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AbstracL A dynamical version of the random fuse model is presented in which the temperature

T of a fuse of resistance r carrying the current I obeys the equation dT/dt
=

ri~ aT, where

ri~ accounts for a generalized Joule heating and aT describes the coupling to a thermal bath.

For random resistances with the same temperature threshold T, for rupture, the quasi-static

random fuse model is recovered in the limit b~+ oJ, whereas the other extreme b~0

corresponds to the percolation model. In the intermediate regime, the competition between the

two time scales T/ri~ and a~ ' of the temperature field produces a rich phenomenology of rupture

pattems which present sensitive dependence upon the input current.

1. Introduction.

Rupture of random materials within a statistical physics framework has been studied

intensively these last few years and a partial classification of different possible regimes has

emerged [1, 2]. The statistical physics approach seems unavoidable in order to tackle the

many important difficulties underlying this field, for instance the presence of many interacting
defects, the long-range nature of electric or elastic Green functions and the irreversible

evolution of the rupture, to cite a few.

As a consequence of the extraordinary richness of the phenomenology of fracture

mechanics, a large variety of lattice models has been defined, ead model capturing to some

degree a part of a realistic situation. These models can be classific<I [3] according to I) the

nature of the physical problem and goveming equation (scalar, centr;.I force, beam model...),
2) the boundary condition (circular, uniax1al, shear, surface cracki~g), 3) the connectivity

constraint, 4) the nature of the disorder (strength, conductivity or elastic moduli, dilution,
thermally activated, probabilistic of DLA type). However, all these models have one

fundamental property in common, namely the drastic hypothesis that the evolution of the

rupture is quasi-static. Indeed, the evolution of the system is obtained by solving the equations
and the first bond which fulfils the rupture criterion is singled out and broken. For instance,

(*) CNRS URA 190.
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taking a rupture criterion on the strain, the bond for which the ratio strain over threshold is

largest is chosen to be broken. Then, the same process is iterated on the new system and so on

until a macroscopic fracture appears. In these models, there is no real dynamics but only a

quasi-static irreversible process. Of course, a time dependence can be artificially introduced

from the probability to rupture a given bond [4, 5]. This is exactly the spirit of the growth
models such as DLA (diffusion limited aggregation), which describe the quasi-static
irreversible evolution of complex interfaces [6]. It is thus not a coincidence that statistical

models of rupture in random systems have been and are still considered as belonging to the

realm of fractal and non-fractal (quasi-static) growth processes.
In this paper, a new point of view is proposed within the framework of statistical physics,

namely the relevance of the dynamical nature of rupture. Indeed, natural materials very

rarely break down without presenting time dependent effects. The rupture of a window screen

by a stone, more generally any breaking of colliding objects, cracking under explosions,

rupture under fatigue, etc, are a few examples showing that the time evolution of a system is

most important in order to describe its rupture adequately. Here, our purpose is not to dwell

on specific time-dynamical effects in relation to rupture but rather to present a simple but

already rich model which encaptures the qualitatively novel aspect of relaxation processes, a

feature which is absent in quasi-static models. We will show below that, as a consequence of

the existence of these relaxation processes, new fascinating behaviors appear which bear

resemblance to some real-life time-dependent rupture processes.

The paper is organized as follows. In section 2, we introduce the thermal fuse model in the

electric context and outline its relation with its mechanical formulation. In section 3, the

connections and differences between the thermal fuse model and other previously studied

models of rupture are discussed. Section 4 constitutes the main part which describes in some

detail the properties which have been found in the general case, We study more specifically
the dependence of the fractal dimension of the main crack as a function of the initial quenched

disorder of the conductances and on the exponent b describing the degree of nonlinearity of

the response of the fuse heating rates as a function of the electrical current. Note that the rble

of this exponent b is similar to the q-exponent introduced by Niemeyer et al. [7] in the

Dielectric Breakdown model, a generalization of the DLA model, and to recent calculations

on rupture in networks presenting an annealed disorder [4, 5]. The time dependence of the

time t/ needed for total rupture is studied both analytically in some cases and numerically,
notably by monitoring the time evolution of the total conductance of the network. A short

account of this work has been presented elsewhere [8]. Other results on dendritic pattems and

front propagations have been obtained when cracks grow from a well-defined nucleation

center in absence of disorder. They show that the thermal fuse model of dynamical rupture

possesses properties in common with other general surface growth phenomena. These results

will be published in a future paper [9]. The mechanical version of this model can also be used

to rationalize the remarkable observation, quantified by the so-called Omori's law, that

seismicity prior to a great earthquake often shows a marked increase of activity [10]. In the

future, we hope to exten<I further the present analysis of this model and compare it with well-

defined experiments [11".

2. The time dependent thermal fuse model.

As scalar fields (voltages and currents) are simpler to deal with, we shall restrict our attention

to a 2D electrical fuse model. Let us consider a square lattice of unit mesh oriented at 45° with

respect to the two borders a distance L/ /
apart. Periodic boundary conditions are assumed

in the direction parallel to two opposite borders acting as bus bars. The bonds are electric
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resistances. We assume that the resistances are distributed according to a probability
distribution P (r). To each bond n is thus associated a resistance r~ chosen with the probability
distribution P (r~). This choice is made once and for all at the beginning, corresponding to a

quenched disorder on the electrical resistances.

In the quasi-static fuse model with quenched disorder [12], it is usually assumed that the

bonds tum irreversibly into insulators if their current exceeds a chosen threshold value. In

order to introduce a dynamics in the rupture process, many possibilities exists. Within the

electrical formulation, a very natural way would be to consider that the bonds of the network

carry generalized impedances, which possess both a real part (resistance) and an imaginary

part (capacity and inductance). This leads to rather intricate numerical problems. Maybe the

simplest way is to come back to the formulation of the quasi-static random fuse model,

however with a rupture criterion modified according to the rule that a bond will break down if

its intensity integrated over time reaches a given threshold. In this case, the rupture scenario

indeed depends on the value of the intensity, not only at time t, but also at all previous stages
of the rupture process. This is not yet the model that will be studied in the present paper.
However, it will be shown that this model corresponds to the special case obtained by fixing

the two parameters (b
=

I, a =

0) of the thermal fuse model that we now introduce,

Inspired from the physics of a real fuse which bums out by melting, we will introduce the

additional temperature field in terms of which the rupture criterion will be defined.

Therefore, in addition to being characterized by its electrical current i~, we will postulate that

a bond n is also characterized by its temperature T~. The coupling between the two fields is

chosen to be given by the following heat equation :

C dT~/dt
= r~ I((t) aT~(t) (I)

where the specific heat C is chosen equal to I in all fuses. Equation (I) describes the heating
of resistance

« n »
due to a generalized Joule effect ri~ characterized by the exponent «

b
».

The case b
=

2 yields the standard Joule effect. The second term of the r.h.s, of equation (I)
describes the coupling of the bond to a thermal bath at zero temperature. Note that any other

choice for the bath temperature just shifts the temperature scale. The coupling with the

thermal bath is characterized by a time scale a~ ' The rupture of a bond is now prescribed to

occur when its temperature attains a threshold T~, chosen equal to unity for all bonds. This is

the way the temperature field reacts back on the current field, I.e. the thermal rupture of a

fuse changes the topology of the electric network and therefore the current distribution. It is

possible to consider different types of coupling between the electric and thermal fields, by
considering for instance a dependence of the resistances as a function of the temperature
(thermo-electric effects.. ). This will be neglected in our study but may lead to interesting

cooperative behaviors.

