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Abstract. We present a phenomenological model for the dynamics of disordered (complex)

systems. We postulate that the lifetimes of the many metastable states are distributed according to

a broad, power law probability distribution. We show that aging occurs in this model when the

average lifetime is infmite. A simple hypothesis leads to a new functional fornl for the relaxation

which is in remarkable agreement with spin-glass experiments over nearly five decades in time.

In spite of fifteen years of dispute, the theory of equilibrium spin-glasses is not yet settled

[1, 2, 3]. Dynamical effects are, however, likely to be the dominant aspect in experiments.
One of the most striking aspects of the dynamics of spin-glasses in their low temperature
phase is the aging phenomenon- a rather peculiar and awkward feature from the

thermodynamics point of view : the relaxation of a system depends on its history. More

precisely, if a system is field-cooled below its spin-glass temperature, the magnetization
relaxation depends on the Waiting time t~ between the quench and the switch off of the

magnetic field [4, 5, 6]. Similar effects are observed on the viscoelastic properties of polymer
melts [7], magnetic properties of HTC superconductors [8] and more recently on the

relaxation after a heat pulse in Charge Density Wave systems [9]. Analytical fits of the

magnetization relaxation as a function of time have been proposed. In [6], it is proposed that

the initial «stationary» part of the relaxation is a power-law With a small (negative)
exponent. For times longer than the Waiting time, relaxation is Well fitted by a «

stretched
»

exponential decay, provided that an effective time is introduced [6]. In [4, 5], however, a

stretched exponential of the «real» time was found for relatively short times. Many
phenomenological theories have been devised to account for the stretched exponential decay
lo-14], and for the slow part and aging [6, 15-18]. We however feel that the basic mechanism

underlying aging has not been fully appreciated (see however [17]) although it is, in our

opinion, one of the constitutive properties of spin-glasses. The aim of this note is to suggest
that aging is related to ergodicity breaking which has, in these systems, a peculiar and

perhaps unexpected meaning. We find on some simple models that- according to our

definition, see below
«

Weak
»

ergodicity breaking occurs in the spin-glass phase, defined

as the phase Where the Edwards-Anderson parameter is non-zero. We see however no reason

Why the two should be linked in general, and suggest that the appearance of aging could be

taken as an operational definition of the spin-glass transition.
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We reproduce both the short time (t«t~) and the long time (t»t~) parts of the

magnetization decay under quite reasonable hypotheses.
The analytical form of this decay is however different from all those previously proposed.

We find in particular that :

m(t)
= mo exp i- y/(I x) (t/t~)~ ~~i 0 w x w

for t « t~ and a power law decay

m(t)
=

(tit~)-Y

for t » t~. Note that the two regimes are strongly connected, since the above exponent is

related to the parameters describing the initial part of the relaxation. This feature should be a

stringent test of our theory. As We shall see, our theory is in remarkable agreement With both

the
«

short
»

time experiments of [4. 5], and the very long time data of [6].

It is Widely accepted that the energy landscape of a finite disordered system is extremely
rough, With many local minima corresponding to metastable configurations, Which We shall

call loosely
« states ».

Since the energy landscape is rough, these local minima are surrounded

by rather high energy barriers. We thus expect that these states act as « traps »
Which get hold

of the system during a certain time r.

What is the distribution of these trapping times ~(r) ? A simple picture for the energy
landscape is the following (Fig. I, see also [11]) : there exists a «

percolation
» energy level

fo below which
« states » are disconnected ; fo is the minimal energy required to «

hop
»

between any two states. In other words, we assume that the dynamics benveen the traps is very

fast and that the probability to find the system between two metastable states is negligible.

r

(
a

r

b) AGING
io

r

Fig. I. a) Schematic view of the energy landscape : holes are drilled below the reference energy
fo which is the minimal energy needed to go from one metastable state to another. Note that this

drawing is one dimensional : in reality mountains of height » f~ also exist between different states. b)
When the extemal field is cut, the landscape acquires a non-zero slope which drives the system towards

zero magnetization states.
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In this picture, the energy barrier AE is thus equal to the depth of the trap,

fo f. In the spin glass phase of both the Random Energy Model (REM) and of the SK

model, the distribution of very low f's is exponential [1, 23, III :

P ~f )
=

NIT exp x ( f fo)lT (1)

where x is a temperature dependent number between 0 and I, fo is the reference level above

Which levels proliferate and N is a constant. In the REM, x =
T/T~ Which is connected to the

fact that the free energy landscape is temperature independent. This is not the case in the SK

model, Where x(T) is non-trivial [I]. Its shape is Well approximated by the
« one-step »

replica
breaking scheme [5].

