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Rdsum4. Nous avons analys4 un
modble de type Ising, h deux sous-r4seaux couplds "an-

tiierromagn4tiquement"
,

dans l'approximation du champ moyen. Ce modble permet de bien

reproduire les transitions de spin "en deux (tapes", dont nous donnons une d6finition prdcise
Lorsque les deux sous-r£seaux sont 4quivalents, il implique une brisure spontande de sym4trie
qui peut intervenir dans

un domaine de temp6rature limits par deux "temp£ratures de N4el",

De plus, lorsqu'ils sont in6quivalents, il pr4dit le renversement simultan4 de I' "aimantation" des

deux sous-r4seaux pour une valeur "caract4ristique" de la temp4rature. Nous avons analys4 en

d4tail l'ensemble de ces eiets. Ce mod+le nous a permis d'ajuster et de discuter les rdsultats ex-

p4rimenta~1x disponibles concemant [Fe(2 pic)3]Cf2 EtOH et Fe" [5N02 Sal N(1, 4, 7, 10)].

Abstract. We have analyzed an Ising-like model,in the mean-field approach, involving two

"antiierromagnetically" coupled sublattices. This model simulates the so-called "two-step" spin-

crossover transition, for which a precise definition is given. If both sublattices are equivalent, it

implies a spontaneous breaking ofsymmetry which may occur within
a temperature range limited

by two "N4el temp6ratures". It, also predicts a simultaneous reversal of the magnetization of

the sublattices (it they
are

unequivalent) at a
"characteristic" value of temperature. These

features are
analyzed simultaneously with some details. The present model fits and explains

well the available experimental data concerning [Fe(2 pic)3]Cf2 EtOH and Fe"[5N02 Sal

N(1, 4, 7,10)].

1. Introduction.

Recently an '~unusual" low-spin = high-spin (LS 4 HS) conversion of Fe~~ has been observed

in some molecular solids [1-3]. In these compounds, the fraction nHs of molecules in the HS

state increases with temperature in two steps with
a plateau of

a
few Kelvins. In this report

we propose a
model which simulates such

a
behaviour This model is based on the approach
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of discrete levels [4] which offers
a

fruitful comparison to magnetic models.

It is well known that, for an
isolated molecule, the LS state is lower in energy than the

HS state if the ligand field is stronger than the mean spin-pairing energy The LS @ HS

conversion is thermally possible if the energy distance 6 between the ES and the LS states is

of the same order as the thermal energy kT [5],
In the discrete level approach (adapted here from [4]), for the isolated molecule, the Hamil-

tonian is taken
as:

~ 2~"

where « is a fictitious spin which has two eigen-values, ~ l, corresponding to the LS and HS

states respectively. The degeneracies ga, gb of the LS, HS states are an
essential element of the

model; gb is larger than ga because of electronic and vibrational properties. In this formalism,
the spin conversion is characterized by the mean value of «:

jai
= -nLs + nHs with nLs + nHs "

1,

SO that nHs =
((i + («)).

at 0 K, (a)= -I, all the molecules are in the LS state (nHs
#

0);

at T
- oc, («)

-

~~ ~ ~~
ci I if gb » ga; nearly all the molecules

are
in the HS state

9a + gb
(nHs t I).

A characteristic temperature for the spin conversion, Tc, is defined by kTcLn (~~) =
6

,9a
which corresponds to («)

=
0 (nHs

#
0.S). In the scope of the present analysis, it is pointed

out that the steepest (and major) part of the thermal variation of («),
occurs around Tc.

In the crystal, the interaction W;j between molecules I and j is
a function of both spins «;

and «j The general development of this function to the second order is:

Wij"A;J(";+«j)+J;j«;.«j

So the total Hamiltonian is:

7i
=

£ jA;«; + £ J;j «; «j,

S I",jl

where £ is
a sum over sites, and £

a sum over pairs of sites.

; j;,jj
In the expression of 7i, the values of the parameters A; are

directly related to the crystal
field on the site I. This field is the sum of the ligand field of the molecule I and of the crystal
field created by the other molecules of the crystal.

The parameters A; and J;j are considered here as phenomenological, and for simplicity
we

shall consider A;
=

A for all sites; then 7i is an Ising-like Hamiltonian with field (the difference

with the true Ising model is ga # gb). The case
of inequivalent sites will be described by

unequal J;j values. It is worth noticing here that
a twc-step curve can be trivially obtained

by considering two independent sublattices with unequal values of A;. The present paper,
considering equal A;, is then focused on the role of the intermolecular interactions in the

double-step transitions.
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Wajnflas2 and Pick [4] have studied, in the mean-field approximation, the "ferromagnetic"

case of
a single sublattice characterized by

a single "exchange" parameter J < 0. They
found that the crystal displays a first order transition at the temperature Tc

,
now defined as

k Tc Ln(~~)
=

A, if the interaction parameter (J( is larger than the threshold value k Tci
ga

typical plots of («(T))
are reproduced in section 2, figure I. The occurrence of such a transition

is clearly due to the degeneracies gb # ga, since the ferromagnetic Ising model under field does

not lead to a
phase transition (for gb - ga, 7~

-
oc).

On the other hand, it is remarkable that the first-order transition is not accompanied by

a symmetry change in the crystal; this is because symmetry is already broken by the "field"

(parameter A).
In the present study, we analyse the "antiferromagnetic" and "ferrimagnetic" cases, involving

two sublattices, also in the mean-field approach. It is known [6] that the antiferromagnetic Ising
model under magnetic field can lead to a para-antiferromagnetic phase transition. In the spin-
conversion system, the corresponding effect is a spontaneous breaking of symmetry between

the sublattices (when they are
structurally equivalent), which has been briefly described by

Bari and Sivardibre [7]. We report here
a detailed analysis of the syrnrnetry breaking and of

the twc-step character of the transition, the latter point being the initial goal of the present
study.