Note that three levels of complexity can be distinguished in the thermal fuse model as

specified by equation (I). I) For a
=

0 and b
~ + co, we get back the irreversible quasi-static

random fuse model studied previously since only the bond carrying he largest current will be

heated and will eventually break down. In this limit, the only relevant
« memory »

effect

comes from the irreversible evolution of the bond rupture pattem wJich in tum controls the

electrical current field. 2) For a =

0 and 0
<

b
< + co, in addition to t,ie previous

« memory »

effect which is of course present, the temperature of a given fuse at time t is an additive

function of all the previous heating rates. Note that in particular for a=0 and

b
=

I, one obtains a random fuse model with a rupture criterion such that a bond will break

down if its intensity integrated over time reaches a given threshold, a case which has been

mentioned above. 3) In the general case (a # 0 and 0
<

ha + co), in addition to the two

previous
« memory »

effects, the model possesses a kind of
«

healing
» or «

hardening
»
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mechanism, since heat can be exchanged with a bath and the bond temperature can decay

away from the temperature threshold for rupture.
The simulations have been carried out with the following procedure. At time t

=

0, a

constant current I is suddently applied and flows from one bus bar to the other. The current

per bond would thus be I
=

I/L in absence of resistance disorder. We postulate that the

electrical voltages and currents have an infinitely short response. We thus calculate the

current distribution in the network, I.e. the current i~ in each bond, as for a static input

current. We have used both a relaxation method and the conjugate gradient technique, using

an error criterion
e «

10~~° No significant difference was found between the two numerical

schemes. Once the currents in each bond is known, it is reported in equation (I) which gives
the time evolution of the n-th fuse temperature T~(t) (see Eqs. (2), (3) below). Starting from

a reference temperature equal to that of the thermal bath, the fuses are progressively heated

by the generalized Ohm effect (I). As long as no fuse bums out, the current in each bond

stays constant. Knowing the current i~(0) flowing in bond n, equation (I) yields

T~(t)
=

(r~ ij(0)la)il exp j- atj (2)

This time evolution (2) is valid up to the time ti at which a bond first reaches the threshold

T~
=

I for rupture. At tj, this bond is broken, I.e. its resistance is put equal to infinity. The

current distribution in all remaining bonds is computed again. We note i~ (tj) the value of the

new current in bond n after the breaking of the first bond. This set of currents

(i~(tj), for all bonds) is injected back into the heat equation (I), with the additional

information that the temperature attained by bond n at ti is T~(tj). Iterating the procedure
again and again after each bond rupture and noting t, the time at which the I-th bond has been

blown out, we obtain the following general time dependent temperature expression for the n-

th bond, provided that it has not reached the threshold temperature T~
=

I :

T~(t)
=

T~(t,) e~~~~ ~~~
+ (r~ I((t,)la)[I exp (- a(t t;))

for t, « t « t;
~ j

if T~ (t)
«

(3)

Note that the ordering of the successive bonds rupture is well-defined, thus enabling the

introduction of the ordered breaking times 0
< tj < t~ < < t; < t;

~ j < « t/, where

t/ is the time of the last bond rupture, which leads to a complete disconnection of the network

in at least two pieces. Equation (3) allows to obtain the formal solution of the temperature of

the n-th bond under the form

T~ (t)
=

(r~la)
'(

ii~(tj )i~'e~ ~~~
~

~~ it exp j- a(tj
~ j tj )j i +

j =o

+ (r~ tin(t;)i~'la) it exp j- a(t t;)j1 (4)

for t, ~ t ~ t;
~ j

if T~ (t) w I.

Let us make a few comments conceming this model. First note that the time dependence
enters via the existence of two time scales ri =

T/ri~ and r~ =
a~ rj represents the rate of

heating due to the generalized Joule effect while r~ is a relaxation time with a bath.

r~ allows for the existence of an asymptotic temperature T~(+ co
= r~

I(la under a constant

current. It also determines the way this asymptotic temperature is reached. We will show

below that it is the competition between these two times scales which creates a remarkable

sensitivity of the rupture dynamics and of the final crack pattem as a function of the input
current.
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Secondly, note that the coupling between the electrical and the thermal fields are not

symmetrical : indeed, only the electrical current field couples bonds at large distances

whereas the temperature field is a local quantity, coupled only locally on each bond to the

electrical current in that bond. It is only when thermal rupture occurs on a bond that a long

range reorganisation of the electric field appears due to the change of the electrical network

topology and to the long-range nature of the electrical Green function. The simplicity of the

model stems from the separation of the time evolution of the electrical and thermal fields : the

electric current distribution evolves instantaneously under rupture of a new bond and the

thermal field changes continuously under the fixed current distribution until the next rupture

occurs. This feature simplifies a lot the analysis and the numerical computations. Further-

more, this may be of some relevance to real material systems considering the rupture of

metals for instance, one could imagine to relate the thermal field to the plastic component of

the deformation. The plastic deformation is indeed known to be preferentially localized in

regions of large elastic deformation, for instance in the vicinity of crack tips. In particular, tile

theoretical r~'/~ divergence of the stress at the tip of a crack is smoothed out by the

appearance of a plastic deformation localized near the crack tip. Thus, similarly to our model,

the plastic component of the deformation is controlled by the value of the elastic component.
Furthermore, the growth of a crack involves first the restructuration of the plastic zone near

the crack tip. Thus, the rupture is controlled by the second (plastic) field, in a fashion which is

similar to what occurs in our dynamical thermal model.

In fact, the random fuse model introduced above possesses an exact mechanical analog, In

this analogy, each bond carries, not a conductance, but an elasto-plastic element. It is also

assumed that each element is allowed to deform only along its anti-plane component. The

anti-planar simplification provides simple scalar fields (stress s and strain e). It is assumed that

the total strain
e can be written as the sum of elastic e~ and plastic e~ components. The elastic

displacement w~ in the direction normal to the lattice plane is given by the solution of

V i~ (X, y) VWe(X, y)1
=

0
,

where g (x, y) is the elastic shear constant on the element at position (x, y). This equation is

the exact analog of Kirchoff's equation of the electric problem. Hooke's law s
=

ge~ replaces
I

=
gv for the electrical case. Then, e~ =

3w~/3x and e~~ =

3w~/3y for lattice elements that

point in the x- or y-directions. To persue the analogy, we furthermore assume that each

element of the lattice, which is submitted to a given stress s, undergoes a creep deformation

e~ which obeys the equation

de/dt
=

G ' s~ ae~ (5)

de~/dt is the rate of the creep deformation process which is increasing with the applied stress

as a powerlaw with an exponent b. The second term accounts for a possible hardening

process (so-called
«

work hardening »). The plastic or ductile deformation e~ is thus supposed
to be controlled by the elastic stress and obeys equation (5). The important idea is thus to

consider two degrees of freedom e~ and e~ controlling the total deformation, coupled together
via the stress field. Similarly to the electrical version, the definition of the mechanical model is

completed by the rule that an element breaks down irreversibly when its plastic deformation

e~ under creep reaches a given threshold. This rupture criterion can be justified by thinking of

the creep deformation as a plastic component of the deformation which controls the rupture

process. We thus assume a plastic-controlled rupture or in other words only when the plastic
deformation is sufficiently large, does the system suffer break down.
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3. Relation with other models.

It is worth noting that the thermal fuse model contains as natural limits two well-studied

statistical models of rupture, as we now discuss.

