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Abstract. In several branches of mathematical physics
one comes across

the Fredholm

determinant of the kernel sin(z y)K/(z y)K on the finite interval (-t, t). Jimbo, Miwa, Mori

and Sato derived a non-linear differential equation for it. We reinvestigate this problem, find five

equations satisfied by three functions A(t), B(t) and S(t) related to this Fredholm determinant,
and

as a consequence deduce the differential equation of Jimbo, Miwa, Mori and Sato.

1 Introduction.

In
a

long and profound article
on

monodromy preserving deformations, Jimbo, Miwa, Mori

and Sato [I] found, among other things, that the Fredholm determinant

F(z,ij
=

fl
ii z>~(ijj, (i,ij

i=o

of the integral equation

> I(zj
= f~ Kjz, vj/(y) dv. (1.2j

with the kernel It

satisfies
a on-linear second

order differential
equation. This same Fredholm eteriifinant

occurs in the tudy of one
dimentional

odels, for example, the correlation functions

ansverse Ising
chain

[2] or the theory of random

(*) of de
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Ordering the eigenvalues ii as I > lo > 11 > 12 > > 0, we define

F+(z,ij
=

fl
ii z>~;(ijj, (1.4j

;=o

F-(z,t)
=

ij
Ii z121+1(t)1. (15)

Thus F+ (resp. F-) is the Fredholm determinant of the integral equation (1.2) with the kernel

K+ (resp. K-), where

1<+ (z, Y) =
lK(z, vi + K(-z, VII (16)

The integral equation (1.2) is known for a long time [4], its solutions are known as spheroidal
functions; they are either even or odd; the even

(odd) solutions correspond to the l's with an

even
(odd) index. Suppressing the dependence on z for simplicity, let

us set

A(t)
=

-)
Jog F+(z, ii + log F_ (z, t)] (1.7)

B(t)
=

-)~
[logf+(z,t) log F_(z,t)] (1.8)

We will be concerned with the following relations

(A(t)
=

28~(t), (1.9)

((lA)
"

Z(S(1)(~> (l.1°)

((tB)
= z lie (S(t)~)

,

(l.ll)

and

2x(tB)
= z Im (S(t)~)

,

(l.12)

with

Sill
=

e'~t +

f
(Ztl'~

Ii
'S=l

2 -1~~~" ~~'~
/

dYl dy~

exp ixt (xi ziYi + z2Yi z2Y2 + + znyn-1 z~1Y~1 + Y~I)

=
e~~~ +

f
(~)~ dzi dzn dyi. dyn

~1=1
~

~l ~t

exp ix (tzi ziYi + z2Yi Z2Y2 + + znyn-1 Z~IY~I + Y~I) (1.13)

and "Re (Im)"
means

the "real (imaginary) part of ".

The function Sit), with complex values, satisfies the first order non-linear differential equa-

tion

-ij
=

KS ~S* (S~ S*~)
,

ii.14)
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(here I
=

I and S* is the complex conjugate of S). Actually equation 11.14) with the initial

condition, S(0)
=

1, fixes completely the function Sill. For example, expanding S in powers

oft, the successive coefficients
can

be determined iteratively from equation (1.14). This gives
complete information about S near t

=
0 and using equations (1,7)-(1.12) we can get the same

information about F+ and F_. However, it is also of interest to know their behaviour when

t
- cc.

Equation (1.9)
was proved by Gaudin [3]; we will reproduce his proof here in section 2 for

completeness. It was quoted by Jimbo, Miwa, Mori and Sato [I] in the form (our notation)

log F+ ii, ii
=

log F(I, ii ~ /~ dt' (- ~~ log F(I,
'))~~~

ii.15)
2 2

o
dt

()heir Eq.(7.l18)).
If we take equations (1.12) and (1.9) as the definitions of B(t) and A(t) in terms of S(t),

then equations 11.10) and (I. II are consequences of equation (1.14). Moreover, from equations
11.9)-(1.12) one can deduce the differential equation of Jimbo, Miwa, Mori and Sato [I], (their
Eq. (7.104)), which in our notation reads

~ ~~ ~ ~~ ~

~ ~~~~~ ~~~
~

~
~ ~ ~

~
~ ~

~' ~~'~~~

or the differential equation

~ ~~ ~
~

~
~~~~~ ~

~~~ ) ~
~ ~)

~

~ ~'~~~~~ ~~'~~~

Despite several efforts with the help of prominent persons, including the four authors, we

never understood the original proof of equation (1.16). Here we deduce it from equations
11.9)-(1.12) in section 2. This constitutes

an
elementary, and perhaps a different, proof of it.