The present paper contains the description and analysis of the model (Sect. 2), the com-

parison with
a previous study of Bari and Sivardibre [7] (Sect. 3) and the application of the

present model to the available experimental data (Sect. 4). The latter section is also devoted

to the conclusion.

For convenience, we shall refer to Wajnsflasz and Pick, Bari and Sivardilre, as W-P, B-S

respectively. The notation is used are presented on a recapitulary table (Tab. I), which also

summarizes the results of the present analysis

Table I. List of notations and summary of the results of the present analysis.

Notation

~
9a

9b
Tc (Eq. (4)): simultaneous sign change of («Al

,

(«B) (if JA # JB) and sign change of («)
T~~,T(~: sign changes of («A)
T~~, T(~: sign changes of («B)

if (JAI > lJBl

T~~, T£~ exist if JAB > (JAB )s

~°CB ~ ~°CA ~ ~°~A ~ ~°~B
T~~, T£~ have no physical relevance

T~~ # T£~ define the twc-step character

two possibilities:

(~) ~°CB ~ ~C < T~B
(II) TCB ~ ~°~B ~ ~°C

the continuous / discontinuous character of conversions changes:
for T~~ at (JAB)di if JB( < kTc

for T£~ at (JAB)da if JB( > kTc
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JB

j~- j~- j~-. j~+ j~+ j~+
CA CB C' CA CB C

Tp, T$
: limiting temperatures of possible asymmetrical solutions.

In principle:
Tp < T~ < T$ < T$
or Tp < T$ < Tc if T~, T£ # Tc do not exist.

2, Analysis of the model.

We start with the Hamiltonian:

7i
=

£ (A «I + £ J;j«; «j (I)
" I",jl

where the fictitious spins
«

have eigenvalues ~ l, associated with degeneracies ga # gb.
We consider two sublattices A,B containing the same

number of molecules, such that:

"~~~~ (l + (~A,B))

'~HS
(n# +'~#) ~(~+ (~))>

where («)
=

(«Al + («B)

Let JA, JB, JAB be the intra- and inter-sublattice interaction parameters (including the num-

ber of neighbours). In the present study
we found that the onset of a

double-step transition

required intra- and inter-sublattice interactions, respectively 'ferromagnetic" and "antiferrc-

magnetic" :

JA> JB < 0, JAB > 0.

In the mean-field approach 7i is replaced by one-site Hamiltonians:

~~
'~ ~'~ ~~~ ~'~~ ~ ~~~ ~'~~~ ~~~~

I~B
" "B + "B (JB ("B) + JAB ("Al (~~)

Equations (2a,2b)
are

formally similar to the mean~field equation derived by Wajnflasz and

Pick [4] in the one-sublattice model: the crystal-field value A is merely shifted by the constant

value 2 JAB < «B,A >, respectively. The mean-field equations, derived from (2a,2b)
are:

~'~~ l~li~- /(~lll(~~~/~(~~~
~~~~

and

~'~~ l~/r~~- /(~ll~($~ll~(~~~
~~~

where
r

is the ratio gb/ga, and fl
=

(kT)~l
The expression of F, the free energy, can be found in the Appendix.
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The particular case JA
"

JB (structurally equivalent sublattices) involves
an

additional

degeneracy associated to the interchange of the sublattices when the symmetry of the system
is spontaneously broken; it will be considered after the general case (in Sect. 2.5).

We choose sublattices A, B so
that (JAI > (JB(.

The thermal evolution of («Al, («B) is really complex, but can be rationalized by considering
"characteristic temperatures" TCA,TCB for which the mean spin values change sign in one of

the sublattices. In the following, it is shown that each sublattice possesses two values of the

sc-defined characteristic temperature. In addition, both sublattices change sign simultaneously
at Tc, defined (as in the single lattice model) by

kTc Ln(r)
=

A, (4)

so
that the "characteristic temperatures" involved in the present analysis are: T~~, T£~, T~B,

T£~, Tc. It is essentially around these temperatures that («Al, («B) have their steepest (and
largest) variations.

We shall firstly determine and classify these temperatures (Sect. 2.I); secondly, we shall

consider the behavior at Tc (Sect. 2.2). This allows us to sketch the various possibilities for

the thermal evolution of the system in the general case
(Sect. 2.3). Then the problems of

the continuous / discontinuous character of the conversions (Sect. 2A) and of the spontaneous
breaking of symmetry in the case JA

"
JB (Sect. 2.S) will be considered. The results will be

collected in section 2.6 in order to provide
a

general description of the properties of the model.

2. I DETERMINATION OF THE CHARACTERISTIC TEMPERATURES TCA, TCB. At first, we

recall how the sign change occurs in the single sublattice model (ferromagnetic case) [4]. This

is sketched in figure I: the change
occurs at Tc, previously defined, and easily characterized by

the existence of the trivial solution < « >= 0. For J( < kTc, the change occurs continuously
and < « >= 0 is effectively reached. For J( > kTc, there also exist two non-trivial solutions

the free-energy values of which are equal at Tc. In its thermodynamically stable state, the

system jumps at Tc from one to the other. The presence of hysteresis, of course, would shift

the temperature values.

The same approach, discarding hysteresis effects, in the two sublattice system leads to define

the characteristic temperatures TCA (resp. TCB) as
the temperature values at which

a
"trivial"

solution with («Al (resp.(«Bl)
"

0 exists.

