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AlJstract. The transition between bound and unbound surfactant bilayers, controlled by
the strength of attractive van der Waals interactions, is described in a simple Flory-type picture.
All the main features of the transition previously described only by functional renormalization

group methods are recovered, including 1) second-order nature of the transition; 2) estimate

of the critical strength of van der Waals interactions; 3) dependence of tricritical point on

bilayer stiffness. Our Flory picture also reproduces known exponents for unbinding and wetting
transitions in d

=
2 dimensions.

Introduction.

Several years ago, Lipowsky and Leibler 11,2] (LL) produced
an

elegant and difficult theory of

the unbinding of lyotropic lamellae under the action of steric repulsion, known as the Helfrich

interaction [3]. Their work relied on functional renormalization group (FRG) and an approx-
imate recursion relation, and their results appeared to admit no simpler description. They
found

a
second-order transition between a state of "bound" lamellae and

one
of "unbound"

lamellae, as a
function of the Hamaker constant W (strength of the attractive van der Waals

interaction between bilayer membranes). In the bound state, the bilayers only separate to a

finite distance when exposed to large amounts of excess solvent; in the unbound state, the

bilayer spacing is governed only by the amount of solvent present.

From their numerical FRG procedure LL found a mean bilayer spacing as a
function of the

control parameter (Hamaker constant) which diverged as the Hamaker constant approached a

critical value from above: I
~-

(W Wc)~~, with ~
=

l.00 + 0.03 and Wc dependent upon
nonuniversal parameters such as the range and strength of short-range repulsive potentials such

as the hydration interaction Vh(I), as
well as the bilayer thickness (at which the form of the
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van der Waals interaction
crosses over from l~~ to l~~). Typical values for these parameters

and the resulting W~ are given in reference iii.

LL consider the behavior ofa pair ofimpenetrable fluid bilayers with bending stiffness, inter-

acting sterically and via direct hydration and van der Waals potentials. The bilayer positions

are
described by displacement variables (hi(r)) for the vertical displacement of the ith layer.

The unbinding behavior of
a

stack of bilayers
can be related to that of a single pair of bilayers

by defining difserence coordinates Ahi(r)
=

h;(r) h,-i(r) giving the separation between

adjacent bilayers, and then neglecting correlations between the Ah,(r) for different I. This

evidently elirrdnates the possibility of describing collective modes (e.g., smectic undulations)
in which many bilayers are displaced collectively, but still enables a study of unbinding driven

by steric repulsion.

LL emphasize that superposition of the Helfrich
or

steric potential per unit area

~~yn2
~~~~ K(1- &)2

~~~

the hydration interaction

11(1)
=

Ah exp(-I/lh)
,

(2)

and the van der Waals potential

~"~~° )~" (i /&i~ +
1+~2&i~

~~i

'~ 2x l~ '
~~ ~

in an attempt to produce an "effective potential" acting between the bilayers, gives an incorrect

description of the transition. They observe that this potential l~~(I)
=

l~(I) + Vw(I) + Vh(I)

as a
function of W has minima either at short distances (of order &) or at infinite separation;

thus if I were taken to be the order parameter in a form of mean-field approach,
a first-order

transition would be predicted (see Fig. I).

Still, it is unsatisfying that no simple description of the transition should exist, as implied
by reference iii. In most common cases, mean-field treatments are adequate for predicting
the approximate value of T~ (which after all is not universal). If anything, mean-field theories

usually are overly optimistic about the existence of finite-temperature second-order transitions,
since they neglect fluctuation effects which in various cases cause transitions either to be first

order (Coleman-liTeinberg mechanism [4], Brazovskii transition [5]) or to be suppressed to zero

temperature (lower critical dimension effects).

