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Abstract. The replica-symmetric order parameter equations derived in [2, 4] for the sym-

metrically diluted Hopfield neural network model [1] are solved for different degrees of dilution.

The diution is random but symmetric. Phase diagrams
are

presented for
c =

1,o.1,o.ool and

c -
0, where

c is the fractional connectivity. The line Tc where the memory states become

global minima (having lower Iree energy than the spin glass states) is also found for different

values of c. It is found that the effect of dilution is to destabilize the spin glass states and the

line T is driven rapidly towards the line TM; the phase transition line where the memory states

first stabilize. All the results are derived in the context of replica symmetry so are expected

to be incorrect in certain parts of the phase diagram (the
error increasing the further below

the replica symmetry breaking lines we are) but our results do suggest in a general way that

dilution, even in small quantities, increases the stability of the memory states with respect to

the spin glass states.

1. Introduction.

In the study of attractor neural networks (for a review plus references see [5]) the main ob-

jectives have been to store as many patterns as possible with
as

little error as
possible and

also to avoid unwanted spurious states which crowd the phase space and reduce the basins of

attraction of the stored states. In the case of the standard Hopfield model [8] these spurious
states show up very clearly in the calculation and are analogous to spin glass states found in

the SK spin glass model [9]. In replica-symmetric theory these spin glass states remain global
minima of the free energy down to very low values of a

(a is the number of stored patterns
divided by the system size). By analogy with spin glasses it is also expected that their number

will increase exponentially with the system size N. If we consider ourselves sitting close to ac

(the critical
a

value below which memory states are
stable),

as we increase N, the number of

stored states only increases linearly with the system size. This means that the spin glass states

(*) Present address: D£partement de Physique Th6orique, Universit£ de Lausanne, CH-1015 Lausanne,
Switzerland.
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will quickly swamp the phase space. If the size of basins of attraction associated with the spin
glass states are of the same order of magnitude as those of the memory states then the basins

of attraction of the memory states will occupy a vanishingly small fraction of the phase space
in the large N limit. Therefore, these spurious states will severely limit the operation of the

network and in particular the size of the basins of attraction of the memory states.

There are also other spurious stable states which have overlaps with many patterns (mixture
states). These states always have higher free energies than the memory states and stabilize

at much lower values of a than the memory states. Thus we consider their effect on the

performance of the system to be less of a problem than the spin glass states. They will be

discussed in more detail in the separate section on
mixture states.

Recently Watkin and Sherrington [6] have found that in the limit of very high symmetric
dilution (e.g. of order N~ connections per site where 0 < a < Ii, the spin glass states are

not stable for values of a and T, at which states associated with the stored patterns (memory
states)

are stable in contrast to the fully connected case. This means that there are regimes

on
the a, T phase diagram where only the memory states are stable which implies they must

have very large basins of attraction. They also found that, in the limit of low symmetric
connectivity, the order parameter equations for the memory states are equivalent to those of

an SK spin glass. This was previously pointed out in reference [3] although in this paper it

was wrongly thought that the spin glass states remained stable below ac.

In this paper we
will study the effect of gradual dilution on the phase diagram of random

symmetrically diluted neural networks. In this way we
will see how the phase diagram is

gradually driven to that of the SK spin glass and more importantly we will see how dilution

affects the stability of the spin glass states below ac.

In the next three sections of this paper we will present the order parameter equations for the

dilute Hopfield model along with numerical and, where possible, analytical solutions. Replica
symmetry breaking and the stability of the mixture states will be discussed in sections five and

six and the stability of the spin glass states below ac will be discussed in section seven. In

the last two sections of the paper we will present a brief discussion of the relationship between

the low symmetric connectivity model and the SK spin glass model [9] along with our final

conclusions and conjectures.

