been recently observed in the

Ll~ structure [10, 18], we consider throughout this study, as have all previous papers, only

dislocation barriers extended in such a way that intrinsic stacking faults are formed. It must

also be emphasized that, since, in this study, we are only interested in the equilibrium
configuration of the dissociated barriers, only the interaction energy terms are relevant. Then

the self energy terms need not to be considered.

All the investigated barriers have a three-fold non-planar configuration with two Shockley
partials (I) and (2), which bound intrinsic stacking faults on two distinct ( ii I ) planes with a

common stair-rod (3) lying at the intersection line of the ( II I) planes (Fig. I). Using the

abbreviated vector notation of Thompson [19] to denote the different Burgers vectors, the six

most probable extended barriers can be written as :

I. B 8 (d) + 8A(d) + Da (a) + aB (a)
-

8A + Da + a 8 (acute

2. 88 (d) + 8A(d) + Da (a) + aC(a)
-

88 + aC + 3D/Aa (acute)

3. 88 (d) + 8A(d) + Ca (a) + aD(a)
-

8A + aD + Bcla 8 (obtuse)

4. 88 (d) + 3A(d) + Da (a) + aB (a)
-

aB + 88 + 3D/Aa (acute)

5. 88 (d) + 3A(d) + Da (a) + aC(a)
-

8A + aC + BD/8a (obtuse)

6. 83 (d) + 3A(d) + By (c + yD (c
-

B 8 + By + 8 y/AD (obtuse )

When the two Shockley partials are also considered as straight and parallel to the stair-rod,

the total interaction energy can be expressed as :

l~int
~

i i~u + Y (d13 + ~23) (1)

1<j

where y is the intrinsic stacking fault energy and E~j the interaction energy per unit length

between two parallel straight dislocations I and j. In isotropic elasticity theory, E,~ is given by

[20] :

~J
i~

~"'J ~

l~'~v
~°~ ~/

2 ar)/~ v)
~'J ~~~
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Fig. 1. Schematic diagram of the extended barriers (Bi-86).

with,

a,j =

(b, t)(b~ t)la~ p,~
=

(b; ~ t) (b~ ~
t)la~

~k;j =
>,j f (I, j

=

j (b, ~ t d,~ j j (b~ ~ t d,~
ila2 d[

and where v and v are the shear modulus and Poisson's ratio, respectively (for our isotropic
approximation we take v =

Cm and v =

1/3), b; is the Burgers vector of the dislocation I, t a

unit vector along the dislocation line (here the intersection line of the two ( II I) planes),

d;j the separation distance between the dislocations I and j, R the outer cut-off radius, and a the
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lattice parameter. Table I lists the various ij coefficients for the six different barriers,

Bi-B~, where the indices (1, 2 and 3) have been assigned to the Burgers vectors of the

composite dislocations in the same order as they appear in Thompson's notation above.

Table I. The ij coefficients of the dislocation barriers, Bj-B~ (>i~
=

>~~
=

0, VB~).

~l ~2 ~3 84 ~5 86

aj~ 0 1/8 0 1/8 0 1/8

aj~ 0 0 0 0 0 1/8

a~~ 0 0 0 0 1/8 1/8

pj~ 1/18 1/72 1/18 -1/72 1/36 1/72

p
~~

l/18 1/18 1/9 1/18 1/36 1/72

p~~ 1/18 1/18 1/9 1/18 5/72 5/72

>
~~

4/27 1/27 4/27 1/27 2/27 -1/27

In expression (I), E~~~ is actually only a function of the two splitting distances

dj~ and d~~ because dj~ can be geometrically expressed in terms of dj~ and d~~ by

~12
~

~43
+ ~(3 ~ ~13 ~23 C°S ~ (3)

with 6
=

70° 53' or 109° 47' for an acute or an obtuse extended barrier, respectively. As a

consequence of this relationship, the equilibrium positions are defined by a system of two

simultaneous polynomial equations :

which, in general, in this form does not have explicit solutions. However, as was already
reported in [17], it is possible to find a more appropriate expression of E~~~(dj~, d~~) by
assigning to dj~ and d~~ two new variables d and f, defined as (1) :

di~
=

d(I f)
=

dfj~(f) and d~~
=

d(I + f)
=

df~~(f) (5)