1. A fiery theory.

One recognizes that the volume fraction of bilayers #, rather than the mean bilayer spacing (
is a sensible choice for the order parameter (to begin with, it vanishes at the transition), by
analogy to the elementary description of the ordinary liquid-gas transition. The theory of

van

der lvaals gives a
sensible description of the liquid-gas critical point, but not by adding an
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spacing I (and volume fraction ~
=

&/f, which must of course be positive):

~~~~
128K63

~~ ~X~~ (4)

(We shall use the estimate cH =
3x~ /128 from reference [3] for the Helfrich interaction, Eq. Ii.)

Here the coefficient x is the correction to the hard-wall result for the virial coefficient. If the

enthalpic interactions between patches of volume v are sufficiently weak (discussed below), x

may be given as a function of the interactions by

x =

j f
d~r (i exPl-flUv(r)1)

,

(5)

where Uv(r) is the interaction between bits ofsurface ofvolume v, and the integral is limited

to positions such that the surface bits do not overlap.

The free energy expression (4) evidently has a second-order transition between a bound-

lamellae state at ~ # 0 for x > 0, which merges for x =
0 with the endpoint rrdnimum

~
=

0 corresponding to unbound larnellae (see Fig. 2). We expect that x will vanish linearly

as the Hamaker constant W is varied about some critical value (the virial integral, Eq. (5),
will have contributions from interactions other than van der Waals, in particular direct repul-
sive interactions). The corresponding phase diagram in the (x, PI Plane for this free energy

w

Fig. 2. The free energy F(#) is a sum of two terms: ideal steric repulsion (« #~) and a random-

mixing estimate of the perturbative effects of interactions (« #~), which leads to a second-order

transition as the coefficient of the #~ term is varied.
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Fig. 3. The phase diagram of a stack of lyotropic lamellae contains
a

first-order line separating
bound (# # o) from unbound (#

=
o) larnellae, terminating in

a
tricritical point at x " P "

o. The

corresponding spinodals are indicated by the dot-dashed curves. A line of complete-unbinding critical

points extends away from the tricritical point for #
=

0, x < 0.
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Fig. 4. The phase diagram of
a

stack of lyotropic lamellae in the (x, II Plane; the phase and

spinodal boundaries
are straight lines, and meet at the critical point x "

#
"

0.
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g(x, PI
=

f(x,~) P~ has a first-order line for x > 0 at p =
-3x~/16 separating bound

and unbound lamellae. The first-order line ends at the tricritical point p = x =
0. A line

of critical points, corresponding to the complete unbinding of the lamellae upon swelling with

excess solvent, extends beyond the tricritical point for negative x and p =
0. The spinodals in

the region of parameter space corresponding to bound larnellae are at p =
-x~/4 and p =

0

(See Fig. 3). In the ix, ~) plane the phase boundary x =

2) and the spinodal x =
3i

[I
=

3x~T/(128K&~)@ meet at x =
~

=
0 (See Fig. 4),

The free energy density of equation (4) has the appearance of a Landau expansion, and ~ the

role of order parameter; ~ vanishes at the second-order phase transition, Landau expansions are

justified [9] by claiming that the free energy density ought to be analytic in the order parameter,
and so expanded in a power series in the order parameter near the transition, where the order

parameter is small. Expanding the free energy about ~
=

0 is not justified
a pHo1i in the

present case
since negative values of ~ are not perrrdtted; hence the phenomenological model

is necessary for establishing the form of the free energy density.

Recall that the ~~ term arises in the present model from the Helfrich interaction; note that

such terms are
in general to be expected if one accepts an expansion in powers of # with no