3.I THE RANDOM FusE MODEL As THE LIMIT b
~ + w. Consider first the limit of large

values of the exponent «
b» entering the generalized Joule heating effect introduced in

equation (I). Suppose that the time is normalized by the time scale
r

(i~~~)
=

T/r~ I$~~, where

i~~~ is the largest current in the network. Then, equation (I) becomes

dT~/d(t/r)
=

[i~(t)li~~~]~ (aT/r~ I$~~) T(t)

=
[i~(t)li~~~]~ in the limit of large b (6)

In the limit b~+co, all terms [i~(t)li~~]~ tend to zero except the one for which

i~(t)
=

i~~, which is then equal to one. Thus, in this limit, only the bond which carries the

largest current is heated. As a consequence, all bonds remain intact except the bond which

carries the largest current, which eventually reaches the rupture threshold T~
=

I and breaks

down irreversibly. After this breaking, the new current distribution is calculated which allows

to define again the bond which carries the largest current. The specific value of this largest

current is not constant and evolves with the rupture process. However, the important
observation is that the thermal heating amounts to select and always break down the bond

which carries the largest electrical current. Forgetting for the moment the time dependence of

this process, we thus recover exactly in the limit b
~ + co the quasi-static random fuse model

[12]. A large amount of work has been done on this model, especially conceming the scaling
properties of voltage and current fields at the end of the breakdown process [1, 2].

In addition to the correspondence between the ordering and location of the bond

breakdown in the two models, the thermal fuse model is characterized by a natural time

evolution. Using the notations introduced to formulate equations (3) and (4), the total time

t/ needed for global rupture of the network can be written as

1

t/
~

£ (Tr/~max(tj)I$ax(tj)) (7)

j 0

which is the sum of the time intervals between two successive bond breakdowns.

T~ is the temperature threshold for rupture equal to one in the computations. i~~(t~) is the

largest current among all bonds in the network just after the breakdown of the j-th bond at

time
t~

and r~~~(t~ is the value of the resistance of this bond which carries the largest current

just after the breaking of the j-th bond. Equation (7) is valid if each interval between two

breaking events rj =
T~/r~~~(tj) I$~~(t~) is much shorter than the relaxation time r~ =

a~'

The choice of the thermal coupling constant a and all the resistances r~ being made at the

beginning, this condition can always be fulfilled in a finite system for a large enough value of

b. Note that from equation (7), the total time t/ for global rupture of the network is analogous

to an integrated conductance jump distribution [I]. In this limit of very large b's, changing the

input current I by a factor A only rescales the time by the factor A ~~, without changing the

ordering and the location of the bond breakdowns which are characteristic of the quasi-static
random fuse model.

3.2 THE BOND-PERCOLATION MODEL AS THE LIMIT b
~

0. Let us now consider the other

limit b
~

0. In this case, equation (I) becomes

dT~/dt
= r~ aT~(t) (8)
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If we apply equation (8) for all bonds, whatever their current, finite or vanishing, the

geometrical characteristics of the rupture process can be mapped exactly onto a bond

percolation model since the thermal field and thus the rupture process decouple completely
from the electrical current field. The thermal heating is function only of the quenched value of

the resistance r~. Note that this definition of the model in the limit b
~

0 amounts to take the

following ordering of the two limits b
~

0 and I
~

0 in the expression i~, where I is the current

in a bond : lim lim i~
=

I. Indeed, this ordering of limits does not distinguish between bonds

I
~

0 b
~

0

which do or do not carry a current.

This model is rather peculiar since it amounts to heat bonds which carry no current at all.

For any given non-zero b value, for a bond to be heated it must carry a non-vanishing current.

For small values of the exponent b, the heating power becomes weakly dependent upon the

current. However, one still has 0~
=

0 for b # 0, I,e. bonds which do not carry any current are

not heated. It is thus more natural to consider an altemative way to take the limit

b
~

0 which is the extension of (b # 0 )-thermal fuse models, in which only bonds which carry

a non-zero current are heated and can eventually break down. We thus consider the

b
~

0 limit of the thermal fuse model in which, only those bonds which carry a current,

whatever its value, are described by equation (8). For intact bonds which are perfectly
screened and carry no current, no thermal heating occurs at all. This means that we cannot

simply consider each bond independently of each other. The electrical current field still

retains some influence on thermal heating in the sense that only the subset of all intact bonds

which carry a non-vanishing current can be heated according to equation (8). This implies that

the geometrical structure of the system of ruptured bonds at complete rupture is slightly
modified in comparison with the incipient infinite percolation cluster. In particular, loops are

no more present (they cannot close) since the bonds in the interior of a loop are perfectly
screened electrically and carry no current at all.

Mathematically, the present definition of the «
correlated

»
percolation model amounts to

take the following ordering of the two limits b~0 and i~0 in the expression
i~, where I is the current in a bond : lim lim i~

=

0. Numerically, it is not straightforward to

b -0 ~0

implement this limit due to inherent truncations. The concrete numerical problem is to decide

when a bond carries a zero current, when considering the finite precision (m10~'~) with

which the currents are calculated. To solve in a satisfying manner this problem, we have

introduced a threshold io such that all currents found, below io, are put exactly equal to zero.

Numerical simulations have then been performed for a wide range of io values, from

lo ~° to I. We have found a range 10~ w io w 10~ ~ such that the set of rupture bonds at the

end of the process is found unchanged. This rupture pattem is the one which qualifies as the

real thermal fuse model with the correct limit lim lim i~
=

0. Figure 2a shows the incipient
b ~0 I

~
0

cluster obtained with this procedure with io
=

10~ '°. A total of 2822 bonds have bumed out.

In comparison, the exact percolation model, obtained for instance with a threshold

io
=

10~ ~° which is not able to distinguish the bonds which carry or not a current, corresponds

to 3212 broken bonds in the same disorder realization. The difference 3212-2822 is significant.
However, the fractal dimension of the incipient cluster of the correlated percolation model

shown in figure 3a is almost unchanged D
=

1.85 from the value of uncorrelated percolation
(=1.89). With the available numerical accuracy, it is not possible to access whether this

correlated percolation model is in a different universality class.

If we neglect the influence of the subtle correlation introduced by the electrical current, the

mathematical mapping of the thermal fuse model with equation (8) to the percolation model

can be done as follows. We consider the normalized distribution P (r) of the resistance of the



1628 JOURNAL DE PHYSIQUE I N° 8

bonds in the electrical network. To each bond resistance r corresponds a time-dependent
temperature given by integration of equation (8) :

T(t)
=

(rla) ii exp(- at)1 (9)

The distribution Q,(T) of the temperatures at time t in the network is thus obtained by
performing the change of variable r ~

T(r, t) in the initial resistance distribution P (r) :

Qi(T)
=

ail exp(- at)i~ P (aTil exp(- at)i~ ~). (IO)

Equation (lo) describes I) an average translation of the temperature distribution to higher
values as the time increases, 2) a dispersion of the temperatures around their average due to

the fact that high resistances are heated more rapidly than smaller ones and 3) a

corresponding normalization of the distribution due to the dispersion. The quantity p defined

by

+w

p
=

j
Q~(T) dT (11)

thus gives the fraction of the bonds which have attained the rupture threshold T~
=

I. Since

the resistances are independent random variables, the successive bond breakdowns are

independent random events solely controlled by the distribution and spatial position of the

electrical resistances. The global rupture will be reached when p has attained the percolation
threshold p~ (= 1/2 for a square lattice in two dimensions). In the limit b

~
0, the ordering

and location of the bond breakdowns and thus the entire geometrical properties of the rupture

process is thus equivalent to the bond-percolation model. Note that the procedure implied in

expression ( II ), which consists in reaching the percolation threshold by progressively filling a

distribution of random numbers, constitutes an elegant way to define the percolation model

and its threshold [13].