Assuming that AE= fo- f, and that
r =

roexp(AE/T), one finds, using (I) and

~ (T) dr
=

P ( f ) df :

~(y) ~yx y- (I +x) (2)
0

for large r. [w is a normalization constant]. Such a form is also obtained in many other

models- for example the one-dimensional «random force model» II?, 20-22], with

x =

TF/« where F is the average force and wits variance.

It may be that for real spin-glasses the probability distribution of low free energy states

decays more slowly for large negative f, for example as a power law

P (f )
=

fi(- f )~ ~~ +'~ (3)

with (
~

0. In this case, ~ (r) reads :

~ (r )
=

air jog rir~j- (' + <) (4)

where 8 is a constant. This will lead to logarithmic, as opposed to power law, decay. (4) would

probably conform more to the ideas of Fisher and Huse [15].

The most interesting property of these distribution laws is the fact that
w

IT)
=

drr~(r) diverges, when xwl for equation (2) and for all finite ( for
o

equation (4).
Hence, the time needed to explore an infinite system is infinite. This is however a non-

conventional scenario for ergodicity breaking, since the phase space is a priori not broken into

mutually inaccessible regions in which local equilibrium may be achieved. We shall call this

situation
«

weak
»

ergodicity breaking. It may be that
« true »

ergodicity breaking also occurs,

I.e. the existence of many « pure states »
between which infinite barrier stand. We shall

carefully avoid this issue (the reader is referred to [19] for a recent experimental discussion),
since the dynamics is by definition restricted to only one pure state, and for which the concept

of
«

weak
»

ergodicity breaking is relevant.

Let us now see how this feature is deeply connected to the possibility of observing aging.
Suppose that the system under study can be decomposed into ~lL independent subsystems.
These subsystems may be, for example, weakly coupled polycristalline

«
grains

» or clusters of

magnetic atoms they are not, in our mind,
«

domains
»

growing with time as is assumed in

references [15, 16] (although such domains may indeed be present inside each grain). In other

words, we assume that an experimental sample is already a collection of a large number of

micro spin-glasses, and hence that the measured quantities are disorder averages. We claim

that performing dynamical experiments on mesoscopic samples, where ~lL is small, would

yield irreproducible results.
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Each subsystem I (
=

I, ~lL) can be in a certain number of
« states »

8(I )
=

8 which we

shall suppose roughly independent of I. The total number of states is thus
=

8~ Note that in

the SK model, 8 depends on temperature, with in particular 8(T~)
=

I.

The system is field cooled to a certain temperature T~T~. Since a magnetic field

H is on, the system evolves within a «
pool of states »

which carry a net magnetization but

cannot reach states with a different value of this magnetization : this would cost an extensive

(free) energy. The free energy distribution of these states is characterized by a certain

x(T, H) or ((T, H) depending on which of the two distributions (I) or (3) is more

adapted. [For convenience, we shall adopt in the following the distribution (I), the

corresponding results for distribution (3) can be obtained from those given below by defining

a time dependent effective parameter x (t) according to x(t
=

(I + ~) log(log t/ro)/log(t/ro)
which goes to zero as t

-
oo].

The magnetic field is left on a time t~. During this time, the subsystems start exploring their

phase space. The deepest trap available for a given subsystem I is characterized by a trapping
time t(I) such that :

s
°~

dr ~ (r) =1 (5)
t(1)

Equation (5) simply means that out of 8 trials, a value of
r

larger or equal to

t(I ) has been encountered roughly only once. (A more rigorous justification can be found in

e.g. [21]). Thus, from (5), t(I )
= To

8"~. This longest trapping time of course fluctuates from

one subsystem to the other, with a distribution given by £(t, 8) such that

£ (t, 8)
=

r( Sit + ~ (6)

for t »
8~'i [The maximum relaxation time available in the whole system is thus, similarly,

t(~lL)
=

8 ~'~~~.]

Let us now estimate the order of magnitude of the longest trapping time r~~ actually
encountered during a time t~, when r~~~ is much smaller than t(I). If N (t~) denotes the

number of different
« states »

visited by the subsystem after t~, r~~~ is obtained through :

N (tw )
°~

dr ~ (r )
>

(7a)

lr~t~
=

£ rj m
N (t~) dr r~ (r ) (7b)

j i. N(iw) 0

which gives, for x ~
l and for all finite (, r~~ =

t~. This is the key point in our picture : the

deepest state encountered traps the system during a time which is comparable to the overall

waiting time. Schematically, states such that
r « t~ are thus, for x ~

l, ergodically probed,
whereas those for which

r » t~ are barely visited. This is not so for x ~
l : from (7a, b) one

finds that the typical value of r~~~ is r/ "~(t~)~'~ « t~.