2. The model and its order parameter equations.

The model is based
on the standard Hopfield model iii with random but symmetric dilution

of the bonds. We therefore consider
a system of N Ising spins where the Hamiltonian is given

by

~
~

~ ~ij ~i~j' (~)

ii

the sum being over all I and j. The interactions are chosen to be

P

j,, ~Sj £fPfP (~)
53 jf ' J1

~
p=1

where c;; is I with probability
c

and 0 with probability I c. c is thus the connectivity of the

system. We also choose Ji;
=

0 and c;; is symmetric. The patterns to be stored f"
=

+I, are

random. Thus choosing c =
I will give us the standard Hopfield model and the limit

c -
0 will

give us the model studied in references [3, 6], which is closely related to the SK spin glass [9]
(see Sect. 8). The replica-symmetric order parameter equations for the symmetrically diluted



N°9 THE DILUTED IIOPFIELD NEURAL NETWORK MODEL 1793

model were calculated in [4] by noting the equivalence between synaptic noise and dilution and

also separately in [2, 3] using
a

different technique (in these papers the solutions of the order

parameter equations were only studied at zero temperature, for finite c, and at all temperatures
for the limit c -

0). The replica-symmetric order parameter equations for the symmetrically
diluted model with no external field are

m"
= «

/ §
exP

It)
<" tarn fl I~/~Y(r + (i Ciqiz + mfl »

~ ~
~

~~~ i~ ~~~~ ~ ~~"~~ ~ ~~~~~ ~ "'

~
~

~ (i
~c)2

'
~~~

where C is given by
C

=
fl(i q), (4)

and the free energy per site f is given by

l~ ~ ~)~ ~
i ~

~
~~~fl ~~

l

~
C~

~~~~ ~~ ~~~

<
~~

exp

~~
ln

2
cosh fl(~la(r + (I c)q)z + m.f)j > (5)

fl @ 2

The physical interpretation of the order parameters is given by

pr

m"
= p

£ « f[ < si >»

I=1

N

q " p
£ « si >~»

i=i

r =

£ « (m")~ » (6)
"

p

+i

a is a measure of the number of patterns stored per connection per site and is given by

~ ~

t
~~jNc'

which should be distinguished from the
more standard definition a =

~
used in [4, 8]. « »

N
represents the quenched average over all the possible choices of the p sets of patterns. m" is

a measure of the overlap of the system with the set of s patterns which are nominated for

condensation s being finite. q is the Edwards Anderson order parameter and
r

is
a measure of

the overlap of the system with the infinite set of p s patterns which are not nominated for

condensation. A fuller explanation of the techniques used in deriving these equations can be

found in [5] where the calculation for the fully connected model is explained in detail.

3. The paramagnetic to spin glass phase boundary.

The spin glass phase corresponds to solutions of the order parameter equations such that

m"
=

0, Vu and q # 0. Solutions of this form only exist below a
critical temperature Tg(a)
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and the value of q always changes continuously across the phase boundary for all choices of c.

Thus solving the order parameter equations (3) to first order in q will give us the line Tg. This

gives
a

quartic in T

T~-2T~+(1-a)T~+2a(1-c)T+a(c-1)=0, c#0. (8)

The largest root of this equation gives Tg while the other three roots do not correspond to

physical solutions. In the case c -
0 the phase boundary is the same as that for the SK spin

glass [3, 6] with appropriate choices of the first and second moments of the bond distribution

(this is discussed in more detail in Sect. 8). It should be noted that the limit c -
0 does

not correspond to the case where there are no interactions but to the case where the number

of interactions rises more slowly than the system size. This would, for example, correspond
to systems with of order N~ interactions per site where 0 < a < I or systems with log N

interactions per site. The line Tg for the model
c -

0 along with solutions of equation (8) for

c =
1, 0.I and 0.001 are shown in figure 3.

In general, the solutions Tg(c, al of equation (8) are very complicated functions of
c

and a

but there are a few cases where the quartic easily factorizes. These
are c =

I which, of course,

is the result for the fully connected model Tg =
I + @ and also

c =
where we find

2

1 1 + ~/(1 + 2(a + h))
Tg(C " §1") "

~
(9)

Looking at figure 3 we can see that the effect of dilution on the phase diagrams is to decrease

Tg, except at its end points (Tg =
I, a =

0) and (Tg -
@,

a -
ccl which remain fixed for all

values of
c.

The line Tg, for any finite c, is always enveloped above by the line I + @, which is

the result for the fully connected model, and below by the line Tg =
I for a < I and Tg =

@
for o > 1.