Considering («Bl
as a function of T, («Al,

we deduce from equations (3a, 3b) that («Bl
"

0

when the following equations are verified:

kT Ln(r)
=

A + 2 JAB («Al (S)

~'~~ l~~i~l '(~llfl($)~
~~~~

In the axes
((«Al, T) equation (S) is represented by a straight line which intersects the T axis

at the value Tc, and equation (6a) by
a curve similar to those of figure I. In figure 2, the

graphic resolution of the system (S,6a) is shown. It has up to three solutions, Tc, T~~, T£~.
T@~ are the non-trivial (I,e. # Tc) solutions of the system (S,6a). They exist when JAB is

larger than
a

threshold value (JAB)s. Due to the negative curvature at T
=

Tc of the curve

representing equation (6a), it is concluded that:

T~~ < Tc T£B 5 Tc.
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c~

a

~

Fig. 1. Computed curves from equation (6a) for diierent JA values, with
r =

~~
=

15; these curves
ga

also hold for the single-sublattice model of [4].
~~

=
0.40 (a), 0.67 (b), 1.33 (c)

kTc

<OA>
i

T£~

T£~

-i

Fig. 2. Graphic resolution of the system (5,6a). When the curve is continuous at Tc and when

the slope of the straight line is small enough (large JAB), there are three solutions: T@~, Tc, with

~cB ~ ~c> T~B ~ ~C'

The "trivial" solution is:

at T
=

TjB («B)
"

0, («Al
" («A)(a~j-o < 0,

at T
=

T£~ («B)
"

0, («Al
" («A)~~~j-o $ 0, according to T]~ 5 Tc, respectively,

Because of the self-consistent treatment of the system (S,6a), the above relations can be

considered as
sign conditions which have to be satisfied for the (continuous) sign change
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effectively to occur. When the concerned sign condition is not satisfied, the sign of the magne-

tization does not change, and the corresponding characteristic temperature looses its physical
relevance. These sign conditions will be of major importance in section 2.3.

We consequently distinguish two cases:

(I) Tj~ < Tc < T]B,

(it) Tj~ < T]~ < 7~.

By considering the slope at T
=

Tc of the curve representing equation (6a),
we easily show

that case (it) requires JAB < kTc + JA. When the curve given by (Eq. (6a)) is discontinuous at

Tc (for (JA( > kTc), the threshold value (JAB)s is equal to zero. We have plotted in figure 3

the computed values of (JAB )s as a function of JA.

iTc

2 step

I step
JAB

iTC

o

Fig. 3. Plot of (JAB)s
"

f(JA)> in the general case (JAI > (JB(. This is also the phase diagram
relative to the one-

/ two- step character of the conversion. The dashed line separates T]~ > Tc

(above) from T]~ < Tc (below). This diagram does not depend on JB.

A sirr~ilar analysis can be performed for the other sublattice, using equation (S) and
a

modification (6b) of equation (6a) (replacing A by B). It allows defining two other characteristic

temperatures: Tj~, T]~. We easily show (see FigA) that:

~CB ~ ~CA ~ ~~A ~ ~~B (~°~ (~A( > (~B()

In fact, for reasons which will appear in the next sections, T@~ have no physical relevance,

so that the only important temperatures for the sign changes of the magnetization of the

sublattices are:

Tj~<Tc5T]~.

We now consider that TjB # T$B define the twc-step character of the conversion;
such a

definition applies for any JAI > JB (. Then, it is possible to interpret figure 3 as the

phase diagram (in JA, JAB axes) of the one-
/ twc- step character of the transition. It is worth

noting that this diagram does not depend on JB (Provided that (JAI > (JB(, as assumed from

the beginning).
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~CB

Fig. 4. Simultaneous graphic determination of T@~ and T@~, involving two diierent curves
((«A),

(«B) from respectively equations (6a, fib)), and the same straight line (eq.(5)), showing: T~~ < T~~ <

I~~A ~ ~~B (I°~ (~A( > (~B().

2. 2 STUDY AT T
=

Tc. Applying equation (4) into equations (3a,3b),
we

obtain

(«Al
"

tanh flc (JA («Al + JAB («B)) (7a)

(«B)
"

tanh flc (JB («B) + JAB («Al) (7b)

with flc" (kTc) ~~

The study of the system (7a,7b) leads to a
trivial solution and eventually ((or JAB sufficiently

large) to a
symmetrical pair of non-trivial solutions:

((«Al
=

I«Bi
=

°) ((«Al # °, I«B) # °) and (- («Al
,

I«B))

The non-trivial solutions, when they exist, have the same free energy (see Appendix) which is

lower than that of the trivial solution (this
was

controlled by numerical computations). Their

entropies are however different, and consequently the values of the free energy of these two

solutions cross each other at Tc. So, the solution stable below Tc becomes unstable above,
and vice-versa: («Al> («B)> and («)= («Al + («B), abruptly change from finite values to

their opposites; the crystal displays at Tc a first order phase transition which involves an

entropy discontinuity. This does not exactly correspond to an interchange of the sublattices

(< «A(Tc) ># < «B(Tc) >), but to a simultaneous reversal of their magnetizations.
It is worth noting for the following that these discontinuities are related to the unequivalence

of the sublattices, and vanish when JA
-

JB Then, there is no more
thermodynamical

reason

for a reversal of the magnetizations.
When the trivial solution exists alone, both sublattices change sign continuously at Tc.

2. 3 THERMAL VARIATION OF («Al, («B) IN THE GENERAL CASE. The thermal variation

is monitored by the numerous sign changes which may occur at Tc, T@~, T@~. It is crucial to
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keep in mind that these sign changes only occur for a given sign of the magnetization of the

other sublattice;
we

recall the sign conditions (Sect. 2,I) for a continuous variation through 0:

at T
=

T~~ («A) < 0; at T
=

T]~ 5 Tc: («A) 5 0, and similar relations obtained by
interchanging A, B.

Three possible situations are considered in the case when T@~, T@~ exist:

(a) T~~ < T~~ < Tc < T£~ < T£~;
(~) I~CB ~ I~CA ~ I~~A ~ I~C ~ l~~Bi

(C) I~CB ~ ~CA ~ I~~A ~ ~~B ~ ~C'
The corresponding changes of signs are easily determined and are displayed in figure S

(respectively in a,b,c). Here we only report the reasoning for case
(a):

At 0 K, («Al
"

(«B)
"

-I : all molecules are low-spin. When temperature is increased,
(«B) changes sign at T~~ where the sign condition («Al < 0 is satisfied: most of molecules

B become high-spin, while most of A remain low-spin. Up to Tc, («Al remains negative
(most of molecules A remain low-spin); this is because the sign condition at T~~ ((«B) < 0)
is not satisfied;

on
the contrary, this condition tells that the temperature at which («Al is

allowed to change sign is
now

(and temporarily!) T]~ > Tc. It is easily figured out that the

shift in the characteristic value of sublattice A (from T~~ to T$~) slows down the thermal

variation of sublattice A; in other words, the energy gap of the A-molecules, due to the "field"
~

+ JA («Al + JAB («B), is increased by the sign change of the magnetization of sublattice B.
2
This

can
be considered as the basic mechanism responsible for the occurrence of the plateau.

At Tc, as reported in the previous section, both sub-lattices simultaneously change sign.
Above Tc, («Al remains positive, because the sign condition at T]~, («B) > 0, is not

satisfied, On the contrary, («B) which is firstly negative will change sign for
a

second time,
because the sign condition at T£~, («Al > 0, is satisfied again.

The previous analysis is
no

longer valid for a discontinuous sign change of («B) however

all numerical resolutions performed in the present study have shown thermal behaviors in

agreement with the schemes of figure S, which indeed reflect all possible twc-step behaviors.

The case where the T@~ do not exist leads to behaviors identical to those described above,
since nothing happens at these temperatures when they exist. At last, the trivial case where

the T@~,c~ do not exist merely leads to the simultaneous reversals at Tc.

The particular case JA
"

JB> for which there is no longer a
reversal at Tc is sketched in

figure Sd.

For convenience,
we

consider that T~~,T£~ define the temperature range of the

plateau. These temperatures are obtained according to equations (S,6a):

I~CB "~
~
~~) (~A)jaa)=0 (8)