Moreover, the four relations, equations 11.10)-(1.12) and (1.14), are probably new.

The series expansions of S, A or B in powers oft, or in powers of z, does not show that

z =
I has any special significance. However, as I lo(t) decreases very fast to zero

for large
t, these series expansions are surely divergent when (z( > I.

Equation (1.16)
was used by Mccoy and Tang [5] in their study of the correlation functions

of the transverse Ising chain, and by Basor, Tracy and Widom [6] to study the level spacing
functions in the theory of random matrices.

In another article we will use equations (1.7)-(1.14) to derive the power series and the

asymptotic behaviours of the spacing probability frunctions in the theory of random matrices.

In particular, it will be seen that equations (1.14) and (1.16)
are

related to the fifth Painlevd

transcendental functions, while equation (1.17) is related to the third Painlevd transcendent.

2. Fredhohn deter~ninants, resolvents and differential equations.

From the Fredholm theory of integral equations [7], one can write symbolically,

log F(z, t)
=

log det [I zKt)

=
Tr log [I zKt)

m
~

=

j ~
r~y [K(")j

_~
n

°J
n t

=

£ ~ dzi dzn K(zi z2)K(z2, z3)...K(zn, zi). (2.1)
~-i

n

~t
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Here "det" and "Tr" respectively mean "determinant" and "trace", and Kt is the integral
operator with the kernel K on the finite interval j-t, ii. For F+(z, ii, this same equation holds

provided we replace K(z,y) by K+(z, vi. Differentiating this equation with respect to t, we

have

(
log F(z, t)

=

£ z"+~ /
dzi. dzn (K(t,

xi )K(zi, z2)...K(zn, t)
t

~

~~(~~i Zl)~(~l122)."~(~n ~~))

m t

=
-2 £ z"+~ dzi. dzn K(t, xi )K(zi, z2).. K(zn,t). (2.2)

n=o

~t

To derive the last equality, we have used the fact that

Kjz, yj
=

Kj-z, -vj (2.3j

The series in equations (2.I) and (2.2) are absolutely convergent for (z( < I/lo, where lo is

the largest eigenvalue of K. The heuristic derivation given here can be perfectly justified [3, 7].
Similarly

we
have

~ m t

~ log F+(z,t)
=

-2 £ z"+~ /
dzi dzn K+(t, zi)K+(zi, z2).. I(+(zn_i, zn)K+(zn, ii

~_~ _t

=
-2 £ z"+~ dzi dzn Kit, xi )I<(zi, z2).. K(zn-i, zn)K+(zn, ii~o

(2.4j

Thus A(t) and Bill defined in equations (1.7) and (1.8) can
be written

as
follows

A(t)
=

f
z"+~ dzi. dzn I<(t,zi)K(zi,z2)...K(zn-i, zn)I<(zn,t) (2.5)

~1=o

~t

and

Bill
=

£ z"+~ dzi. dzn I((t, zi)I((zi, z2).. K(zn-i, zn)K(zn, -t). (2.6)~o

Differentiating Ail)
we get

~~~~
~~ ~ ~~ ~ ~~ ~ ~~~ ~~'~~

where

Ai
=

f
z"+~ /(

dzi. dzn ~~(j ~~~K(zi> z2i. Kizn-i> ~niK(zn>11> (2.81

n=o

m n t

A3
=

~j z"+~ ~j dzi. dz;-idz;+I. dzn I((t, zi)...K(z;-i,t)K(t, z;+i).. K(zn,t),

~1=1 j=I

~t

(2.10)

A4
=

f
z"+~

f
/~ dzi. dz;-idz;+I. dzn Kit, zi)...K(z;-i, -t)K(-t, z;+i).. K(zn,t).

n=i ;=i -t

(2.ll)



N°9 A NON-LINEAR DE AND A FREDHOLM DETERMINANT 1725

Now as
K(z,y) depends only on the difference

z y, we can replace 0K(z~,t)/bt in A2 by
-0K(zn, t)/0zn. Integration by parts with respect to zn pushes the derivative one step left.

In the integral

It ~ f~(
dzi. dzn I<(t, xi

)K(zi, z2).. ~"~~'~" K(zn,t) (2.12)
_t

~Zn

replace 0K(zn-i, zn)/0zn by -0K(zn-i, zn)/fizn-i and integrate by parts over zn-I And

so on, till the partial derivative is pushed to the extreme left. These step by step integrations
give

A2
=

-Ai A3 + A4. (2.13)

Also it is easy to convince oneself from equations (2.6) and (2.ll) that

A4
=

B~(t) (2.14)

With equations (2.7), (2.13) and (2.14) Gaudin's proof of equation (1.9) is complete. Note

that
we

have used only the property that K(z, VI is
an even function of z y.

To arrive at equations (1.10)-(1.12)
we need to use the explicite form (1.3) of K(z, y). With

the notation,