4. The transition to magnetic ordering.

There exists a critical value of the temperature TM below which the order parameter equations
(3) have solutions of the form m"

=
(m 0 0 0 0), m # 0 These correspond to stable states

(which we shall call memory states) associated with the patterns we have tried to store in the

system. In the solution space of the order parameter equations this transition corresponds to

the line at which, for increasing a, two real solutions of the form
m

# 0 meet and become

complex. Only one of these two solutions is a minimum of the free energy and thus
a

physical
solution. The line we seek is therefore a bifurcation point in the solution space of the order

parameter equations (3) and corresponds to the point at which the determinant of the matrix

of first derivatives of the order parameter equations with respect to the order parameters is

zero. This extra condition has to be solved along with the original three order parameter
equations to give TM(ac). We solved these equations using a Newton Raphson algorithm at

c =
1, 0.I and 0.001 the results being shown in figure 3. A more detailed explanation of this

approach to finding the transition line TM can be found in reference [12] where it was applied
to the fully connected Hopfield model to show up the reentrant spin glass behaviour.

The phase transition line TM is first order (except in the limit c -
0 where it becomes second

order)
so unlike the spin glass phase boundary there are no small parameters which

can be

expanded around a generic point to analytically determine the phase boundary. However, close

to TM
=

0 we can expand the order parameter equations along the phase transition line to find
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the critical values of the order parameters. This gives, to first order in TM, (they are written

in the form z = zo + ziTM)

m # m0 + m0C0 ~~
TM

Yo

q =
I COTM (1°)

where y was used to parameterize the order parameter equations and is given by

~ " ~/2«(r + (i c)qi' ~~~~

yi in equations (10) is a function of c, Co and yo, given by,

yojc + (i cj(1 coj2j(1 coy(i co 2yjj
Yi = 2jcj4yj + (1 + 2yjj(1- co 2yjjj + 4(1 cj(1 coj3(1 co 2yjjj ~~i

Solving the order parameter equations to first order in TM also gives the phase transition line

TM
"

) £~ (13)
c 0

The subscript 0 represents the solutions at TM
=

0 except for the variable
a

where we use the

same notation as Amit [8] which is a~(= ao). The values of ac, mo, Co and yo vary with
c

and

can only be determined numerically (except in the limit c -
0). Figures I and 2 show the

values of these four parameters for c between 0 and I.

At all values of
c

the phase transition lines tend to TM
=

I in the limit of small
a so we can

also expand the order parameter equations in t =
I TM to find analytical solutions close to

i.oo

1~o

o.75

O(
o.50

i$

0.25 a

~~$.0
0.2 0A 0.6 0.8 1-o

C

Fig-I. Critical values of the storage capacity
a

and the overlap
m at zero temperature (mo) for

values of c
(the connectivity) between 0 and 1. mo ranges from o in the limit c -

0 to o.967 at c =
1.

It drops almost vertically for values of mo below 0.5. ac varies from
~

in the limit c -
0 to 0.138 at

K
c =1.
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c

Fig.2. Critical values of C and y (see text, Sect. 4 for definitions) at zero temperature for values

of c (the connectivity) between 0 and 1. go ranges between 0 in the limit c -
0 to 1.51 at c =

1. Co

varies from 1 in the limit c -
0 to 0.180 at c =

1.

the point TM
"

I, a =
0 on the phase transition line. To first order in t this gives

m~
=

1.78t

q =
2.19t

=

0.645~
,

(14)

with only
r

varying with
c.

The phase transition line is given by

TM
=

I -1.95fi. (15)

Thus we can
explicitly

see that the effect of decreasing
c is to increase TM, for fixed a, which

is a result that was also borne out by the numerical solutions for TM (see Fig. 3).
Looking at figure 3 we can see that the effect of dilution on the memory phase is to increase

its size both in the temperature and
a

directions but the value of the overlap
m

decreases
on

the phase boundary TM. The phase transition becomes second order in the limit c -
0. This

can be seen on the plot of mo against c at zero temperature (see Fig. Ii. In fact for small
c

we can obtain an analytic expression to smallest order in
c

for mo(c)

mo(c) m
2i ~ cl. (16)~x~

As can be seen from the graph of mo against c, the value of mo holds up very well as c
decreases

(at
c =

0.I, mo =
0.83) before dropping rapidly to zero. This is also reflected by the power

6
in the leading order term of the expansion for mo (see above equation).