inversion symmetry. Ordinarily,
a

cubic term in a Landau expansion leads to a
first-order

transition; we evade this in the present case by the physical requirement ~ > 0.

Because of the unusual stabilizing term cubic in #, the minimum of f(~) at nonzero ~ will

approach ~
=

0 as
(W W~), rather than with the usual mean-field exponent 1/2. Thus the

mean bilayer spacing1= &/~ will vary as
(W W~)~~; the exponent found by LL via their

numerical RG procedure is indistinguishable from unity within their uncertainty. The unusual

shape of the phase boundary (quadratic rather than linear approach to the critical point in the

ix, p) plane, see Fig. 3) has the same origin.

2. d
=

2, other force laws.

We can make the customary generalization to (d Ii-dimensional interfaces in d dimensions,
with a generalized dispersion relation for height variations h(r)

as a function of the transverse

coordinates r, with the effective Hamiltonian

lT
= fd~~~ qqP(hq(~ (6)

and extend the above simple Flory-type argument to derive strong-fluctuation regime expc-

nents known for interfaces in d
=

2 dimensions. Here p is an effective exponent describing the

spectrum of height fluctuations; for bilayers controlled by bending stiffness, p =
4, whereas for

interfaces under tension, p =
2.

The Hamiltonian, equation (6), leads to wandering exponent [10] (
=

(p+I-d)/2, such that a

patch of linear dimension Ljj has root-mean-square height excursions L i ~-< h~(0) >~'~~-
L(j.

The corresponding Helfrich-like interaction appears as a free energy per (d- I )-dimensional

"area" f
~- T/f((~~~, where I~- f( defines the in-plane correlation length fjj in terms of the

mean spacing between layers I. Thus we have a
Helfrich free energy per unit area f

~-

T/l~,
with

r =
(d -1)/(.
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Here we have assumed a cost of order kT per collision between adjacent interfaces, inde-

pendent of dimension d and dispersion exponent p. This is consistent with an estimate of that

collision free energy based
on

the Hamiltonian, equation (6), and the lowest available mode of

a
patch of interface of

area
f(d~~), I-e-, AF

~- f((~~~(f
[ Iii)

~-
T.

Now we estimate the contribution of
an attractive short-ranged interaction by a virial esti-

mate. Near unbinding, when I is large, we assert that the distance between interfaces undergoes
large fluctuations about the mean spacing, and the probability of close aproach per (d I)-

dimensional area is Ill-

This viewpoint requires for consistency that the actual microscopic interaction V(I) falls off

faster for large I than the Helfrich interaction. This defines the strong fluctuation (SFL) regime
ii,11]. For short-range forces we are always in the SFL regime

as
long

as r < cc, I-e-, as long

as ( > 0.

Then the free energy per area is estimated as the sum of these two terms,

f
=

-ill + I/l~
,

(7)

with t a control parameter describing the strength of the virial coefficient (average
over the

direct interaction V(I)). The form (7) is not in general suggestive of a Landau expansion,
since r is not in general an integer; hence we retain I as a

variable. (Note that for interfaces

with tension, I-e-, directed random walks (p
=

2) in d
=

2 dimensions, we recover the form of

Eq. (4).)

We have upon balancing the two terms a power law for the divergence off,

f~_ t-i/(r-1)
~_

~-</(d-i-<) (~j

For d
=

2 dimensions, where analytical results exist [10,11] this agrees exactly with known

results for unbinding transitions of thermally wandering interfaces in the SFL regime: refer-

ence
ii I] gives I

~-
t~"I and fjj ~-

t~"" with vi = (vjj =
(/(I (). Because the Helfrich

term may be written T/f((~~~ for interfaces thermally wandering with adjustable dispersion

relation as we have considered, h>~perscaling is obeyed: 2 a =
(d I)vjj, where fjj ~-

t~"11,

and
vjj =

I /(d I () from equation (8).

Lipowsky has argued [12] on the basis of FRG recursion relations that the unbinding ex-

ponent ~ for fluid membranes in d
=