(1) The solution dj3
"

d(I + f) and d~~ =

d(I f) is also valid. Thus, f
=

0 signifies a symmetrically
dissociated barrier (d d12

"
d23), while any value of f # 0 corresponds to an asymmetric barrier

(d # di~ # d~~). It should be noted that for all barriers both solutions, I.e. symmetric or asymmetric, the

total stacking fault width is the same (d12 + d~~ )~~~~~ =
(d12 + d~~ )~~~~. In the following, f will be referred

to as the
c< asymmetry » parameter.
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which lead to :

di~
=

dfi~(I) (6)

where fi~(f) is dependent on the geometry of the barrier and equal to 2 (1 + 2 f~)/3
or

2 (2 +
f~)/3 for an acute or an obtuse extended barrier, respectively. Then, it is easy to

show from (1), (2), (5) and (6) that E~~j(d, f ) can be decomposed into two separate functions of

d and f, namely :

Eint
"

fl (d) + f2(f) + c~~ (7)

with :

fj (d)
=

~ £ a,~ +

~?
flog

~
+ 2 yd (8)

~ "
, <j

"
~

f2(f)
=

£
£ («;j + ~~" log ~f,~(f)) +

~'J~~~
(9)

"1<J " "

and where C~~ is a constant term. With this new expression of E~~~, it is clear that the mean

splitting distance, d
=

(di~ +d~~)/2, of the extended barrier can be deduced from the

fi (d) function independently of the
« asymmetry » parameter, f

=
(d~~ dj~)/(dj~ + d~~),

which can be obtained by studying the f~(f) function, only. In expression (9), the

~ki~
term which is f dependent, is :

fi~(f) f23(f)
(lo)4'12~~~

~
~

~~ f(2(f)

Then, the equilibrium positions can be determined by solving the equivalent set of

equations :

1§j
_~~ jail(d)j ~~

j~j~_~~
d/~f)j

~~

~~~~

hi
d

hi

which gives the general expressions of the equilibrium parameters, d~ and f~.

~~ i~)I Ii
"'J ~

l

~~v
i~j~i '~ ~~~~

'<J

and

£ a;j +

~'~ ~ ~~~~
+

~~~~~~ l= 0 (13)

1<j
~ fu (~e) "

where the prime denotes the first derivative of the corresponding function with respect to f.

Equation (13) leads to a fifth-degree polynomial with solutions that can be accurately
determined by using a root-finder computer program. Depending on the extended barrier, the

number of real solution(s) is one or three ; if it is three, two of them are symmetrical, Two sets

of complex conjugate roots exist when there is only one real solution and only one set

accompanies the case where there are three real solutions. When more than one real solution
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exists, the stable equilibrium positions can easily be found by studying the sign of the function

f((f) or by plotting the f~(f) function.

It is also directly observable from (12) that in isotropic elasticity the «asymmetry »

parameter f~, which determines the positions of the Shockley partials relative to the mean

splitting width (d~), is v independent and is only material dependent through Poisson's ratio.

Furthermore, it should be noted that, since a,~ =

0 V (I, j ) for the Bi and B~ configurations,
the f~ values of these two barriers are v

independent, I-e- material-independent.

3. Results and discussion.

For the sake of simplicity and because we are mainly interested in comparing the pure isotropic

case to earlier results, as was done in [17], the
1~

coefficients and the equilibrium
f~ variables reported in table II have been calculated with respect to a Poisson ratio equal to

1/3. For convenience, the ratios 3~
=

d~~/dj~ are also given in this table using the positive
values of f~ for the Bj and B~,

Table II. The equilibrium position parameters 1~, f~ and 8~ for the dislocation barriers,

Bj-86.

Bj B~ B~ 84 B~ 86

1~
(x 48) 4 13 20 23

f~ ± 0,585 ±0.535 0 0 0.531 0.503

3 3,82 3,3 3,26 3,02

It must be emphasized that when f~ is
v

dependent (I,e, the B~, B~ and B~) its dependence is

always very small with respect to this last elastic constant, For instance, taking

v =

0,254 (Th and
v =

0,412 (Au lead in the case of the B~, which is the most v
sensitive,

to f~
=

0,468 and 0,534, respectively. On the opposite, the
1~

coefficient can vary more

significantly with v, especially for the 84 where using the above
v

values will correspond to an

increase of
1~

by a factor of almost 4.