Although m decreases as c decreases on the phase transition line TM, we found that for fixed

a and T, within the memory phase, the value of m
increased

as c was
decreased. Therefore,

in terms of accuracy of storage per connection per neuron, the more dilute
a

network is the

better its performance is.
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Fig.3. Phase diagrams for the Hopfield neural network model in replica-symmetric theory with

connectivity
c =

1, 0.1, o.001 and c =
o which represents the limit c -

0. a is the number of patterns

stored per interaction per spin. P, SG and M+SG, refer to the paramagnetic phase (m
=

0, q =
0),

pure spin glass phase (m
=

0, q # o) and the memory spin glass phase where both the memory states

(m # 0, q # 0) and the spin glass states (m
=

0, q # 0) are stable. The spin glass states appear below

the lines T~ and the memory states below the lines TM TR is the line below which replica symmetry

is broken for the memory states. For the model
c -

0 only the memory states are stable to the left of

the line TM. The phase diagrams for the models c =
1 and

c -
0 were first presented in references [8]

and [2] respectively.

Another interesting feature of the memory phases for each value of
c

(see Fig. 3) is that

they all show reentrant spin glass behaviour below
a certain non-zero temperature similar to

that found for the replica-symmetric phase diagram for the SK spin glass [9]. This is also seen

in the leading order expansion for the phase transition line TM around TM
=

0 (see Eq. (13))
where the gradient is positive for all values of c. Thin reentrant behaviour has previously been

studied for the fully connected model in reference [12]. Like the SK spin glass this reentrant

behaviour is thought to be a result of the replica-symmetric assumption and the true phase
diagram (replica broken) is expected not to exhibit this property. This will be discussed in

more detail in section 6 on replica symmetry breaking.

5. Mixture states.

Mixture states are states for which several of the m" are non-zero. As was found for the fully
connected model [8] the mixture states were solutions of the order parameter equations below

a certain critical line T(a). The values of a at which these states appeared as solutions were

always found to be lower than the a~ for the memory states, except in the limit
c -

0 where all

the mixture states appeared as solutions at a =

~
This is the same value of a~ at which the

memory states stabilize. In fact we
found that ex(nding to first order in c at zero temperature

arc "

~
(l 1.89cl)
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a3c =

~
(l 6.92ci), (17)

where arc anA ~y3c are the values of
a below which there are solutions of the order parameter

equations corresponAing to the memory states and states having the same magnitude of overlap
with three of the patterns respectively. As can be seen from these equations it is only in the

limit
c -

0 that arc and a3c become the same. Similar expressions exist for all the other

overlap states. We did not look at the stability of the overlap states but we imagine that,
like the fully connected model [8], only the solutions with an odd number of overlaps with

the nominated patterns are stable and that the free energy of the mixture states is always
higher than that of the memory states. It was shown in refbrence [6] in the case c -

0 at zero

temperature that even though states in which three patterns have
an

equal overlap appear at

a3c "

~
they are unstable and do not become true minima of the free energy until

a =
0.123.

We be(eve this quantitative behaviour will be true for all states having
an

odd number of

overlaps with the patterns and for all c values.

6. Replica symmetry breaking.

All the results we have presented so far in this paper are within the replica-symmeiric assump-
tion (see [7] for

a
fuiler explanation of this approach and the physical interpretation of replica

symmetry breaking). In the case of the spin glass phase it is known that the whole phase
has broken replica symmetry so that the values of the free energies etc. calculated from this

assumption can be expected to be in
error

but the size of the
error

is expected to be smaller the

closer
we are to the phase boundary. In fact, the~rue spin glass states in replica broken theory

do not have the same free energies. In the case of the memory states there is a line analogous
to the De Almeida Thouless line [10] for the SK spin glass below which replica symmetry is

broken. Using a similar approach this line, which
we shall call TR, can also be calculated for