3 dimensions (for which r =
2) is exactly ~

=
l. His

recursion relation depends only on the Helfrich exponent r and not separately on d; hence ~
must be the same as the known result ~

=
l for interfaces with tension in d

=
2 (for which

r =
2 also). The present simple approach is obviously consistent with this argument; the

Flory-type free energy of equation (7) depends only on r.

The agreement between unbinding exponents obtained by the above simple Flory-type ar-

gument and exact results for unbinding in d
=

2 dimensions, encourages the application to

d
=

3 dimensions where analytical results
are absent.

Our simple argument signals new behavior when the Helfrich term diverges at small I less

strongly than the virial term, I-e-, when r < I. Then, an attracti,,e term estimated by a

uniform-density approximation is not stabilized by the Helfrich term. This suggests either
a
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first-order collapse to a very dense state (I « 1, ~
~-

l)
or the breakdown of a uniform-

density picture. This occurs when ( > (d Ii,
or p > 3(d Ii; for p =

4 (bending stiffness),
the borderline value of d is d

=
7/3,

so that semiflexible chains in d
=

2 dimensions with

short-range attractions are not described by the above argument. Recent work on semiflexible

chains in d
=

2 dimensions suggests that unbinding is effectively discontinuous, consistent with

our simple picture [13,14].

We note finally that in adopting a Gaussian description of the height fluctuations in equation
(6),

we cannot describe the crossover between effective values of p as a function of layer spacing,

as is expected for example in the case of semiflexible chains, which cross over to Gaussian and

then to self-avoiding chains as the layer spacing is increased [13,14].

3. Independent uvits and hard cores,

We now address the question of the reasonableness of our approximationj in particular, we

examine the evaluation of the virial coefficient in the presence of strong interactions at short

range. Our goal is to decide Ii what should be the size of an independently moving "unit"

of surface, corresponding to a monomer in the Flory-Huggins theory of polymer melts, and

2) how to handle the strong short-range repulsion within our picture. The discussion in this

section is cast in the language of bilayers with bending stiffness in d
=

3 dimensions.

Upon reflection it may seem unreasonable to adopt as the independent unit a macroscopic
piece of surface, of size a~&, as analogous to a monomer in the Flory theory for polymer

solutions. Elements of the fluid surface are much more correlated in their positions than the

gas molecules or even the monomers of polymer chains that inspired the present approach.
One might say that when the mean bilayer separation is I, only patches with dimensions of

order the correlation length ((ii
~-

/filmay be regarded
as

having independent positions
along the z-axis- The interaction potential between two such patches at a distance

r
is then

W&~f~/r~ for r » f.

What happens to equation (5) when the size of the independent unit is changed? If the

units interact weakly enough beyond the hard-wall excluded volume interaction so that the

Boltzmann factor may be expanded,

x m

$ f
d~r Uv(r)

,

(9)

then x is independent of the volume
v

of the unit (e.g., for van
der Waals attractions, Uv(r)

=

v~W/r~ is proportional to v~).

The interaction v(z) between
a

unit area of surface and a bilayer a distance
z away is given

by the integral of Uv over the area of the bilayer, v(z)
=

(&/v)~ f d~r Uv(r; z). In terms of v(z)

we may write equation (9) as

x =
-p/(2&2)

/
dz v(zj (io)

This amounts to saying that the average contribution of the van der Waals interaction to the

free energy can be computed by randomly placing other bilayers along the z-axis with average
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spacing I; in the limit of large I, the resulting term in the free energy per volume must go

as I IF and hence #~,