~~~'~~
~~~-

~~~
t

= j
/

df exp ix(z vlf. (2.isl
-t

we get from equation (2.5) by
a

change of variables z; -
lx;,

" 1

tA(t)
=

£ z"+~ dzi. dzn k(I,zi)k(zi, z2)...k(zn-i, zn)k(zn,1)
~=o

~l

"

~~~~~~/_~~~~"~~" ~~~"~~"+~

eXp 1X
(yl Vi Xl +1i2Zl Y2Z2 + + flnZn-1 YnZn + fin+lZn yn+1) (2.16)

Sirrdlarly

" 1

tB(t)
=

£ z"+~ dzi. dzn k(I, zi)k(zi, z2).. k(zn-i, zn)k(zn, -Ii

~1=0

~l

=

~

Ill "~~ ll
dzi. dzn II dYi. dun+i

eXp 1X
(yl YlZl + fl2Zl Y2Z2 + + flnZn-1 linZn + fin+lZn + tin+1) (2.17)

A differentiation with respect to t gives

((tA(t))
=

Xi + X2, (2.18)
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Xi
"

~
+

f
(~)~~~

f
/~ dzi. dzn /~ dyi. dy;-idv;+I. dyn+1

~
n=1

~
j=i ~l ~t

exp ix (yi Yizi + Yj-iz;-i + tz;-i lx; + y;+iz; + yn+izn yn+1),

(2.19)

~2
"

+
~

~))
~~~

~ /~ ~~l.. dZn /~ dYl dYj-ldYj+I dYn+1

~=i ;=i

exp ix (yi Yizi + Y;-iz;-i tz;-i + lx; + y;+iz; + yn+izn yn+1),

(2.20)

Now it is easy to convince oneself that

Xi
= )SS* =

X2, (2.21)

with S
=

Sill given by equation 11.13), and S* is its complex conjugate.
Similar manipulations will give

((tB(t))
=

Bi + B~, (2.22)

Bi
"

~ e~'~~ + £ (~
~ £ dzi. dzn dyi dy;-idy;+i dyn+1

2

~
2

~ ~
~) /~ /~

n= j=

exp ix jyi yizi + y;-iz;-i + iz;-i ix; + y;+iz; + yn+izn + yn+i),

= )S~ 12.231

and

exp ix
(yi -

z
~~

= -S
quations

(2.18)
and (2,21) give equation

(1.10), while equations
2.22)-(2.24) give

(I.ll).
To get equation (1.12)

we will
alculate

the maginary part of S~(t). For this purpose
let

" 1

S(t)
=

e~~~ + £ z" dzi. dzn e~~~~lk(zi, z2)k(z2, z3)...k(zn-i, zn)k(zn,1). (2.25)

~=i

~l

where k(z, y) is given by equation (2.15). Changing the sign of each of the integration variables,