We are now in a position to describe the observed relaxation laws quantitatively. When the

magnetic field is switched off, the free energy of the metastable states are uniformly shifted by

an amount + MH (Fig. lb). The subsystems will evolve independently towards states carrying

no magnetization, which requires a collective change of a finite fraction of the spins. The

system must leave the metastable state that it had entered when the field was on. However, the

system may also continue to probe deeper and deeper wells while relaxing; its age

t~ is thus time dependent with : t~(t)
=

t~ + t. This feature was recognized as a crucial

ingredient for a consistent analysis of the experimental data [6].
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Two cases must then be distinguished :

A) Short waiting times :

Suppose first that the waiting time t~ is much shorter than Tog "§ defined by equation (5). In

this regime, the phase space is effectively infinite. The probability P (r, t~ ) to find a given

subsystem in a state characterized by r can easily be shown to be equal to r(r/t~ ) r~(r),

with r(u)= I for small u, and decaying to zero for u»I. The detailed form of

r(u) would depend on the
« geometry »

of phase space I.e. the relative positions and

interconnections between the different metastable states. In the simple case where all states

are equally accessible, one finds r(u)
=

I/u for u » I.

The very curious feature in the x ~
l phase is that

r ~ r is a priori not normalisable, since

IT ) is infinite. P (r, t~ ) can thus only be normalised when the waiting time t~ is finite, and

then reads :

P (r, t~ )
=

Ar (r/t~ ) (t~ )~ '/r~ (8)

lwwith A
=

dur(u)/u~ [= III -x if one takes a simple step for r(u)]. Note that the

o

microscopic time To has entirely disappeared from equation (8) This would not be the case

for x ~
l : in this case, one simply finds P (r, t~ ) cc r ~ (r ), which in fact corresponds to the

ergodic result (indeed, r~(r) is proportional to the Boltzmann weight).
Assuming a simple exponential decay from single states ('),

we thus find, for the

magnetization relaxation rate :

lmdm/m
=

pi I/rj dt
=

dt lp/Zj dr I/r P (r, t + t~) exp(- t/r) (9)
o

lwwhere Z
=

dr P (r, t + t~ exp (- t/r). p is the probability for the magnetization of the

o

subsystem to relax when leaving a r-trap, rather than continue aging among magnetized

states. p thus measures «
how easy »

it is to find states with small overlaps [24].
Aging during relaxation is taken into account by the appearance oft + t~ in the above

expression. Formula (9) is easily transformed into :

dm/m
=

t -~(t + t~ )~~ ' G (tit + t~ ) dt (10)

where G (u) is another slowly varying function, related to r(u), such that G (O)
=

pr(x)/A.
Note that equation (10) is close in spirit, although not equivalent, to the treatment of

references [6, 7], where a description of aging during relaxation was proposed. In the

following we shall neglect the variations of G, and study (10) in the short and long time

regimes.
For t « t~ one finds

m(t)
=

moexpi- y/(I -x) (t/t~ )' ~~i
=

mo(I y/(I -x) (t/t~ )~ ~~ + ) (II)

where y =

pr(x)/A. For t » t~, aging during relaxation becomes the predominant feature

and we find :

m (t)
=

(tit~ )- Y (12)

(1) Note however that our central result, equation (10), is unchanged up to a redefinition of G if

exp(- t/r) is replaced by any function of t/r decaying faster than t~
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(assuming that G(I
=

G (O)). Three remarks must be made :

I) our theory reproduces the ubiquitous
«

stretched
»

exponential decay, which is seen to

be only valid at short times t « t~.
One should also note that based on the exponential distribution of free-energies (Eq. (I)),

De Dominicis et al. [I II have proposed a dynamical model for which a stretched exponential
decay is found for long times, with an exponent x (while we find I -x, see Eq. (ll)).
However, our approach is very different since we assume that the hopping rate from one state

to another is determined by the
«

starting state »
and not, as in [I ii, by the

«
destination

»

state. Furthermore, no aging effects were found in this model.

ii) (I I) and (12) show that the two limits (short and long times) are intimately connected.

iii) Note that in this regime, m (t, t~ ) is a function of the ratio t/t~ only. In particular, we

find that the short time decay, for t « t~, is not stationary. This is at variance with the theory
of references [15, 16], where the equilibrium (stationary) dynamics is predicted for

t«t~_ In our model, this is only the case when t~» To
8"~ (see below). Moreover

m(t~, t~ ) is still of order of mo.

We have fitted some of the experiments of [6] with the function obtained from the

integration of (10), with a constant G. This leaves three fitting parameters: mo,

x, and y. (Note however that the shape of the curve is only parametrized by x).
As can be seen from figure 2, the agreement is remarkable in view of the broad scale of

times which is probed : t varies from 0.I to 3 500 min, and the waiting time t~ is equal to

31.3 min. For T
=

0.6 T~, we find x =
0.76 and y =

0.062 ; using A
=

I/(I x), this

corresponds to p of the order of 1/3. Note in particular that an algebraic distribution of lifetimes

(Eq. (3)) appears to be more appropriate than the logarithmic distribution, equation (4).