In contrast with other values of b, there is no current threshold for rupture in the limit

b
=

0. However, there is a critical value of the thermal coupling constant a. Since, according

to equation (9), T(t) does not grow indefinitely but tends asymptotically to rla, the relaxation

rate « a » must not be too large. Indeed, at large times, the temperature distribution tends to

Qt~+cc(T)
=

aP (aT). (12)

If a is large, the bonds at threshold (I,e. T
=

T~
=

I) correspond to the tail of P for large r's

and may- not attain the percolation threshold p~. Therefore, for a given resistance distribution

P(r), there exists a critical value a~ above which global rupture is never attained. The

threshold a~ is determined by the condition

+cc +cc

a~P(a~T)dT= P(R)dR= p~. (13)

a~

The discussion of the global rupture time in the case b
=

0 is presented in appendix A.

4. Properties of the dynamical thermal fuse model.

Let us now study the generic case 0
<

b
~ + co. We have performed a large set of different

computations from which we now present the salient features. We first discuss the limit of

small a's or equivalently of very large applied electrical currents (much larger than the

threshold current I~ defined below) and then the more complex case of a finite
« a ».
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4. I THE HIGH HEATING POWER OR CRACK-CRACK FUSION REGIME (I WI
~

OR a ~
0).

4. I. I Dilution versus crack growth and Jksion. Figure I shows the damage pattems at three

times of the rupture dynamics of the same system for b
=

2 and a disorder parameter

fig
=

0.2 (the bond conductances are uniformly sampled in the interval [0.9 ; 1. I]) in a square

lattice of size 180 x 180 tilted at 45°. Figure la corresponds to a fraction of ruptured elements

equal to 50 9b of the total number (3423 in this specific case) needed to complete the global

rupture. The reduced time of this snapshot is t/t/
=

0.9912. In this first picture, one observes

essentially isolated independent breakdown events leading to a continuously increasing
damage of the system. One may however notice the existence of a few relatively large clusters

of broken elements which tend to dominate the rupture in the continuing rupture process.

Note that the damage occurs rather late in the dynamics : for instance, the first element

breaks down at t/t/
=

0,886, the second one is at t/t/
=

0.895, etc, Figure 16 shows the same

system at a latter time t/t/
=

0.9982 at which 80 fG of the bonds needed to complete the global

rupture have ruptured. Many large cracks are competing and, from their observation, its is

very difficult to predict where will be the chosen path of the macroscopic rupture. A small

change in the initial disorder realization may drastically change the final rupture pattem.
Figure lc shows the system at complete rupture at t/t/

=

I. The first important information

obtained from figure I is the existence of two regimes. At relatively small times, the

progressive deterioration is similar to a random bond dilution process. In this time interval,

the initial quenched disorder on the conductances dominates the dynamics. The bonds which

present the largest Joule energy
ri~ break down first. Note that a similar observation has been

made in the quasi-static random fuse model [1, 2]. As the approximately uncorrelated dilution

process proceeds, clusters of various shapes and sizes beging to form. At larger times, the

dilution process gives place to the regime where fusion between cracks and the growth of

clusters dominate. This is the regime where current enhancement and screening effects are

most important. Long-range spatial and time correlations appear and form a large defect

which eventually breaks the network in at least two pieces.

4,1.2 Existence of a well-defined limit of large I's or small a's. For a given network, I-e-

for a given conductance disorder configuration, we have observed numerically that the

ordered sequence of bond breaks down and therefore the final crack pattem at the end of

rupture do not change in the limit of large input currents I. In other words, there is a well-

defined limit of the rupture process and final crack pattem for large I's. This is in contrast with

the other regime, studied in the following section 4.2, where the applied current I is not large
compared to the rupture threshold I~, and a small change of the input current I may drastically
modify the rupture pattem. The analytical proof of the existence of this well-defined

1
~ + co limit is given in appendix B. Conceming the time scales of the rupture, it is shown in

appendix B that all time intervals are reduced by the factor A ~b when increasing the total

applied current by the factor A b. In particular, this indicates that the total time needed for

global rupture of the network scales as

t~(1) I-b (14)

for large I's,

4,1.3 The effect of the exponent b on damage patterns. Figure 2 shows a series of final

rupture pattems obtained in this limit of large I's for different values of b : b
=

0(a) ;

b
=

0,I (b) ; b
=

0.5 (c) ; b
=

I (d) b
=

2 (e) ; b
=

4 (f~ and b
=

8 (g). The set of ruptured
bonds which participate to the

«
infinite

» crack which disconnects the system in at least two

pieces are outlined. For small b's, the damage is dense and the
«

infinite
»

cluster of broken
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Fig. I. Typical crack pattems at three typical times of the r~tpture dynamics of the same system for

b 2 in a square lattice of size 180 x 180 tilted at 45°. For clarity of the figure, only the broken bonds

are displayed. The total current flows between the top and bottom bus bars. The conductances are

uniformly sampled in the interval [0.9, 1. Ii (Ag
=

0.2), a) Fraction of rupture elements equal to 50 9b

of the total number (3423) needed to complete the global rupture (t/t~
=

0.9912). One observes

essentially isolated independent breakdown events leading to a continuously increasing damage of the

system. One may however notice the existence of a few relatively large clusters of broken elements

which tend to dominate the rupture in the continuing rupture process. Note that the damage occurs

rather late in the dynamics for instance, the first element breaks down at t/t~
=

0.886, the second one is

at t/t~ 0.895.., b) Fraction of rupture elements equal to 80 9b of the total number needed to complete
the global rupture (t/t,

=
0.9982). Many large cracks are competing and, from their observation, it is

very difficult to predict where will be the chosen path of the macroscopic rupture. A small change in the

initial disorder realization may drastically change the final rupture pattem. c) System at complete

rupture (100 9b broken elements and t/t,
=

I). The main crack which deconnects the network in two

pieces is represented by boldface bonds.
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b=0.00 b=0.10 b=0.50

a) ~~ c)

~ ',(Y~~" ~i(f,~~', ~,(~,,"
St' ,°, '<

,/ ",~ (
J',~

b=1.00 br2.00 b=4.00

d) e) o

b=8.00

g)

Fig. 2. -Final rupture pattems in the limiting case a=0 (I,e, for very large currents if

a # 0), for b
=

0 (a) b
=

0, I (b) ; b
=

0.5 (c) ; b
=

I (d) ; b
=

2 (e) ; b
=

4 (f~ b
=

8 (g). The

conductances are uniformly sampled in the interval [0.9, 1. Ii (Ag
=

0.2). As in figure I, only the broken

bonds are displayed. The main crack which deconnects the network is outlined.

bonds possesses a large fractal dimension whereas for large b's the rupture occurs essentially

by the growth of a single one-dimensional crack. This corresponds to a cross-over from the

uncorrelated percolation limit to a regime dominated by a current enhancement effect at the

crack tips.
These qualitative observations can be quantified by calculating the fractal dimensions of the

«infinite
»

crack. Two different methods have been used for measuring the self-similar

structure of these cracks. The first method computes a «growth» fractal dimension

D of the largest crack, at different times during the rupture, by calculating the total number
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of bonds it contains as a function of its projected lengths f~ (resp. f~ and (i~ f~)'/~) along its

principal growth direction (resp, along, the normal to this direction and their geometrical
mean). The second method analyzes the macroscopic crack which is finally obtained at the

end of the rupture, by measuring the number of broken bonds belonging to this crack in a box

of size f~
as a function of f («capacity» fractal dimension D~). For systems of size