~~~ ~~k
)r)

~'~~~Bl"° ~~~

We then determine the width of the plateau:

~ ~
JAB

(10)~j~ j~j~
=

2
~
)~) (("~~~ ~'~~

l'~~"° ~ ~~~~~



1390 JOURNAL DE PHYSIQUE I N°7

(a)
~ j ~

~~B ~CA ~C
~~ T/B

(oA<0) (oB<0) (oB>0) (oA>0)

(b)
~ ~ j

~CB ~CA
~~

~C
~~

(oA<0) (oB<0) (oB<0) (oA>0)

~~~ ~-----------------------~j~~~~~

T£B T& T/~ T/B Tc
(o~<o) (o~<o) (o~<o) (o~<o)

+

(d)
~ ~

Tp T~ T~~
Tj

T~~ T~

Fig. 5. Two-step thermal evolution of the signs of («Al (dashed lines), («B) (solid fines). It

is supposed (JAI > (JB(. The concerned sign conditions (required for the sign change to occur)
have been indicated in brackets. (a), (b), (c) refer to the possible three situations listed in the text

(Sect. 2.3). (d) depicts the case JA
=

JBi the thermodynamically equivalent solution for which A,
B are interchanged has not been drawn. (This diagram holds for both continuous and discontinuous

variations of («A> «B), and does not describe how large is the variation when it is discontinuous).

2. 4 CONTINUOUS / DISCONTINUOUS CHARACTER OF THE CONVERSIONS. To clarify the

continuous or
discontinuous character of the sign change of («B) at T~Band T£B, we have

followed the analysis developed by Wajnflasz and Pick [4] in the case of
a

single sublattice: at

T@B, («B) varies discontinuously if kT@B < JB( Otherwise, it varies continuously and goes
through zero at T~B.

T@~ are
functions of kTc, JAB, JAI their determination requires the numerical resolution

of the system (S,6a). We have plotted the computed values of T@B as a
function of JAB for

several values of JA. Some of these plots are reported in figures 6a,b.
Moving upwards in the diagrams, the value of JAB for the change from discontinuous to

continuous has been labelled
as

follows:

(JAB)di, for the case
(JB(<kTc (Fig. 6a);

(JAB)da, for kTc < JB( (Fig. 6b).
(It

can be noted that (JAB)d depends on kTc, JA, JB, while (JAB )s on
kTc, JA only).

Also, it appears clearly from the computations that any discontinuous variation of («B) is

associated to an opposite discontinuous variation of («Al (and vice-versa); this is due to the

"antiferromagnetic" coupling between the sublattices, and will be illustrated in figure 12.

2.$ THE PARTICULAR CASE JA
"

JB
"

J. The point is to distinguish between the sym-

metrical and non-symmetrical solutions. For this purpose, we introduce the parameters m, n
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~CB

Tc Tc
+

~B

_,.

.' I Tc

T)B
_,_

~~~~~~ ~~~

'~.,
JAB

0
° (JAB)S

JAB
iTc

~~ ° (JAB)12

b)

Fig. 6. Computed values of T@B, as a function of JAB The criterion for double-step is T~B # T£~.
The solid (resp. dotted) line corresponds to a continuous (resp. discontinuous) change of sign. (a) JA

=
0.3 kTc

,

JB
"

0.2 kTc. (b) JA
"

1.40 kTc> JB
"

1.2 kTc.

defined
as

follows:

m "
("Al + ("B)

" =
("Al ("B)

The symmetrical solutions correspond to n =
0, and non symmetrical solutions to n

# 0.

The parameter n is an order parameter :
in terms of magnetism,

n =
0 corresponds to a

"saturated paramagnetic" phase,
n

# 0 to an "antiferromagnetic" phase. Because of invariance

on interchanging A and B, if a solution (n # 0,m) exists, then also (-n, m), with the same

free~energy.