T=10K, x=0.7645, y=0.0645, m(t=0)=0 567

O.6

o.5

O.4

O.3

O.Ol 0.I 10 loo 1000 1001

log(t[min.])

Fig. 2. Fit of one of the aging experiment on Cdcrj_~Ino,354 spin glass [6]. The waiting time is

31.3 min under 15 Gauss, and the temperature is 10K=0.6T~. The set of paranJeters used was

mo =

0.567 (in units of the field cooled magnetization), x =

0.76 and y =

0.0645.
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Other temperatures and waiting times are equally well reproduced by our theory. A more

extensive presentation of these fits, and of the very interesting field and temperature

dependence of the parameters, will be published elsewhere [25]. Note finally that the

experiments of [5] have been analyzed in terms of a stretched exponential decay. This 15 nicely
explained by our theory, since in these experiments, the decay time is less than or comparable

to t~.

In order to emphasize the peculiarity of the region x~ I, one should note that for

x~l, where the distribution (8) becomes normalisable, one finds m(t)=mo
[I (t/ro) + : the magnetisation has thus drop substantially after a microscopic time

To, and not after the macroscopic time t~.

B) Long waiting times and
«

interrupted aging
»

Let us now consider the other limit t~ » Tog ~'§ which corresponds to the case where most

systems have reached equilibrium. Using (6), we find that (8) is replaced by :

p(y) gyy~l+xj~/gI/~ j gl-16( )~-l/~x (j~)
" T0 ~ T0

for
r « Tog ~'~

Hence, for t « Tog ~'~« t~, we find that

m (t)
=

mo(i yi(i x) (t/ro s i/x)i -x ) (14)

which is independent of t~.

For ro8"~«t«t~,
one observes those subsystems such that t(I)~t~, for which

equilibrium is reached. From the theory of L£vy sums (see e.g. [21]), one may show that the

deepest traps of these subsystems, for
x ~

l, entirely dominates the partition function. In

other words, the probability to find the subsystem I in its deepest state is oforder I. The fraction

m(t) of subsystems still carrying their initial magnetisation is thus, for Tog "~« t « t~,

lmm(t)/mo
=

dr (rj8/r~ +~j exp(- t/r)
=

8(ro/t)~ « l (15)
o

where we have used the probability distribution (6). Hence aging essentially stops (or
becomes inobservable) when Tog "~= t~~~, beyond which the finite size of the phase space

appears. «
Interrupted aging

»
has indeed been observed in Charge Density Waves [9], and

can be used to measure the
«

complexity
» n of the system, which is naturally defined as

n
=

Logs =x Log (t~~~/ro). Let us finally mention that aging of low frequency a-c-

susceptibility can be understood using an extension of equation (9) :

x (w, t~)
=

°~
dr p (r, t + t~) i/(i + iwr) (16)

where a simple Debye form is assumed for each state [25]. In particular, we find that

x "(w, t~)
=

4 (&
= w t~) with 4 & )

=
& for small it, and 4 & )

=

&~ ' for large

&i, in agreement with Koper and Hilhorst [16].
We have thus proposed a phenomenological model which allows us to understand, on very

general grounds, how the phenomenon of aging sets in : the phase space must posses a large
number of metastable states, which a broad, scaleless, distribution of lifetimes. When the

average lifetime of these metastable states diverges, all the physical observables are

dominated by the properties of the deepest state that the system was allowed to probe in its
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quest for the
« true »

equilibrium state. Aging stops either when the distribution of lifetimes is

truncated and is a finite size effect, or when the distribution of lifetimes decays more rapidly
than r~~ A more formal description of our results could be given, along the lines of

reference [11], using a Master equation in phase space.

The most important quantity of our theory is the index x, which naturally appears in the SK

or REM models of spin-glasses. x gives information on the distribution of free-energies in the

spin-glass phase, and the present model 15 a suggestion for its experimental determination,

which would be of great interest. The behaviour of x and the disappearance of aging as

T~ is approached determines the nature of the freezing at the glass point : in the Random

Energy Model [23], x(T~)
=

I, which means that the phase space is broken into many

metastable states of comparable
«

size
».

In the SK model, on the other hand, x(T~)
=

(one

valley dominance) [II and the number of states S(T-T~) is tends to I : aging is then

interrupted for microscopic times.

Let us finally emphasize that our model is not restricted to spin-glasses and may thus be

useful to understand aging in other systems such as polymer glasses [7] and Charge density

waves [9].
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