In contrast to previous investigations that were based on both isotropic [14-16] and

anisotropic elasticity [13, 14], the results listed in table II indicate that the Bi and the B~

extended barriers will dissociate in an asymmetrical configuration. It is important to recognize
that the symmetric solution, f~

=

0, does exist for these two barriers but corresponds to an

unstable position of a local maximum of the interaction energy (E~~~) as is shown in figure 2,

The plus-minus sign in table II indicates that both solutions are valid and lead to the same

minimum of E,~~, Thus, in this case the extended barrier can occur into two asymmetric forms

with an inverse ratio between the two arms.

These results are in good agreement with the anisotropic calculation of Komer et al. [I?].

However, it is necessary to distinguish the two barriers since the fair quantitative agreement

obtained for the Bj [17] does not hold for the 82. Indeed, using the v =

Cm values of [12], we

predict a mean dissociation width d~ approximately twice that obtained by anisotropic
computation (see Fig. 3), while f~ is also found to be rather different for the two theories, The

f~ isotropic value of 0.535, or equivalently 8~
=

3,3, is compared with those obtained by
Korner et al, [12] in table III.
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Fig. 2. Shape of the interaction energy, E,~,, as a function of the
« asymmetry » parameter, f, for the

Bj (solid line) and the 82 (dashed line), (Note the curves have been shifted along the E,~~ axis and the

values of E,~~ at f
=

0 are not actually equivalent,)

Fig. 3. -Isotropic vs. anisotropic theoretical mean dissociation widths (d~) for the B~. Anisotropic

mean values have been obtained from table4 of [12].

Table III. The anisotropic f~ asymmetry parameters and 8~ ratios of the B~ lock according
to Korner et al. [12].

Cu Cu 5 fb lo fb 15 fb Ag Ni

f 0,291 0.270 0,245 0.225 0.293 0.369

3 1.82 1.74 1.65 1.58 1.83 2.17

For the other four barriers, 83 to B~, the f~ solution is unique (see Tab. II). The B~ and the

84 are found to be symmetrically dissociated while the B~ and the B~ are asymmetric in

agreement with all the preceding predictions [12-16]. Furthermore, as was proposed by [14],
using the most accurate values for the shear modulus and Poisson's ratio given in [21] yields
the same isotropic equilibrium parameters reported in table I of [14]. For these barriers, the

comparison developed in [14] between the isotropic and anisotropic results should be valid.

4. Conclusions.

We have shown that by choosing a suitable set of variables it is possible to minimize the total

interaction energy of three-fold composite dislocations. This approach, which is based on

isotropic elasticity theory, allows for the straightforward derivation of an analytical solution

for the equilibrium positions of the partials. By using this change of variables, we have been

able to prove that for the Bi and B~ barriers the symmetrical configuration is metastable and

only corresponds to a local maximum of the interaction energy.

It has been reported that the results based on the isotropic theory and those based on the

anisotropic theory may differ by a negligible amount [22]. Our previous results [17] and the
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present study both suggest that among the six most probable locks of the fcc structure a fair

quantitative agreement only exists for the Bj. The agreement is only qualitative for the other

five barriers. Thus, only in the particular case of the Bj can the anisotropic dissociation widths

be estimated by using the isotropic relations and the small correction term proposed in figure 2

of [17].
Finally, we would like to conclude with two general remarks :

I) The use of the proposed variable transformations is not restricted to the composite
dislocations of this study, but can be applied to other three-fold dissociation configurations,

This should lead to equivalent forms of expressions (12) and (13) for the equilibrium positions,
in a way that is much easier than solving the equilibrium set of equations (4).

ii) Only local minima can be mathematically determined. More precisely, the point where

the derivative of a function goes to zero does not necessarily correspond to a minimum in this

function. Computations of partial equilibrium positions of composite dislocations that are

simply based on the fact that the sum of all forces on each partial is zero can lead to erroneous

results. As shown in this study, this does not always correspond to a stable minimum of the

total interaction energy,
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