Using the new parameters m, n, the mean field equations are re-written:

-2 (1 r~exp [-2fl IA + Jo m)])
'~

den
~~~~

n =

~~ ~~~ ~ ~~ ~ ~° '~~~
sh (pi n) (12)

where Jo
"

I + JAB

I= J- JAB

den
=

1+2r exp [-fl (A + Jo m)] ch (fl I n) + r~
exp [-2fl (A + Jo m)]
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f(T)

-J

°
o Tp

Fig. 7. Graphic determination of the 2~~order N4el temperatures T( for JA
"

JB> using the plot

of equation (14). T(
are

the intersects of f(T) with the horizontal line -)
=

Cst.

A simple inspection of equations (11,12) leads to the following remarks:

(I) the symmetrical solutions always exists.

(ii) if
a

solution (n # 0,m) exists, then (-n # 0, m) also does,
as

mentioned above; they have

the same free energy.
We have numerically checked that for

n
# 0 there are only two solutions (~ n, m), and

compared the free-energy values of (0, 0) and (~ n, m) solutions (the analytical expression of

the free energy is obtained in the Appendix). We concluded that the non~symmetrical solutions

(when they exist)
are always more stable.

At 0 K the solution of equations (11,12) is n =
0, m =

-2, and consequently the system starts

from a symmetrical situation. A simple differential analysis of the problem allows to determine

temperatures T( corresponding to syrnrnetry breakings associated to continuous variations of

(«A,B) these are similar to 2~~ order Ndel temperatures in magnetism:
Let us consider a symmetrical solution (n

=
0, mo(T) # 0) for a given temperature T. If T

is
a

Ndel tempdrature, Tp or
T(, then a

small temperature variation 6 T (respectively positive

or negative) will result, for the non-symmetrical solution, in variations 6 m, 6
n = n

#
0. By dilferenciating equations (11,12), we obtain two linear relations involving 6 T, 6 m, n~.

We can then show that
a

solution n~ # 0 requires that:

(1+
r exp [-fl (A + Jo mo)])~

"
-4rfl 1exp [-fl (A + Jo mo)] (13)

Equation (13) is conveniently converted into:

f(T)
=

-J,

where:

j~~~
~

(i + r exP I-P (A + Jo mo(T))1)~
~~~

4 r
fl exP I-P (A + Jo mo(T))I

A typical plot of f(T) is shown in figure 7. This
curve has a

single minimum value fmin; so for
I

> fm;n, the system allows two 2"~ order Ndel temperatures Tp and Tt We can argue by
continuity, on

increasing temperatures from 0 K, that the thermal sequence is: symmetrical,
non-symmetrical, symmetrical. So, the low-symmetry ,"antiferromagnetic", phase occurs in-

between Tp and T$, when these temperatures exist.
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In agreement with the present analysis, the computed variations of the specific heat show

)-shaped discontinuities at Tp and T$ A typical example is shown in figure 8, with param-

eters chosen so as the double-step transition is of continuous-continuous type (discontinuous
transitions would prevent calculating the specific heat).

~ds
~" G

T

TN ~~

Fig. 8. Computed specific heat for the particular case JA
"

JB Notice the discontinuities of heat

capacity at Tp and T$ with their diierent amplitudes; the set of values corresponds to area (22) in

the phase diagram offigure 10b.

In the "antiferromagnetic" phase, the thermal evolutions of the sublattices are diTerent and

can be discussed in the way developed for the general case JA # JB. The only thing to do is

to label "B" the sublattice the mean value of which changes the more rapidly above Tp (this
is purely formal since T~~

=
T~~

=
T~, T£~

=
T£~

=
T£). Also, the first-order transition

at Tc vanishes.

When equation (13) cannot be satisfied, I-e- when there are no
2"d order Ndel transitions,

symmetry breakings can yet occur when («Al
or

(«B) undergo discontinuous variations at T@.
The relationships between T(,

T@ are analyzed in the next section.

2. 6 PHASE DIAGRAM. The purpose of this section is to analyze simultaneously the one-
/

twc-step, continuous / discontinuous characters of the conversion curve, and also the occurrence

of syrnrnetrical or non-symmetrical solutions when JA
"

JB These characters will be described

as a
function of the interaction parameters JA, JB, JAB in terms of phase diagrams, and the

various possibilities for the thermal variations of («Al, («B), jai will be described.

For this purpose, we have done by computer the graphic resolution shown in figure 7; the

resulting values of T( have been plotted as a function of JAB for several values of J. Some of

the plots are reported in figure 9.

The comparison of T(
an T@ values, in figure 9, is really instructive. The Ndel values follow

a curve of which the upper and lower branches respectively correspond to T$, Tp. It is clear

that the normal sequence should be: Tp < T~ < T£ < T$. Consequently, the part of the



1394 JOURNAL DE PHYSIQUE I N°7

T/~ TIN
~

TC

~,
TC (JAB) ~,,~~,c o.