we can write this equation also as

°~ 1

S(I)
#

e"~ + ~ Z"
/

dfl.. dfn e
~~~~~k(fl>f2)k(f2>f3)...k(fn-I>fn)k(fn> ~~l' (~'~~)

n=1 ~~
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Multiplying the two expressions (2.25) and (2.26) we see that the coefficient of z" in S~(t) is

Ii
dfl.. dfn e"~~~ ~~~k(fli f2)...k(fn-

ii
fn)~(fin ~~)

-l

I

+ dzi. dzn e~~~(~~~i)k(zi, z2)...k(zn-i, zn)k(zn, Ii~i
n-i i

+
£ dzi dz; dfi dfn-; e~~(~i~fi )k(zi, z2)...k(z;-

i, z; )k(z;, Ii

._~

~i

k(<i,<~j...k(<~_,-i,<~_,jk(<~_;, -i) (2.27j

Its imaginary part is therefore

Idzi dzn k(I, xi )k(zi, z2).. k zn-i, zn)k(zn, -Ii

n-I

X I Xl + Zn + I + £ (Z;-1 Z;)
j=2

l

=
2x

/
dzi. dzn k(I, zi)k(zi, z2)k(zi, z2).. k(zn-i, zn)k(zn, Ii. (2.28)

-1

But
on

integrating over all the variables y; in equation (2.17) one sees that the coefficient of

z"+~ in tB(t) is

Ii
dzi. dzn k(I, zi)k(zi, z2)k(zi, z2)...k(zn-i, zn)k(zn, -Ii. (2.29)

-1

Thus

2xfB(t)
=

zIm S~(t). (2.30)

This is equation (1.12). Note that unlike equation (1.9), this one is valid only for the particular
kernel (1.3).

From equations (1.10)-(1.12)
we

have

It
~

+
)

= (t
~

+ B) + (2xtB)~ (2.31)
~ ~

Also from equation 11.9) with one differentiation we have

I dt2
~

dt
~~

~
dt

~
~

~~'~~~

Eliminating t dB/dt + B between equations (2.31) and (2.32) and replacing 28~ with dA/dt,
equation (1.9),

we get equation 11.16).
On the other hand, if we differentiate equation (2.31),

use equation (2.32), and cancel out

the non-zero factor t dB/dt + B,
we get

~ ~
dA d2 ~ d ~

$ ~ ~
"

~w + 2j + 4x~tB j~ ~~j
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Squaring this and using equation (2.31) again to eliminate, this time, t dA/dt + A, we get
equation il.17).

Equation 11.17) could have been obtained also as follows. Multiply equation 11.14) through-
out by S and write it

as a differential equation for S~. Separating the real and imaginary parts
of this equation and eliminating the real part one gets a

second order differential equation for

the imaginary part of S~, I-e- equation (1.17) for Bill.
To differentiate Sill, it is convenient first to write it in the form, (Eqs. ii.13), (2.15) and

II .3))>

" 1

Sill
=

e~~~ + £ z" dzi. dzn e~~~~i k(zi, z2)...k(zn-i, zn)k(zn, Ii
n=I

~l

" t

=
e'~~ +

~j z" dzi. dzn e'~~iK(zi, z2).. I((zn-i, zn)K(zn, t) (2.34)

n=I

~t

so that

~
~~~~~~ ~ ~~ ~ ~~ ~ ~~ ~~'~~~

Si
"

f
z" /~ dzi. dzn e~"iI((zi, z2)...I((zn-i, zn)~~l'~~ (2.36)

n=I ~t

52
"

f
z"

f
/~ dzi. dzn e~"iI((zi, z2).. I((z;-i,t)K(t, z;+i).. K(zn-i, zn)K(zn,t)

~1=1 j=1 ~~

(2.37)

53
"

f
z"

f ~

dzi. dzn e~"iI((zi, z2)...I((z;-i, -t)K(-t, z;+i).. K(zn-i, zn)I((zn, ii

n=i

=1~~

(2.38)

For Si we follow the method ofGaudin; replace 0K(zn,t)/0t by -fiK(zn,t)/fizn and integrate
by parts on zn, then in the integral

~~~'' ~~" e"~~ It(zi, z~)___
°K(zn-

i, z~ j
°~n

I~(~"'~l ~~ ~

replace 0K(zn-i, zn) /fizn by -0K(zn_
i,

zn) /0zn_1 and integrate by parts over zn_ i,
and so

on, till the differentiation sign is pushed to the extreme left, where it finally disappears. Thus

Si
"

-52 + 53 + ix
f

z" dzi dzn e~~~i K(zi, z2).. K(zn, ii, (2.40)

n=I

~t

and from equations (2.34), (2.35) and (2.40),

~
=

ixs + 253 (2Al)

It is easy to convince oneself from equations (2.6) and (2.38) that

53
"

S*.B. (2.42)

Equations (2.41), (2.42) and (1.12) imply equation (1.14).
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