L
=

80, the
«

capacity
»

and
«

growth
»

fractal dimensions are estimated by a linear fit in a

log-log plot over one and almost two decades respectively. Figure 3 shows in log-log plots the

number of broken bonds belonging to the crack as a function of its linear extension for the

different b-values shown in figure 2. The two methods give similar results with deviations

which are however systematic, indicating, in a manner similar to DLA growth processes, that

perimeter bonds on which the action is taking place are not characterized by exactly the same

scaling as the
«

dead
»

bonds in the interior. We find for instance Dj
=

I-I1± 0.02 and

D~
=

1,18 ± 0.02 for b
=

2. It is interesting to note that these dimensions do not depend on

the disorder in the range we have considered from fig
=

0,I to 1.6, Figure 4 summarizes the

evolution of Dj and D~ as a function of b. Note that the value of the percolation model

Dj
=

D~
=

2 PI v =

129/144 =1.9 is recovered for very small b's, For b
»

2, the fractal

dimension decreases down to Dj
=

D~
=

I as found for b
=

8. This result is to be compared
with the value for the quasi-static random fuse model [14] : D

=
I-I ± o-I- Eventually,

additional simulations for systems of size L
=

40 and L =160 gave identical values of

Dj and D~ as a function of b.

z i c i zj i

growth growth "fl growth

b=0.00 b=0,10 b=0.50

io° io° lo' io° id io°

lx lx lx

a) b) c)

C I C°~~ i z i

growth "fl growth growth
b=1.00 b=2.00 b=4.00

%

Ii Id Io* Id ~li id id ii Io* id
lx lx lx

d) e) f~

Fig. 3. Log-log plot showing the fractal dimensions Di (growth) and D2 (capacity) of the « infinite
»

cracks. Each curve has been obtained by averaging over typically 30 different disorder realisations

(fig
=

0.2) giving rise to rupture pattems similar to those displayed in figure 2.
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capacity capacity capacity

W0.50 b=1.00 b=2.00

If If id
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j) k) 1)

c i c

1m capacity capacity
~

b=4.00 b=8.00

ill io~ io° lo' ill io~

lx lx

m) n)

Fig. 3 (continued~.

4,1.4 The effect of the exponent b on rupture dynamics. It is convenient to monitor the

dynamics of the damage and rupture process through the time evolution of the network total

conductance G or its inverse G ', which is proportional to the dissipated electric power since

we are working at constant applied current I. Figure 5 shows, for b
=

2, in log-log units the

time dependence of G~ '
as a function of (tj t)/tj where

t~
is the time of occurrence of a

macroscopic rupture in the network. Each curve corresponds to a different value of the

disorder fig, the lower curve corresponding to the smallest disorder fig
=

0,I and the upper

curve correspording to the largest disorder fig
=

1.6 which have been considered. Each curve
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Fig. 4. Fig. 5.

Fig. 4. Dependence of the
«

growth
»

Di (triangles) and
«

capacity
» D2 (squares) dimensions as a

function of the heating power b-exponent. The lines serve as guides to the eye.

Fig. 5. In log-log units, the time dependence of G~~ is shown as a function of (t~ t)/t~ for

b
=

2 where t~ is the time of occurrence of a macroscopic rupture in the network. Each curve

corresponds to a different value of the disorder Ag, the lower one corresponding to the smallest disorder

fig
=

o-I which has been studied and the upper curve corresponding to the largest disorder

fig
=

1.6 which has been considered. Each curve has been obtained by averaging over typically 25

different network configurations («ensemble» average) with the same average disorder fig. The

average slope of the curves in their linear portion is approximately
a m

0.3 for b
=

2.

has been obtained by averaging over typically 25 different network configurations (« ensem-

ble
»

average) with the same average disorder fig. We observe that G~'seems to follow a

powerlaw as a function of (t/ t)/t/. G~'
-~

[(t/ t)/t/]~" with an exponent a =
0.3 for

b
=

2. One can observe that the exponent a
does not seem to depend on the strength of the

disorder fig since all curves are approximately parallel. However, the exponent a is sensitive

to the value of b as summarized in figure 6, which shows the evolution of
a as a function of b :

for b
=

0 we find
a =

1.2 ± 0. I ; for b
=

0,I,
a =

1,15 ± 0,I ; for b
=

I,
a =

0.7 ± 0,I ; for

b
=

4,
a =

0,15 ± 0.02 ; for b
=

8, a =
0.05 ± 0.02. Note that predictions can be made in the

two limiting cases b
=

0 and b
~ + co.

- ~ =
l.3

(conductance exponent for 2D percolation)

~

i
~
c~ j

%

«

o

o

0 2 4 6 8 10

Fig. 6. -Dependence of the exponent a as a fttnction of b.
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Large b limit. In this case, the rupture proceeds via the formation of essentially linear

cracks of fractal dimension very close to I in two dimensions as shown in figures 2g and 3g.
Let us now consider the growth of a linear macroscopic crack obeying the heat equation (I)
(or creep growth law in its mechanical version) with a

=

0. Neglecting some transient

behaviors conceming the initial stage of the crack growth, one can forget about the initial

disorder when the macroscopic crack is sufficiently large, since the rupture dynamics will be

controlled by the very large crack tip stress enhancement effect. According to equation (3),
the time needed for breaking an element submitted to a current I is t

=

(ri~)~ '. When the

macroscopic crack length is £, the current applied on the element at its tip is proportional to

£ ~/~ due to current enhancement effect [15]. We can obtain an upper bound on the exponent a

by assuming that the time for breaking the element, just placed at the crack tip, is essentially
controlled by the large applied current, and only secondarily sensitive to previous thermal

heating (plastic deformations) which has occurred when the crack tip was at a distance larger
than £ from the crack tip. This simplifying assumption becomes all the more valid in the

terminal stage of rupture when the macroscopic crack becomes very large such that the

dynamical rupture process accelerates drastically. In this limit, an element far away from the

tip is submitted to a relatively small current and its temperature has not the time to increase

markedly. Within this assumption, we obtain the time t* needed for breaking the element at

the tip of the macroscopic crack of length £ which is proportional to t* £~~~~. During this

time, the crack grows by one lattice mesh. Therefore, we can write down the following
differential equation for this crack growth: d£/dt= I/t*~£~/~. Integrating this simple

equation for b
»

2, we find £ (t) (t/ t)~~~b ~~l with the time for complete rupture of the

network given by t/
=

[2/(b 2)] £Q;(b~~l/~ where £~;~ is the initial size of the crack at our

origin of time. In an infinite system, the incremental dissipated electric power due to a crack

of length £ is proportional to £~ in two dimensions. We thus estimate G~ ' which diverges as

G~ (t/ t)~~~~~ ~~ For large b's, the obtained upper bound 4/(b 2) of the exponent a

tends to zero. This implies that a goes to zero at large b's. We do not expect this estimation to

remain good for finite values of b due to the fact that the rupture process becomes more

complex (see below) and our «
tip

»
approximation becomes unwarranted. Indeed, this

analysis would predict an exponent 0.66 for b
=

8 and we find numerically (see Fig. 6) that

G~' does diverges at t/ with an exponent close to 0.05. The above simplified model thus

becomes less and less reliable when b decreases. It is possible to improve on this upper bound

by taking into account the effect of the finite size L of the lattice compared to the length of the

crack, while still neglected the pre-heating of the bond at the tip. In reference [15], it is shown

that finite size effects amount to replace the £'/~ dependence of the current at the crack tip by

£~~~[l (£/L )~]~ '/~ Solving the equation d£/dt
=

I/t* £~~~[l (£/L )~]~~/~ yields
I (£/L) (t/ t)~/~~+~/~~ In a finite lattice, the conductance is simply proportionnal to

I (£/L) when £ ~L, up to logarithmic corrections. We thus obtain the improved upper

bound I/(I + b/2) for the exponent a.
This upper bound goes to zero for large b faster

(2/b) than the previous estimate (4/b) and yields a better value
=

0.2 for b
=

8. However,

this estimate is still not good for finite b's due to the neglect of pre-heating.