the dilute Hopfield neural network and is given by

~ ~~ z~
~~~J~4 ~j~/~y(r + (I C)ql + @

"
~' ~~~~

fl °~

~ exp j

Thh expression has to be solved simultaneously along with the order parameter equations to

determine TR~ the line of replica symmetry breaking. This was done for the same values of

c as the phase transition lines and is shown on the phase diagrams (see Fig. 3). It-can be

seen from this figure that even though the region of broken replica symmetry is very small for

the fully connected model, it grows very rapidly as c
decreases. In fact in the limit

c -
0 the

v;hole of the spin glass to memory phase boundary lies below it and is therefore in error. Thus

replica symmetry breaking becomes more and more important
as we

dilute the system and we

can expect the error in a~ calculated in replica-symmetric theory to become larger and larger.
It is interesting to note that, to within the accuracy of

our
numerical solutions, the replica

symmetry breaking line always meets the line TM at the point where the gradient changes sign
(see Fig. 3). Thus at this point the gradient of the line TM is infinite and so, by analogy with

the SK spin glass,
we may imagine that thefull replica broken solution is a vertical line (or close

to this) below the line TR. If this conjecture is correct then the true a~ at zero temperature

(or very close to it can always be found for these Hopfield type models by finding the point

at which the line TM meets the line TR. The only other possible scenario, assuming reentrant

behaviour is excluded, is for the Inemory phase transition line belo~v-TR to move out to higher

a~ causing it to have an inflection point.
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7, The stability of the spin glass states below TM.

We now turn to what are perhaps the most interesting results in this paper. It was shown in

[6] that in the limit c -
0 the spin glass states are not stable below the line TM in contrast to

the fully connected model. In this section we
study their stability below the line TM for finite

values of
c.

There exists
a

critical line T~(a) below which the memory states become global minima of

the free energy surface. In the case of the fully connected model [8] this line is well below

the line TM (at
zero temperature the memory states are

global minima for
a < 0.051 and

ac =
0.138). The line Tc(a) is found by equating the free energies (see Eq. (5)) of the spin

glass and memory states which are physical solutions of the order parameter equations. Figure
4 shows the lines Tc(a) and TM(«) for the same three values of c

(c
=

1, 0.I and 0.001)
as the

phase diagrams.

We can see clearly from figure 4 that dilution stabilizes the memory states at the cost of the

spin glass states. For the case c =
I in more than 50Sl of the memory phase the spin glass

states have
a

lower free energy than the memory states. For the case c =
0.001 this drops to

only
a

few percent. If we imagine, for our free energy surface, that the depth of minima is

proportional to their width then this implies that dilution may enlarge the basins of attraction

associated with the memory states. This means that dilution may have a positive effect on the

storage properties (per connection) of the system although, simulations would be required to

validate this conjecture.

1.00
"'" "'~ ?. ? ?. .= = ~

ffl
[ [ fi~0=1

o.75 ' ' ",

~
'", ",

~- 0.50 ', t

~

,~

0.25 ,' ,~

,'
,

~

T~ T~ T~ T~ ,~ ,~ T~

o-w
0.00 0.25 0.50 0.75

fi

FigA. Phase boundary lines TM and Tc for connectivities c =
1,0.1 and 0.001. To the left of the

line TM the memory states are stable and to the left of the line Tc they become the global minima of

the free energy. It can clearly be seen on these three graphs that as c decreases the line 7~ approaches

the line TM-
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8. The Emit
c -

0 and the SK spin glass.

Taking the limit c -
0 on the order parameter equations (3)

causes r -
0 and the equations

in m" and q for
a

single memojy state become the same as those for the SK spin glass [9] with

Jo
"

I and J~
= a.

~°
and

~
are the first and second moments of the Gaussian distribution

N N
which determines the interactions for the SK spin glass. This equivalence of the two sets of

equations can be made clearer by performing
a Mattis like [11] gauge transformation

~' fv~
I I I

J
~ ~~ij "

fi ~ijfj (19)

on the neural network equations, which means that the overlap order parameter m" now be-

comes the magnetization
m and the first and second moments of Jjj are and " respectively.

The full replica order parameter equations without the replica-symmetrj~~assu4tion,
are

also

the same for both models so the true replica broken phase diagram is the
same for both models

[3, 6]. This means that the true form of the line TM, in this case, is vertical at a =
I removing

the reentrant spin glass behaviour (see Fig. 3). It should be noted that this is only
a

formal

equivalence between the order parameter equations for the SK spin glass and the
c -

0 neural

network. The two models are themselves not equivalent since the neural net has 2p stable

states associated with the p patterns (only above TR and at a < Ii
as

well as stable mixture

states at lower
a

values while the SK spin glass has only two stable states associated with the

+m solutions of the order parameter equations.

A more physically motivated understanding of how the phase transition of the neural net is

driven towards that of the SK spin glass comes from studying the correlations around loops
of interactions for the neural net. In the case of the Hopfield neural network, because of the

way the bonds are chosen (see Eq. (2)), the interactions around a closed loop of any length

are correlated. For the expectation values of the loop products this gives

N@
=

N~Ji;J;kJk;
= = a, (20)

whereas in the case of the SK model, correlations of this type are not present as the interactions

are chosen independently from a Gaussian distribution (except in the case of the two site loop
since the interactions are

symmetric). It is these non-zero loop products which drive the

memory and spin glass phase transitions in the Hopfield neural network away from those of

the SK spin glass. When we dilute the system we reduce the values of these loop products
and in the limit c -

0 all these loop products, except the first one, tend to zero and the phase
transition is of the same type as

the SK spin glass. This effect can be followed explicitly from

the expression for r
derived for dilute models in references [2, 3]. In these papers r is

a sum of

terms written in the form of loop products so we can explicitly see how by dilution
r -

0 and

the phase transition is driven towards that of the SK spin glass.

A more rigorous and general derivation of the order parameter equations for structured

neural networks will be given in [14] using the techniques developed in [13]. The dilute models

we
studied in this paper and in references [2, 3] are a subclass of the larger class of solvable

structured neural network models which will be studied in [14]. In this paper the role of these

loop products in determining the behaviour of the system will come out naturally from the

expression for the order parameter r.



N°9 THE DILUTED HOPFIELD NEURAL NETWORK MODEL 1801

9. Conclusions.

The main result of this paper is to show that in replica theory even small amounts of dilution

reduce the stability of the spurious spin glass states while stabilizing the memory states. We

expect this result to hold for the true replica broken solution of the symmetrically diluted

model although
we awit either numerical simulations

or
replica broken analytic solutions to

confirm this. It would also be interesting to see
if this effect is found in other types of attractor

networks using different types of learning rules.

All the results given in this paper are expressed in terms of the concentration of bonds but,

as pointed out by Sompolinsky [4], there is an equivalence between synaptic noise and synaptic
dilution. This means thajall our results also describe

a system with synaptic noise of zero