'

,
~,i, ~e'

""I,,,j

'

~
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I Tc

o i
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Fig. 9. Computed values of T@, T(
vs. JAB> for the symmetrical case: JA

"
JB

#
J

=
0.3 (a),

1.0 (b), IA kTc (c). T@ are represented by thin fines: solid (resp. dashed) when the variations

of («A B) at zero are
continuous (resp. discontinuous). T(

are represented by thick solid lines when

they electively correspond to 2"~ order Ndel transitions (Tp < T~, T] < T$); by dotted fines when

they only refer to a
mathematical solution. (JAB)mm and (JAB)c.o, determine the phase diagram of

figure lob.
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TN curve which lies inside the Tc curve does not correspond to true Ndel temperatures; in this

case, the syrrtrretry breakings which are required by T~ # Tj must correspond to l~~ order

N6el transitions. So, the l~~/2"~ order of the N6el transitions is monitored by the crossover

which is unique of the two curves of figure 9. The corresponding value of JAB is labelled

(JAB)c
o

(c.o. stands for crossover).
It is possible to figure out whether or not these l~~ order N6el transitions match the discon-

tinuities at T@ when they exist):
For (J( < kTc i then (JAB)co < (JAB)~~ (Fig. 9a corresponds to equality). Two cases are

considered:

(I) for (JAB)co < JAB < (JAB)d~ the l~~ order Ndel temperature differs from T~ (where
(«A,B) vary continuously); this is libelled "d" in the phase diagram in figure 10b;
(it) for (JAB)d~ < JAB, the discontinuity which occurs at T~ can be considered as

(and effec-

tively is) a l~~ order N4el transition.

For (J( > kTc i then (JAB)d~ < (JAB )c_o_
(Fig. 9c). Two cases are considered:

(iii) for 0 < JAB < (JAB)d~, the discontinuity at T]
can be considered as

(and in fact is) a l~~

order Ndel transition;
(iv) for (JAB)d~ < JAB < (JAB)co

,

the l~~ order N6el temperature differs from T] (where
(«A,B) vary continuously); this is "f" in the phase diagram;

The "valid" part of the T(
curve (which only corresponds to 2"d order transitionsl) is drawn

as a
thick solid line

on the plots of figures 9. It can be noted that the present analysis does

not estimate T( when they are l~~ order and differ from T@.
The determination of the phase diagram in the space JA,JB> JAB would require the con-

struction of a huge number of plots similar to those of figures 9. In fact, it is sufficient to

do it for a given value of A which scales the energies. For convenience, we have presented
separately the one- / two -step and continuous / discontinuous characters of the sub-lattice

magnetizations when they cross zero
(Fig. 10a), and the symmetrical /

non- symmetrical and

l~~/2"~ order of the N6el transitions (Fig. 10b, JA
"

JB).

Phase diagrams for JA # JB (Fig. 10a) have been considered at constant
)

The line (s)
A

remain unchanged, while lines (di, d~) moves
upwards when the ratio

~~
is decreased.

JA
Typical thermal variations of («Al, («B), («)

are
shown in Figs-Ii for various sets of

parameters indicated in the phase diagram of the particular case JA
"

JB (Fig.10b). A

systematic inspection of jai shows that the second step of the conversion is always
smoother than the first step; this remains true for JA # JB.

With the help of the curves of figure 11, the phase diagram of the symmetrical case
(Fig.10b)

can be commented as follows: moving from (a) to (g) around the point J
=

-kTc, JAB
"

0,

we successively observe

a: a
continuous, symmetrical behavior,

a-b: the onset of symmetry breaking (2"d order) below Tc,
b-c: the non-symmetrical domain enlarges so

that the magnetizations of the sublattices cross

the value zero at different temperatures (this is our definition of the "double~step"),
c-d: the lower N6el temperature becomes l~~ order,
d-e: the corresponding discontinuity increases so as to result in a sign change of one sublattice,
e-f: the higher Ndel temperature also becomes P~ order,
f-g: the corresponding discontinuity increases so as to also result in the sign change of the

second sublattice.

A plot concerning the general case
(with

~~
=

0.8, corresponding to the label (h) in Fig, 10a)
JA
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loo)

d~
~ (ll)"~

~'~

f
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_,,

..' e"

(DC)
'~

e

(12)
..

h

~~~
~

~~~~ ~~~
~

"

(22) ~

AB
Tc

o i
°o

a) b)

Fig. 10. a) Phase diagram concerning the continuous / discontinuous and
one-

/ two-step characters

of the spin conversion when («A,B) crosses zero. The borderlines correspond to the plots of (@)
,

c
~(@)

,
~(~ vs

).
The symbols (C), (D) stand for the continuous or discontinuous char~

C d~
k C d~ C

deter of the magnetization reversals at Ti~. Solid lines correspond to JA
"

JB> dotted lines to
)

=

A
0.9, 0.8.

b) Phase diagram concerning the occurrence of the non-symmetrical phase and the l~~ and 2"~ order

of the N4el transitions. The borderlines (solid lines) correspond to the plots
vs

(
of (JAB )mm and

c
of (JAB)c.o. defined in figure 9. The different areas are labelled in agreement with [7]: (it)

:
both

N6el transitions are1~~ order, (12)
:

the lower is 1~~ order, the higher 2"~ order, (22)
: both are

2"~

order. (s) stands for symmetrical at any temperature. The borderlines of the previous phase diagram
(Fig.10a) for JA

#
JB have been reproduced as dotted lines. Typical situations, labelled by letters

from a to g are
illustrated in figure ii and described in the forelast paragraph of section 2.6.; two

additional situations (e', e") have been considered in order to complete figures 9a,c.

is reproduced in figure 12 in order to illustrate the discontinuities at Tc analyzed in section 2.3.

All these results
are

summarized in
a

recapitulary table (Tab. 1).