as long as the integral converges. It is physically reasonable that as

#
-

0 under the influence of the Helfrich interaction, the distance between adjacent bilayers
will fluctuate strongly about the mean spacing; indeed, equation (10) is a sensible starting
point for computing the perturbative effects on the free energy of a weak direct interaction.

To find out if it is reasonable to expand the Boltzmann factor, consider the van der Waals

interaction between two patches
on neighboring bilayers with

area of order the correlation area

f~ separated along the z-axis by
a

distance I. For large separations I this interaction decays
as

W&~f~l~~ and is thus small. When two bilayers approach closely, we should ask not about the

interaction energy of patches of area
f~ but about patches of the local correlation area f(1)~,

where I is the local distance of close approach (I,e., the separation in z
between the patches).

This interaction energy is f(I)~V(I) and goes as
f(I)~W&~/l~

~-

(K/T)W&~/l~, where we have

assumed I is larger than the layer thickness &. We see that the interaction energy becomes

comparable to kT at a separation I
~-

(KW/T2 id. This tumsout to be comparable to at

the transition, where W~ is roughly of order T~/K (see Eqs. (I Ii and (12) below); thus, the

Boltzmann factor may be expanded except at separations where strong repulsive short-ranged
interactions will be important (see below).

We have
so far avoided the question of repulsive interactions between the bilayers, by in-

corporating their effect into the ideal Helfrich calculation, Note that the correction term in

6/1from the Helfrich interaction, equation (Ii, leads to a term in the free energy fH(I)
~-

T~ /K(6 Ii 6)~
=

T~ /(K&~)#~(l + 3# + O(#~ ii. Apparently, a hard wall of finite thickness

produces a coefficient in the free energy of order #~ (rather than a virial-type term of order

#~); such a term does not affect the nature or location of the critical point at #
=

0. What is

the distinction between the weak van der Waals attraction and the hard-wall repulsion which

leads to different powers of ~ in the free enerjy?

The distinction rests in whether or not the interaction of units of size f(I) at a
distance I is

weak or strong compared to T. For strong short-range repulsive interactions, the interaction

of patches of surface upon close approach becomes arbitrarily large. Then the issue of the

appropriate size of an independent unit is relevant. A sensible way to deal with this question
for a short-range repulsive potential Vh (I) is to choose a distance of closest approach lc such that

f(l~)~Vh (() is of order T; the potential is then modeled
as a hard wall at ( and

a weak potential
the sum of the van der Waals attraction and the weak tail of the hydration repulsion for

which the Boltzmann factor may indeed be expanded [15]. Then the issue of the size of the

independent unit is avoided,
as

discussed above.

Intuitively, it is reasonable that a strong short-range repulsion does not contribute to the

virial term (O(~~) in Eq. (4)), but only leads to an
increase in the apparent thickness of the

bilayers. As a consequence, previous studies of the phase behavior of systems containing self-

assembled surfactant layers (e.g., microemulsions) need not be modified to take account of

such
a

virial term, assuming that the surfactant layers in such cases do not have significant
attractions.

In general, we should expect a nonzero critical value of W at which x =
0, since there is

some weak repulsive contribution to x as well as the contribution from attractions. Reference

iii gives the hydration interaction as Vh(I)
=

Ah exp(-I/lh) with typical values Ah
=

0.2 J/m~
and Ah

"
0.3 nm; a range of bending constants K is quoted for lecithin-type bilayers, from

(1- 20) x
10~~~J (20 400T); the bilayer thickness is

=
4 nm. The separation at which the



1750 JOURNAL DE PHYSIQUE I N°9

hydration interaction of a correlation area
f~

=
(K/T)l~ is T, is given by

1* ~~~2~ 1* 2

~ ~°~
T

~

T Ah
~~~~