_Small b limit. For b
=

0, equation (3) simplifies into T~
= r~ t. The time needed for

element n to reach the rupture threshold T~
=

I is exactly given by t~
=

rj '
=

g~. It is easier

for our argument to introduce the distribution P~(g) of the conductances rather than the

distribution P (r) of the resistances considered previously. The number of rupture events

n(t) dt during an infinitesimal time interval dt is thus simply given by n (t)
=

P~(g ) (dg/dt(.
As t

=
g, one finds n (t)

=
P~(t). The fraction p(t) of intact bonds at time t is simply given by

t

p(t)
=

I n(t) dt. From percolation theory, the global conductance G of the network
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goes to zero as p goes down to p~ according to the powerlaw G ~p p~)~ with a critical

exponent r=1.300 in 2D and 2.0 in 3D. Therefore, the dissipated electrical power
i

G~~ scales as ~p(t) -p~)~~ with p(t)
=

I P~(t)dt. For the sake of concreteness,
o

consider the case of the uniform distribution of conductances P~(g)
=

I/fig in the interval

[I-fig/2, 1+fig/2] used in our numerical simulations. Then, p(t)= I-t/fig and

G~'~ (t/-t)~~ with t/=fig/2. Thus, we predict a =
r=1.3 in 2D in reasonable

agreement with the value
a =

1.2 ± 0.I found in our numerical simulations. One can show

that this scaling law with the exponent a = r
keeps holding for a very broad class of

conductance distributions.

4.2 THE NUCLEATION AND BRANCHING REGIME (I
m I~). We now tum our attention to

the most general case where a
#0 and I is not too large so that the relaxation term

aT is not completely dominated by the heating term ri~. In this case, in contrast to the

previous regime studied in 4, I, the physics of the rupture depends on the value of the applied

current. This is illustrated in figure 7 which shows three final rupture pattems for three

different applied currents I, for the same given realisation of the initial conductance disorder

and same b. As before, the numerical procedure consists in applying at t
=

0 a constant

current I which flows from one bus bar to the other. The current per bond would thus be

I/L in absence of conductance disorder. For a given bond resistance distribution, there exists

a minimum value I~ of the input current necessary for global rupture to occur. Figure 7 has

been obtained with the following choice of the parameters : a
=

I (this will remain our choice

in the sequel), g is randomly distributed within the interval [I -fig/2, 1+ fig/2] with

fig =0.2. Figure 7a corresponds to I very close to I~, figure 7b to a larger value

I
=

I, I l~ and figure 7c to a very large value1
=

35 I~. Comparing the three figures, it is clear

that the physics of the rupture for I close or slightly larger than I~ is dramatically different

from that for large I's discussed in the previous section 4,I.

For I very close to I~, the rupture process can be decomposed into two steps. The first step
is the breaking of the first bond, which will then act as a nucleation center. The second step is

the growth of a large crack developing from this nucleation center. In the first regime, the

Joule heating breaks down the bond which presents the strongest heating power. Once this

«
hottest

»
bond is broken, the defect strongly distorts the electric current field around it.

Namely, the intensity is the neighboring bonds is typically (41ir)1 for the square lattice tilted

at 45° with respect to the bus bars. These bonds are thus heated much more efficiently than all

the others in the network. They reach the rupture threshold T~ first. The process goes on with

the connected growth of a large crack until the final blow up of the total network. We call this

regime the
«

nucleation
»

regime, since once a bond breaking has been initiated, the evolving

rupture grows from this
«

nucleation
» center. Of course, this

«
nucleation

»
regime occurs

only for sufficiently small disorder, so that the Joule heating power =
(41ir) I ]~ in the bonds

at the tip of the first broken bond is significantly larger than all the other heating powers in the

other bonds. For larger disorders (larger fig's), one still observes the nucleation of a few

cracks which then grow and fuse until total breakdown. As the disorder increases, more

nucleation centers appear at the beginning of the dynamics, and the final crack is more

tortuous, reflecting the fusion of a larger number of initial cracks.

The total time needed to break the entire network diverges when1
~

I~. We can determine

the nature of this divergence by noting that the main fraction of the time needed for the

complete breakdown of the network is in fact spent in nucleating the first crack. After this

nucleation, the heating of the bonds at the tip of the crack is much stronger and the time

needed for the subsequent ruptures remains relatively smaller as I~I~, since it is a
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Fig. 7. For a given realisation of the resistance disorder and for three values of the applied current I

per bonds, this figure shows the final stage of rupture. The resistances are sampled in the interval

[I Ag/2, + Ag/2] with fig
=

0.2. a) I ml
~.

the applied current per bond is close to the threshold.

b) I
m

I, I I~, c) 1
=

35 I~.

characteristic of the propagation on a single linear crack. In fact, the time t/ needed to break

the first bond is a lower bound of the total breaking time t/. Since it diverges as

1
~

l~, so does t/.
Note that for a given realization, the first bond to break down is always the same for any

value of the total current I above the critical value I~ for rupture. This is the bond where the

heating power ri~ is the largest in the network before any breaking event. The current I

carried by this bond and the time t/ needed to break it down obey equation (2) where

T= T~
=

I, I.e. ri~[I -exp(-at/)]la
=

I. At the onset of rupture t/ diverges and the
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critical value i~ is given by ri$la
=

I. Using ili~
=

I/I~, the lower bound t/ of the total time

t/ for rupture is solution of (I/l~)~[l -exp(-at/)]
=

I, which yields t/~a~~ Log [I~/

(I I~)]. If instead of the relaxation term aT of equation (I), we were to choose a general

powerlaw relaxation of the form aT~, we would again obtain a logarithmic dependence of

t/ as a function of I I~. For instance, the analytically non-trivial soluble case ~ =

2 yields
T (t )

=
(ri ~la)~/~ l-2[exp (2(ari~)~~~ t) + 1]~ ' ) and thus again t/ a~ Log (Ij (I I~)

This case is particularly intriguing since it shows that there is a whole set of relaxation times

(ari~)~
~/~, one for each bond resistance r of the network, which are function of the current

flowing in each particular bond. As the currents evolve with the topology of the network

during the rupture process, the distribution of relaxation times also evolves. Since larger and

larger currents appear at the end of the breaking process, the relaxation times becomes

shorter as I ~~~,
where I is the current flowing in a bond. This increases the acceleration of the

dynamics already observed for the simple case ~ =
l.

For a total applied current I slightly above I~, we observe again that the crack pattems as a

function of time are characterized by the growth and fusion of cracks nucleating at a few

centers. In this regime, increasing slightly the applied current may bring a local or even a

macroscopic change in the breaking pattem, due to the nucleation of small cracks at different

positions. This regime is thus characterized by a remarkable sensitivity with respect to the

applied current. Indeed, in some instances, changing I by a very small amount leads to a

catastrophic change in the breaking pattem. This is particularly clear in figure 8, where one

observes a main crack at complete rupture which lies in the upper (U) half of the network,

then for a slightly larger applied current, it changes into another crack in the lower (L) half of

the network, then goes up again, then goes down and up finally, defining the symbolic

sequence ULULU In addition to this global evolution, there are many modifications of the

crack pattems at smaller scales. The observed remarkable sensitivity with respect to the

applied current can also be guessed in figure 7b where, in addition to the main deconnecting
crack, two large cracks bear witness of the existence of two other competing rupture paths.
This property is analogous to the drastic alteration found on the best path in a random

medium which undergoes slow drifts [16]. However, the drift concems, here, the input
current in the same random network. In addition to macroscopic rupture pattem alterations,

we have also observed a hierarchy of evolutions of the crack pattems at smaller scales, as the

applied current I is varied. This observation suggests the existence of a hierarchical structure

of the main rupture path, with global attractives basins of relatively wide extend in the I

variable, which break into smaller basins of attraction, corresponding to local reajustments of

the path of rupture, This qualitative idea could be quantified by studying the overlap between

two crack rupture pattems corresponding to two different applied currents.