3. Comparison to previous results.

In a previous paper, Bari and Sivardibre iii considered the spin conversion of one- and twc-

sublattices (crystallographically equivalent) structures, together with the influence of magnetic
interactions. They started from a simple lattice model with elastic and vibronic contributions

to the energy. They showed its equivalence to a twc-level model characterized by an energy

gap depending linearly on the order parameter; thin is similar to the present model and leads

to equations which are formally similar to ours (I.e. to Wajnflasz and Pick's restricted to two
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<O~ ~> <O>~_
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,Z~
j ~

0
(~ I~N (~) ~ I~C (~) ~ l~~(~) ~ l~$(~)

I

-j~-2~
2

o o
(e) Tp(I) < Tj(D) < T$(C) < T$(2)

e

-l~-2~
' 2

0 0
(~) I~N (1) ~ I~C (~) ~ l~~(~) ~ l~$(~)

d

-j~-2~
Z

0 0
(C) I~N (~) ~ I~C (~) ~ l~~(~) ~ l~$(~)

c

-l~-2~
2

o o
(b) Tp (2) < T$(2) < T@(C)

=
Tc

b

-j~~2~
2

o o
(a)

no N6el transitions, C

a

~-l~
-2

T(Kl

Fig. il. Thermal variation of («Al
>

(«B)
>

la) for the particular case JA
"

JB, in typical
cases

reported in the phase diagram of figure 10b (and schematically reported in figure 9, excepting situation

c). The characters of the N4el transitions, which can be 2"~
or 1~~ order, and of the crossings to zero,

continuous or discontinuous, are designed as 2 or 1, C or D, respectively.
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<~A>'<~B~')<°>
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j,

,~

,,.),,,"
,~~

"~'A

' T

ifi~ ic 1£~

Fig. 12. Thermal variations of («Al (broken line), («B) (solid line), («) (thick solid line), for JA #
JB> in

a
situation labelled (h) in figure 10a, shoving the discontinuities at Tc and the unequivalence

of the sublattices at any temperature, r =
15, JA> JB> JAB

"
-0.75, -0.60, +o.60 kTc respectively.

levels). They further showed the equivalence to a molecular field treatment with interactions

between sites I, j written in terms of occupation numbers n;,nj. The eigenvalues of operators

n are 0,1, and this is the only difference with the Ising-like treatment of W-P, whose « is
a

spin with eigenvalues + I. The translation from one to the other treatment is merely obtained

by the following formulas:

(«;)~~~~ =
(2 n; 1)~_~

(A)here
" (A K +

()
B-S

(J)here
" (~ ~)

B-S

(JAB )here "

()
B-S

So, the difference between the present treatment and B-S's only lies in the different defini-

tions of the constants. This explains why the transition temperature depends
on the interaction

parameter in the B-S treatment (at AB-s constant), while it does not in the W-P treatment

(at Aw-P constant). There is no way to decide which of W-P or B-S treatments is the more

physically relevant, since A, K are independent parameters. In other words, the difference

between B-S and W-P is purely cosmetic.

Consequently, the B-S results on the twc-sublattice problem (which only deal with the

symmetry breakings)
are expected to be identical to ours. Once adapted with the proper

translation of constants, their phase diagram is quite similar to ours; they are compared in

figure 13. There is however
a

noticeable difference concerning
area

(D) of B-S which does not

appear in our diagram; it is easily controlled that the threshold value (JAB)s
"

0 for J( >

kTc (Fig.6b): then T~ # T£ for any JAB > 0, which indeed demonstrates the presence of

non-symmetrical solutions, and rules out the existence of area (D).
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kTc

~ ,l'

~l'
,'

a,~

c

=

Q22

o

Fig, 13. Phase diagram adapted from B-S's results (Fig.6 of [7]). Area (D) corresponds to a sym-
metrical evolution with discontinuous transition (which does not occur in the present analysis).

Such
a

difference may be due to the numerical approach of B-S, whose accuracy seems to

be insufficient to resolve two discontinuities occuring at close temperatures. On the contrary,
the present investigation is mostly based on the analytic determination of the characteristic

temperatures T@ and T( this ensures a good accuracy of the results.

An alternative explanation for the difference might be an hysteresis effect larger than the

width of the plateau (this explanation would assume that the solution chosen by B-S was not

the thermodynamically most stable at every temperature). Hysteresis effects will be studied

separately.

4. Comparison to experimental data.

H. K6ppen et al. ill have published
a

detailed study of the twc-step spin conversion in

~fe[2 pic]3] Cl~-EtOH where (2 pic
=

2 picolylamine). M6ssbauer spectroscopy and mag-
netic susceptibility data are in fair agreement and lead to the plot of nHs vs. T reproduced in

figure 14,

Using the present model, we have obtained, through a least-square fit procedure the following
parameter values: JA"JB

"
-123 K, JAB" 12.I K, A

=
320 K. We had fixed, following [4],

r =
IS corresponding to the total electronic degeneracies of the lAi and ~T2 states. The most

important feature of the plot, I-e- the inflexion around Tc is obtained, and gives evidence of

the relevantness of the model. However, the high temperature values are not well reproduced
(dotted line in Fig.14) and require

a
significant change in the value of r

indeed, the high

temperature limit of jai is 2
~

,

and consequently, the high temperature limit of nHs "~r
+

lj
jai + 0.S is ~ the value

r =
400 greatly improves the fit (solid line in Fig.14). Then A

r +

=
705 K, JA

"
JB

"
-123 K, JAB

#
16.7 K. This set of values corresponds to a situation of

(DC,11) type, reported as a cross in Fig,10b). Then the computed characteristic temperatures
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n~s ~~

o

T(K)

110 210

Fig, 14. Experimental values (crosses) of the high-spin fraction nHs(T), for Fe~~[2-pic] 3] 02
-EtOH, from Iii, and least-square fits with r =

is (dotted line), 400 (solid line).

are: Tj
=

Tp
=

l13.8 K, Tc
"

l17.7 K, T£
=

121.2 K j~ T$ (the l~~ order Ndel temperatures

are not analytically determined since they are not solutions of Eq. (13)).
(A reason for increasing r alight lie in the vibrational entropies which strongly di1Fer in the

LS and HS states. This will be discussed in a separate report ).
The specific heat corresponding to the fitted set of values should exhibit

a
divergence at Tp

=
T~,

a
finite peak at T£, and a

smaller divergence at T$
very close to T£. Practically,

a first,

narrow and high peak and a
second, broad and low, one are then expected. The experimental

data [8] show the reverse. This will be discussed below.