~~~~ ~~~ ~~~~~~~
~~

~
(~~ ~~'

We have also shown in this paper how gradual dilution of the Hopfield neural network

drives its phase diagram for the memory states towards that of
an SK spin glass. All the

models studied in this paper were found to have reentrant spin glass behaviour in the replica-
symmetric solution and

we
found that the replica symmetry breaking line TR always meets the

line TM (to within the numerical accuracy of our
solutions) where it is vertical. We therefore

postulate, by analogy with the SK spin glass, that the true shape of the line TM below TR is

vertical or at least very close to vertical. The true maximum value of a~ would then be given
by its value at the point where the line TR meets the line TM in replica-symmetric theory. This

is also the maximum value of
a on

the phase boundary TM in replica-symmetric theory.

References

[1] Hopfield J-J., (1982) Proc. Nat'. Acad. Sci. U.S.A 79, 2544.

[2] Canning A. and Gardner E., (1988) J. Phys. A21, 3275.

[3] Canning A., (1988) Neural Networks from Models to Applications, Proc. Neuro'88 Conf., E-S-P-C-I,
Paris., Edited by Personnaz L. and Dreyfus G. (I.D.S.E.T. Paris) 326.

[4] Sompolinsky H., (1986) The Theory of Neural Networks: The Hebb Rule and Beyond. Heidelberg
Colloquium

on
Glassy Dynamics., (June 1986), Springer-Verlag.

[5] Amit D-J. (1989) Modeling Brain Function, Cambridge University Press.

[6] Watkin T.L.H. and Sherrington D., (1991) Europhys. Lett., 14, 791

[7] Mezard M., Parisi G. and Virasoro M. A. (1986), Spin Glass Theory and Beyond, World Scientific

Lecture Notes in Physics Vol. 9.

[8] Amit D-J-, Gutfreund H. and Sompolinsky H., (1985) Phys. Rev. Lett. 55, 1530.

(1987) Ann. Phvs. 173, 30.

[9] Sherrington D. and Kirkpatrick S., (1975) Phvs. Rev. Lett. 32, 1792.

(1978) Phvs. Rev. B17, 4384.

[10] De Almeida J-R-L-, and Thouless D-J., (1978) Phvs. Rev. A11, 983.

[11] Mattis D.C., (1976) Phvs. Left. A36, 421.

[12] Naef J-P. and Canning A., (1992) J. Phvs. I France 2, 247.

[13] Canning A., (1992) Preprint, Submitted to J. Phvs. A.

[14] Canning A., In preparation