The existence of this wealth of behaviors and pattems relies on the competition between

the two characteristic time scales of the problem : rj =

T~/ri~ and r~ =

a~~ Recall that

rj represents the rate of heating due to the generalized Joule effect while r~ controls the

long time regime, I.e. it determines both the existence of an asymptotic temperature
T~(+ co)

= r~
I(la under constant current and also the relaxation to it. If only the heating

time scale rj was present, I.e. r~ =
+ co, then we would be in the regime I »1~ discussed in

section 4.I characterized by a complete lack of dependence of the rupture process with

respect to the applied current. Therefore, the rich dependence found in figure 8 as a function

of I would be completely absent. When the two time scales r~ and r~ are finite, a subtle

memory effect appears whereby a bond with an intermediate heating power may break earlier

than a bond which first has a lower heating rate and later on a higher heating rate. Indeed,

from equation (I), the slope dT~/dt~~ at the beginning t; of the (I + I)-th heating sequence of

the n-th resistance is r~
I((t;) aT~(t; ). Thus, the largest current does not lead necessarily to
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the largest heating efficiency if the temperature T~(t~ ) is already high, since then a large heat

flux is directed to the thermal bath. As a consequence, the bond which carries the

instantaneous largest current is not generally the one chosen for rupture at a given time, in

contrast to the rule of the quasi-static random fuse model [1, 2, 12]. For a complete analysis of

the alterations of the time ordering in two successive bond ruptures when changing the input

current I, one needs to consider three sets of inequalities on the currents ii and

i~, temperatures Ti and T~, and heating rates dTj/dt and dT~/dt of the two bonds.

This reasoning also gives a clue to understand qualitatively the existence of the dilution

regime at short times in a network fed with an applied current significantly larger than

I~. Indeed, the above memory effect implies that, at early times, the bonds which possess the

largest initial heating power will be those breaking first, The initial values of the heating

powers thus control the rupture process at small times. Since they can be considered to be

conditioned by the initial quenched disorder on the resistances, this explains the occurrence of

a percolation dilution regime at short times. As the exponent b decreases, the memory effect

increases in strength over a larger time interval until it is all dominant at b
=

0. In other

words, the small time regime for large I's and arbitrary b # 0 is similar to the rupture process

at b
=

0. Note that even in the limiting case b
~ + co, one still observes a percolation-like

initial deterioration regime [1, 2].
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These different considerations can be altematively synthetized by examining figures 9 and

lo respectively. Figure 9a (resp. 9b) shows a graph of the number of cracks N~ (clusters of

broken bonds) as a function of the number of broken bonds N~ at each breaking event

t;, for different values of the total applied current I, in the case b
=

2 (resp, for different

values of b, for a =

0 or I large). Both quantities N~ and N~ are normalized to the total

number of cracks (N~) and to the total number of broken bonds (N~) at the final stage of

rupture respectively (thus, OS N~, N~ « I). For I
=

l~ and small N~, the number of cracks

increases slowly (Fig. 9a). This expresses the fact that once a first nucleation center has been

broken, a single crack begins to grow from it. At a latter stage of the rupture process, a diffuse

damage may occur then ending into the final connection of the large crack with the network

borders. For large l's and small N~, N~ increases linearly with N~, revealing the uncorrelated

damage regime. For larger N~, N~ tends to saturate meaning that no further crack nucleation

occurs and that one enters a crack growth and fusion regime. Figure 9b shows that the number

of cracks first increases drastically for small b's up to a maximum and then decrease again.
The first regime corresponds to the uncorrelated damage process akin to a dilution process in

the percolation model. After the maximum, the system enters a regime of crack fusion. The

separation between the two regimes is less and less well-defined as b increases. For very large
b's (here b

=

8), the asymptotic value for N
~

is very rapidly reached since only one large crack

is present and grows in the system.
Figure lo shows the dependence of the mass JL~~~ of the largest crack as a function of

N~, for different values of the total applied current I (Fig, 10a) and different values of b for

b=2.00

~n ~nb h

~g q-

~
i I
I I

o-O O.2 o.4 O.6 0.8 1-o o-o 0.2 0.4 0.6 o-B I-o

number of broken bonds number of broken bonds

a) b)

Fig. 9. a) Number of cracks N~ (clusters of broken bonds) as a function of the number of broken

bonds N, at each breaking event t, for different values of the total applied current I increasing from the

bottom to the top curve (I w I/I~ w II, b
=

2.00, Ag
=

0.2). Both quantities are normalized to the total

number of cracks and to the total number of broken bonds at the final stage of rupture respectively
(0 wN~, N~ w I), b) Same as a) for different b's at large current I (or a =

0). The different curves

correspond, from the top to the bottom, to b
=

0, o-1, 0.5, 1, 2 and 4. The curve obtained for

b
=

8 has a special status since N~ is already very close to I for N~
=

0.I. This is due to the fact that

essentially one large crack appears in the system. The wiggles decorrating the curve for b
=

8 come from

the fact that the statistics are poor in this case, since only one main crack appears for each system
realization.
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Fig, lo- a) Dependence of the mass ~lL~~ of the largest crack as a function of the number of broken

bonds N~ for different values of the total applied current I increasing from the top to the bottom curve

(I w III
~

w II, b
=

2.00, fig
=

0.2). Both quantities are normalized to the total number of cracks and

to the mass of the largest crack at the final stage of rupture respectively (0 w £~~~, N~ w I ), b) Same as

a) for different b's at large current I (or a =
0). The different curves correspond, from the top to the

bottom, to b
=

8, 4, 2, 1, 0.5, 0.I and 0.

a =

0 or I large (Fig, lob). The regimes discussed in figure 9 are also clearly exhibited. For

I
=

I~ (near the current rupture threshold), JL~~~ increases steadily during the initial regime
of single crack growth, then its increase levels off somewhat until it diverges at the final stage
of rupture. For large I's, one observes a completely different behavior : JL~~ increases very

slowly at first, exemplifying the existence of the uncorrelated damage regime. Then it crosses

over to a second regime where JL~~~ grows very rapidly as a consequence of growth and fusion

processes. Figure lob shows that for large b's (here b
=

8), JL~~ varies essentially linearly
with the number of broken bonds since only one main crack is present. As b decreases,

JL~~ decreases in general for a given N~, reflecting the existence of a less strongly correlated

growth. For small N~, JL~~ increases very slowly, reflecting the diffuse damage regime. It is

only in the last stage of the process that JL~~~ diverges with an exponent with increases as

b
~

0. In particular for b
=

0, it is easy to show that JL~~
-~

(I N~)~ "~', where
v

is the

percolation correlation exponent (v
=

4/3 in 2D) and d/
=

2 fl/v =1.89 is the fractal

dimension of the percolation clusters, fl being the percolation order parameter exponent.