A second example is that of Fe"(SN02 sal N(1, 4, 7,10)) [2a] for which we have used the

M6ssbauer data of nHs(T) (Fig.lS). The best fit is obtained with
r =

400, JA
"

JB
"

280

K, JAB
"

29 K, A
=

920 K. The conversion proceeds through 2 discontinuous steps and leads

to a thermal hysteresis which has been observed
on the magnetic data. In the phase diagram

the corresponding point lies far away near the vertical axis, in the (11), (DD) 20ne, such that

Tp
=

Tj, T$
=

T£.
It can be remarked, for both experimental data analyzed here, that the second step is

steeper than the first one; this results in sizable misfits in figures 14, IS, and suggests that the

assumption AA
"

AB is not so
well fulfilled. A more general analysis of the data, involving

AA # AB> should also account for the thermal hysteresis, and will be undertaken in a further

step.
A similar analysis in the case of the previous complex might also explain the discrepancy

between experimental and computed specific heat, since the shapes of the Cp anomalies are

clearly related to the steepnesses of the conversion curve at the characteristic temperatures.

5 Conclusion.

We have described the twc-step spin-conversion with a very simple model based
on four pa-

rameters only: Tc which is a characteristic temperature of the molecular system, and three

"exchange" parameters JA, JB, JAB- The intra-sublattice parameters JA, JB are negative
("ferromagnetic" interactions) and the inter-sublattice parameter JAB is positive ("antiferrc-
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(°
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100 210

Fig. 15. Experimental values of Fe" [5N02 sal (1, 4, 7,10)], from [2a], and least square fit with

r =
400

magnetic" interaction). The twc-step evolution results from the coupled thermal variations

of the sublattices near Tci it is predicted that, in any case, the first step is steeper than the

second one, and this clearly is
a consequence of the assumption AA

#
AB.

The model also predicts in the general case (JA # JB) a reversal of the "magnetizations" of

the sublattices at Tc> with the thermodynamical properties of
a

first-order transition. In the

particular case of equivalent sublattices (JA" JB) this first-order transition at Tc vanishes,
but an "antiferromagnetic" phase between two N4el temperatures Tp and T$

can occur; the

Ndel transitions can be of 2"d
or l~~ order.

These features have been investigated simultaneously, by using analytic approaches which

ensure the reliability of the final phase diagram.
Finally,

we
have well reproduced the experimentally observed twc-step spin conversions; the

predictions concerning the discontinuities of specific heat at TJ and the reversals at Tc remain

to be observed. The present model could be applied more widely to twc-level twc-sublattice

systems, for which other examples should be found among molecular solids.

We are indebted to the referees of Journal de Physique, whose constructive remarks have

been appreciated.

Appendix

Calculation of the free-energy, entropy and heat capacity in the mean-field

approxbnation.

1. GENERAL EXPRESSION OF F.

It is well known [6] that, F, the free-energy of the system of N molecules in the mean-field

approximation is given by

F
=

)
kT lLn (zoA) + Ln (zoB )I

(
(JA («Al~ + JB I«Bl~ + 2JAB («Al I«Bl) (Al
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with

zoA =ga exp fl l~ + JA I«A) + JAB
«Blj

+gb exp fl (~ + JA («Al + JAB
«Blj

zoB =ga exp fl + JB I«Bl + JAB
«Alj

+ gb exp fl + JB I«Bl + JAB
«Alj

and fl
=

(kT)~~

2. VALUE AT TC.

The characteristic value Tc is defined by

r exp (-flcA)
=

I with
r =

~~

9a

F (Tcj
=

N kTc Ln (g~) (A

(kTc 12 Lll(2) + Lll (Ch lflc (JA («Al + JAB («B))I)I

(kTc Ln (ch jpc jJB («Bj + JAB («Ajjj)

(
JA («A)~ + JB («B)~ + 2JAB j«Aj j«Bj jA2)

This expression clearly shows that F(Tc) does not change when ((«Al, («B)) is replaced by

(~ ("Al> ("B)).

3. PARTICULAR CASE JA
"

JB
"

J.

We re-write F by using the following relations

Jo"J+JAB J"J-JAB

("Al "( («B)"~

we obtain

ZOA "ga exp (fl~
exp~

(Jo m + I n) + r
exp(-fl A)exp

~
(Jo m + I )1

2 2 2

ZOB "ga exp
fl~

exp
~

(Jo m
I n) + r

exp(- fl A)exp
~

(Jo m
I n)

2 2 2

and

F
=

NkT Ln(ga)
)

A

~
kT (Ln

exp~
(Jo m + I n) + r

exp(- fl A)exp
~

(Jo m + I n)
2 2 2

+Ln
exp~

(Jo m
I n) + r

exp(-fl A)exp
~

(Jo m
I n)

2 2

~°
~~ ~

~ ~~~~
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4. ENTROPY.

S has been obtained analytically in the particular
case JA

=
JB:

S
=

N Ln(
~

+ flN (A + Jo-m)
1 ~ ~~~ ~~ ~~ ~ ~°'~'~~

+

~~~"~
2 D 4

D
= + 2r exp (-fl (A + Jo .m)) ch (flin~) + r~exp (-2fl (A + Jo .m))

~'~~~

5. HEAT CAPACITY.

C is numerically derived from the entropy, according to C
=

T~~
dT
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