For the above parameters, Ahl( IT
=

4, and so
I* ranges from 8.71h

"
2.6 nm for K

=
20T,

up to 12.41h
"

3.7 nm for K
=

400T. (A stiffer bilayer has
a

larger correlation
area at a given

spacing, hence a larger I*.)

The virial integral is evaluated by equation (10) with v(z)
=

Vh(z) + Vw(z), with a
lower

limit z =
I*;

we find a
critical Hamaker constant

~ ~~~~~/
~

l~~ ~
l*

&~
~~~~

For K
=

20T we find Wc
=

2 x
10~~~ J (re 0.5T), comparable to the value of 5.8 x

10~~~ J

obtained by LL.

As I* varies only logarithrrdcally with K, we see that the critical Hamaker constant Wc
varies roughly inversely with K. For K

=
400T, the range of the effective hard-wall potential

increases to 3.7 nm, and W~ decreases to 10~~~ J. (LL obtain 5.6 x
10~~~ J for these values

of parameters.)

The exact value is not particularly sensitive to the procedure for choosing the range of the

effective hard-wall potential. If the definition of the correlation area contains a coefficient a

(f~
=

a(K/T)l~) and the hydration interaction at the effective hard-wall cutoff is taken to be

bT, the resulting equation ii for I* will contain a factor of a16 inside the logarithm, resulting
in a

small change in I*. Of course, the location of the critical point may also be shifted by
fluctuation corrections. Note also that the results of reference iii

are somewhat sensitive to

the details of the numerical procedure [8].

4. Previous appmaches.

Two other authors have presented approaches to the unbinding transitions alternative to that

of reference [I]. Helfrich [8] proposed a model similar to ours. He considered
a weak, short-

ranged attractive potential of depth U and width d between a
pair of adjacent bilayers. He

supposes that one bilayer is weakly bound to the next, with a spread w in position along the

z-axis;
w

would presumably be of order the
mean bilayer spacing tin

a
stack of such bilayers.

The sum of free energies due to Helfrich repulsion and the mean energy in the weak attractive

well for the pair is then (omitting coefficients) f
=

T~/(Kw~) Ud/w. For a stack, the free

energy per volume is then f/w with ~
=

l/w; this is similar to equation (4), but has #c
=

0

any attractive potential binds the bilayers. Helfrich attempts to take some correlations into

account by saying that when a bilayer is within the range of the attraction, the entropy per

area is further reduced beyond the T~/(Kw~) estimate by some phenomenological amount B;
then U is replaced by U B, and U~ =

B.

This model differs from the present calculation in the following respects: Ii The potential is

explicitly taken to be weak, attractive and short-ranged, which eliminates the need to separate
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the strong short-ranged part into an
effective hard core before evaluating the perturbative

effect of the attractive potential on the free energy. 2) The proposed origin in reference [3]
of the nonzero value of binding strength is not that there are both attractive and repulsive
direct interactions in the system. The proposal of reference [3] is essentially that

a
further

entropic penalty must be paid for close approaches. Equivalently, the distribution P(z) of

the positions along the z-axis of a point on the bilayer should be smaller near the wall. The

difficulty of properly accounting for the effects of correlations in computing the virial coefficient

are discussed below.

Wennerstrom [16] has recently considered the phase behavior of a stack of bilayers, in which

he essentially adds together the effective Helfrich potential and the direct interactions together
with a chemical potential term. (We believe this approach to be incorrect, as argued in Sect.

I and reference iii). Reference [16] finds
a

first-order transition between bilayers bound at a

distance of order and essentially unbound bilayers, until the chemical potential is turned up so

high that even in the "unbound" state, bilayers are forced into the system at a spacing of order

&. Then a critical point appears, but with #~
~-

l16 and conventional mean-field exponents. As

discussed in reference [I] and in the Introduction, this is not an appropriate model for critical

unbinding; indeed, there is an apparent contradiction between the assumption that the bilayers
maintain a

well-defined separation I (for purposes of estimating the direct interactions), and

that the Helfrich interaction is responsible for repulsion between bilayers.

5. Difficulty of refinblg flory theory.

One might think that a way to improve the description of the transition would be to use not a

random~mixing estimate for the location of the bilayers along z, but rather include the effects

of correlations induced by the Helfrich interaction. Such improvements to Flory-type theories

are characteristically difficult to impliement, as we now describe.

The correlations between the positions of neighboring surfaces may be expressed for present

purposes in terms of the distribution function P(h) for the z-coordinate h of a point on a

bilayer between rigid walls. The Helfrich calculation of fluctuation-induced repulsions in effect

approximates P(h) in the absence of attractive interactions as a Gaussian, but this does not

describe the way in which P(h) must vanish as the bilayer approaches a wall, More detailed

calculations [17] suggest that P(h) in the absence of attractive interactions with the walls is a

universal function, with
a

broad maximum between the walls, and vanishing near the walls
as

(h + d)C with
c re 4.5.

The suggested improvement in estimating x is then

d

X " j
/

dZ P(ZIV(Zl (131

o

with P(z)
no longer assumed constant.

The difficulty is that for consistency, P(z) must be calculated in the presence of attractive