5. Conclusion.

A new model of statistical rupture in heterogeneous media has been introduced which

contains a genuine dynamics with two levels of memory effect. The first level comes through
the irreversible evolution of the electric network, similarly to previously studied random fuse

models. The second level stems from the memory contained in the additional temperature
field which is an additive function of all the previous thermal history of each bond in the

network. Moreover, the thermal coupling between each fuse and a bath allows the

temperature of each fuse to evolve towards a steady value with a characteristic relaxation
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time. A major feature of this model is its simplicity which stems from the separation of the

time evolution of the electrical and thermal fields : the electric current distribution evolves

instantaneously under rupture of a new bond and the thermal field changes continuously
under the fixed current distribution until the next rupture occurs. This feature simplifies a lot

the analysis and the numerical computations. Therefore, this model is maybe the simplest one

can think of which incorporates naturally a dynamics in a statistical model of rupture.
We have been able to show that several interesting scaling behaviors can be computed in

this model as a function of the two main control parameters, the total input current I and the

heating power exponent b. The crack structures have been shown to be fractals with fractal

dimensions changing continuously from 1.9 to I as b goes from 0 to + co. The dynamics of the

rupture has also been characterized by the scaling law goveming the divergence of the

electrical dissipated power G~ as time approaches the final rupture time t/. Here also the

exponent a of this divergence is a continuous function of b, evolving from 1.3 to 0 as b goes

from 0 to + co. Another striking feature which we have observed and rationalized is the

extreme sensitivity of the rupture pattem when modifying slightly the total input current.

Much remains to be done that will reveal many other interesting features of rupture
encaptured in this simple model, which we intend to cover in future works.
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Appendix A.

For b
=

0 (Sect. 3.2), it is possible to derive some analytical time-dependent properties when

neglecting the correlation induced by the electrical current field. In other word, we do not

distinguish here between the
«

correlated percolation
»

model and the standard uncorrelated

percolation model. In this case, there exists a threshold value a~ of the thermal coupling
constant instead of a threshold value of the input current. Analytical expressions of the global

rupture time in the vicinity of a~ can be obtained. At a =
a~, the rupture takes an infinite time

to occur due to the asymptotic convergence of the temperature given by equation (9). For

« a »
close but smaller than a~, the time t/ needed to reach global rupture (I.e. the percolation

threshold) is equal to the time taken by the smallest resistance, needed to barely reach the

percolation threshold, to attain the temperature breakdown threshold T~
=

I. From the

definition of a~, this smaller resistance is precisely equal to a~ with T~
=

I. The time

t/ for global rupture is thus given by (aja) [I exp(- at/)]
=

I, which yields

t/
=

al Log (ac/(ac a)) (Al)

The logarithmic divergence of the global rupture time t/ as a ~ a~ reflects the exponentially
rapid thermal relaxation process due to the second term aT of the r,h,s, of equation (I). If

instead of the expression aT, we were to choose a general powerlaw relaxation of the form

aT~, we would again obtain a logarithmic dependence of t/ as a function of a~ a. For

instance, the analytically non-trivial soluble case ~ =2 yields T(t)= (rla)'~~(l-2[exp
(2 (ar)'/~ t) + 1]~ ') instead of (9) and thus t/

-~

(2 a~)~ Log (4 aj(a~ a
)). This possibility

has not been persued in our investigations. In the future, it may be of interest to investigate it

since it introduces a distribution of relaxation times (ar)~ '/~, instead of the single relaxation

time a~ ', which are now function of the value of the resistance r. Note also that a value of ~
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different from I must be considered for describing empirical laws of hardening processes in

the mechanical version of the model.

Appendix B.

Existence of a well-defined limit for large Fs or small a's.

The limit of large input currents essentially amounts to the fact that the first term

r~
I((t) of the r,h,s, of equation (I) is much larger than the second term aT~ (t). In this limit,

it is thus possible to neglect the second term aT~(t) of the r,h,s, of equation (I). Of course,

this limit is also reached trivially by taking a =
0 from the beginning. In this case, the rupture

process and crack pattems become completely independent from the applied current I, as we

now demonstrate.

For this purpose, it is sufficient to show that the delicate order of the rupture sequence, by
which one bond after another is broken, is not changed when changing the value of the

applied current I. Associated to the ordering of the successive bonds rupture obtained for a

given network and for an applied current I, we have introduced in section 2 the ordered

breaking times 0
< ti < t~ < < t; < t;

~ j < < t/. Let us also note 0
<

T~ (tj )
<

T~(t~)
< <

T~(t,
<

T~(t;
~

j)
< <

I the successive temperatures of the bond n at the

successive breaking times. Let us now call 0
<

t)
<

t(
< <

t/
<

t/~
j < <

t) the

ordered breaking times and 0
<

Tj (t))
<

T((t()
< <

Tj (t/)
<

Tj(t/~ j)
< <

I the

successive temperatures of the bond n at these successive breaking times for the same network

but submitted to the applied current AI. Let us now reason in a recurrent way and assume

that up to the I-th bond breaking, all the ruptures occurred exactly on the same bonds in the

same order with the same values of the temperatures (Tj(t~~)
=

T~(t~) for j
=

I to I and all

n's) for each bond in the two cases I and AI, however with possibly different time scales (but

not different time orders). If we show that the (I + I)-th breaking occurs on the same bond at

the same temperatures (Tj(t/~ j)
=

T~(t;
~

j)) for all bonds n for the two applied currents I

and AI, then by recurrence this will be true for all times.

After the blow up of the I-th bond, all temperatures of the intact remaining bonds evolve

according to the following laws, derived from equation (3) by posing a =

0 :

T~(t)
=

T~ (t;) + r~
I((t;)(t t;) for the applied current I (B la)

Tj(t)
=

T((t/)
+ r~

[ij(t/)]~ (t t/) for the applied current AI (B16)

Let us denote r~~ the conductance of the bond n* which first reaches the rupture threshold

temperature T~ at time t,
~ j

for the applied current I. From equation (B la), this means that

T~~(t;) + r~~ I(~(t;)(t;
~ j

t; reaches I the first one. We note first that i~(t,~)
=

A i~ (t; ) since

the two networks fed by I and AI have exactly the same geometry up to the I-th bond breaking
event. As a consequence, the current in each bond of the networi is simply proportional to

the total applied current, therefore the factor A. Furthermore, we have assumed that

Tj(t/)
=

T~(t,). As a consequence, equation (B16) transforms int,>

Tj(t)
=

T~(t; ) + A ~
r~

I((t; )(t t,~) for the applied c,irrent AI (82)

Rupture occurs at time t/~
j

which is the minimum of A ~[l T~ (t, )]/r~ I((t,
over all bonds

in the network. This rupture occurs on the bond which realizes this minimum : this is precisely
the bond n* which minimizes the expression [I T~(t,)]/r~ I((t;) for the applied current I

(note that the factor A ~~ does not modify the realization of the minimum). This proves that

the (I + I)-th rupture occurs on the same bond n* in the two cases I and AI. We have
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t;
~ j

t;
=

[I T~~(t;)]/r~~ I(~(t; and t,~~ j t;~
=

A ~(t;
~ j

t;). From equations (B la)
and (82), this shows that Tj(t/~ j)

=
T~(t;

~

j) for all bonds n for the two applied currents I

and AI. We have thus proved that the assumed recurrence is true for all times and that the

limit of large I's (or a =

0) is well-defined. The rupture process is in fact completely defined

by the set (0
~

T(
<

Tj
< <

T(
<

T( + '
< ~

l, for all bonds n) of the successive

temperatures of all bonds at the successive breaking events, where we have noted

T~(t,)
=

T( since it is independent from the value of I-th breaking time.
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