interactions. Far from the unbinding transition, P(z) may contain strong correlations, but near

the transition P(z) should become quite uniform. A simple example (see below) illustrates the

dependence of P(z)
on the strength of the attractions.
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Calculations of P(z) including the effect of attractive interactions are not available at

present. If we try to use results for P(z) in the absence of attractive interactions in equa-
tion (13) to describe the unbinding transition, trouble ensues. The expression for x will no

longer be independent of d in the longe-d limit; in fact, x(d)
~-

d~~ if v(z)
~-

z~~ for large z
(as

is evident upon scaling z =

z'd and noting that the integral converges for small z). This leads

to a #~ term in the free energ~, instead of the #~ term obtained with a roughly constant

P(z) and totally ruins the simple c;itical point we obtained earlier. The gross cancellation

of errors in the Flory-type description is upset by an improvement in only one feature of the

calculation (coluputing x including some effects of correlations via P(h)) while another feature

remains primitive (coTnputing P(h) without including the effect of attractive interactions).

We may gain some insight into the results of a consistent calcuiaiion of P(h) in the presence
of attractive interactions by consid&ing a

much simpler analogous probiem:
a long, flexible

polymer chain confined between impenetrable walls at z =
+L, with an attraction of short

range a
and variable strength U. For a non-self-interacting chain as we are considering, the

polymer configuration in the directions parallel to the walls does not matter; the phantom
polymer confined between walls is equivalent to a directed polymer in d

=
2 dimensions. De

Gennes [18] has described the effect of~he short-range attraction on the equation for the domi-

nant ground-state wavefunction ~(z) (the lo«A,est eigenmode in
an

expansion of the propagator
of the polymer chain; the monomer density is proportional to (~(z)(~). The attraction results

in a boundary condition of the form d~/dz + K(U)~
=

0 at z =
+L. Here K(U) is a decreasing

function of the attraction strength U. For a mp~llsive short-ranged interaction with the impen-
etrable walls, by contrast, the ground-state wavefunction and hence the monomer density are

essentially unchanged; the wall is already avoided by the polymer, so a shortzrange repulsion
has little effect heyond thickening the walls, as anticipated in the previous section.

As U increases, the wavefunction (which for no attraction is cos(xz/2L), vanishing at trite

walls) becomes a
progressively flatter section cos(oxz/2L) (a < I) of a cosine, and nonzero

at the walls. The repulsion between the walls caused by the confinement of the polymer
(analogous to the Helfrich interaction) becouies progressively weaker. For a

critical value of U

(of order T, independent of L) ~(U)
=

0, and the wavefunction is flat. For still larger U, the

wavefunction is largest at the two walls, and the polymer chain mediates
an

attraction between

the walls.

From this analogy, we draw two conclusions: first, it is consistent with our simple picture of

unbinding transitions that the monomer density becomes flat near the transition between the

attractive and repulsive cases; second, a finite attraction (of order T per monomer) is required
to reach the transition, even though we have no explicit repulsive interaction (in agreement
with the suggestion of reference [8]).

6. Conclusions.

life have presented a simple Flory-type theory of the critical unbinding of
a

stack of lamellae as

the strength of the attractive van der Waals interactions is varied. Our physically transparent
description reproduces all the main features of the transition previously described only by
functional renormalization group calculations of Lipowsky and Leibler, including: I)

a second-

order transition, with the volume fraction of the bound state vanishing as
(W W~); 2) a value

of Wc in the range of 10~~~ -10~~~ J/m~ for parameters corresponding to lethicin bilayers; 3) a

trend toward lower values of Wc for stiflerbilayers. Our simple picture aiso reproduces exact



N°9 FLORY THEORY OF THE UNBINDING TRANSITION 1753

unbinding exponents for d
=

2 dimensional systems in the strong-fluctuation (SFL) regime, in

which direct attractions
are

of short range relative to Helfrich repulsion.

With a
simple theory of the unbinding transition in hand,

we can make some
experimental

predictions away from the critical point. Relating the flee energy equation (4) to that of

a
smectic-A lamellar phase, we can compute the smectic compressional modulus following

reference [3], but
now

including the effects of direct interactions.

The modulus at constant chemical potential 11, which can be directly measured in dynamic
light-scattering experiments [19,20] and is obtained from the thermodynamic derivative h

=

d~0~g/fid2(~ as

~
~~ ~~

'
~~~~

hence the modulus will be smaller in the presence of attractive interactions (x > 0) for a
given

layer spacing d. As a consequence, measurements of the Landau-Peierls exponent q [21,22] or

of hydrodynamic modes jig] should be affected by the presence of attractive interactions.

As
a

final note, we remark that the separation of
a stack of bilayers to infinite separation

has been shown to be interrupted by a transition to an
isotropic "sponge" phase, in which the

simple topology of a stack of bilayers is replaced by a locally smooth but randomly connected

interface [23,24]. This possibility is not contained in the simple model presented here,
nor

in the calculations of reference iii, both of which tacitly assume a stack of bilayers at all

separations.
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