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Abstract. The spin glass dynamic equations can be written in a way that makes the super-

symmetry associated with such
a

Langevin process explicit. In such
a

framework the fluctuation-

dissipation relations and time homogeinity properties
are

implicit in the symmetries of the action

functional. The spin glass phase transition can be discussed in terms of supersymmetry break-

ing. The superspace notation appears naturally. In this notation the dynamics is expressed
in terms of

a
single superspace function Q, and the dynamic problem bears a

striking formal

similarity with its static replica-treatment counterpart. In particular, this similarity
can

be

used to show explicitely that the supersymmetric dynamical solution and the replica symmetric
solutions yield the

same
static results for a

wide range of models.

1. Introduction.

The study of long range spin glasses has been tackled analytically using several methods: the

replica trick, the TAP equations, the cavity method and the dynamic approach ill. Even

though each of these methods gives a particular insight into some aspect of the spin glass
physics, the replica trick has been by far the most successful in uncovering the novel features

of this problem,
as

well as in practical calculations.

In the dynamic approach
one

considers
a

Langevin process (gradient descent + noise) associ-

ated with the spin glass Hamiltonian. The physical information is retrieved from the correlation

functions of magnitudes (e.g. spins) at different times. The probability distribution of the sys-

tem, averaged over
the noise, can be shown to converge at long times (at least for finite number

of spins N) to the canonical distribution.

In practice one constructs a Martin-Siggia-Rose [2] functional integral over the trajectories
with different noise realizations. It was observed by De Dominicis [3] that since the sourceless

path integral is independent of the Hamiltonian, one can calculate directly the averages over

the couplings for the correlation functions, without introducing replicas. This program was

firstly implemented in this context by Sompolinsky [4].
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A Langevin dynamic system such as this
one

leads to an action that has associated with it

a Parisi-Sourlas supersymmetry (SUSY) which, as these authors point out, encompasses the

information that the system came from a
stochastic equation. It also contains the fluctuation-

dissipation theorems (FDT) (valid at all temperatures for finite number of spins N) which

appear as Ward identities, and it implies the time homogeneity of equilibrium correlation

functions [5, 6].
In the dynamic treatments of spin glasses

so
far, the SUSY has been rather hidden. The

purpose of this paper is to cast the spin glass dynamic problem in a
manifestly SUSY way, and

to make the first few steps in its exploration from this point of view. The main encouraging
feature is that in

so
doing the dynamic approach

comes
formally closer to the static replica

treatment, where much
more is known. In order to emphasize the generality of the arguments,

we treat simultaneously several long range models.

As is well known, the low temperature spin glass phase is characterized by the appearence
of many metastable states. Dynamically, because of the ruggedness of the energy landscape
and the diverging height of the barriers (at least for fully connected systems), the ergodicity
is broken.

In the static replica treatment this manifests itself in the breaking of the replica symmetry
by the saddle point solutions for the thermodynamic limit (N

~
oo) in the low temperature

phase. In the dynamic approach, Sompolinsky and Zippelius [4] have considered for this phase

a
FDT-violating saddle point solution; which in the StfSY language reads

as a
SUSY-breaking

solution.

In order to clarify the relationship between SUSY-breaking and the spin glass phase transition

it is illuminating to have in mind the simple example of a Langevin dynamics of a particle
moving on a one

dimensional symmetric double well, for which the SUSY
can

also be made

manifest [fi]. In the "semiclassical" limit of low noise ergodicity is broken (the barrier is

not surmountable). One finds the time-independent solutions corresponding to the particle
sitting at the stationary values of the energy. To obtain the correct equilibrium distribution,
independently of the initial conditions, one has to allow for barrier penetration effects. These

are represented by instantons, which can be described
as

SUSY-breaking saddle point solutions

(time-translation, which instantons obviously break, is
a part of the SUSY group).

Bearing this in mind,
one can expect that in the low temperature spin glass phase taking into

consideration SUSY-breaking (FDT-violating) saddle point solutions one can get the correct

equilibrium results, independently of the initial conditions.

An alternative strategy is to stay at the level of SUSY solutions, but then the initial condi-

tions must be chosen with the correct statistical weight. This is just a way of restating what

has been done in [8], where the price is paid of the reintroduction of replicas.
The breaking of SUSY by a solution is, in any case, an artifact of the saddle point evaluation,

physical values have to be summed
over

all the different saddle points, and hence the SUSY is

restored. Again this is analogous to the breaking (and further restoration) of time-invariance

by instantons.

It is interesting to note here that the spin glass phase transition has already been displayed

as a
SUSY breaking transition in the different context of the mean field equations [7].

In section 2 we
make

a
Hilbert space construction of the Fokker-Planck problem associated

with the dynamics. This allows
us to discuss boundary conditions in the resulting path integral,

we consider a choice that is suitable for the calculation of equilibrium quantities. It also seems a

good starting point for generalizations to Glauber processes. This section is rather independent
from the rest of the paper, it can be skipped without much loss of understanding of the rest.

In writing the dynamic equations in a manifestly SUSY way, one finds that
a great simplifi-

cation is obtained by writing the time dependent order parameters as functions of superspace
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(Sect. 3), consisting of the two times ti and t2 and their associated Grassmann coordinates

91 ,91 and 92 ,92 respectively.
In this notation, the object which appears naturally is the single superspace-dependent field

Q(1, 2) (where "I" and "2" stand for the two sets of superspace coordinates). It encodes all the

relevant correlation and response functions and plays much the same role as the matrix Qap
does in the replica treatment. In section 4 we construct the averaged dynamics for a range of

models. This leads to (non-local) field equations for Q(1, 2).
The action functional and the saddle point equations are seen to have

a
striking similarity

with corresponding static replica expressions. In order to show that this is a very general fact

we show that diagrams involved (if any) in the computation of the action functional when

written in superspace ("superdiagrams") have the same form
as

the corresponding ones in the

replica treatment (this may also be of use in the perturbative corrections, but we do not discuss

that here).
In section 5 we

discuss the symmetries of the action functional. In particular one finds the

SUSY appears as a symmetry in the action with respect to transformations in superspace.
Above Tc the solution in [4] does not break any of these symmetries.

Quite generally the dynamic action is the sum of a "potential" term, which is formally the

same as the replica expression for the averaged free energy; plus
a

purely "kinetic" term, which

depends on the particular dynamics one has given to the spin glass problem (and contains the

causal information). Such simplicity, plus the requirement of SUSY and causality, can possibly
help as a

guideline to the construction of simplified dynamical models (e.g. truncated models

near Tc).
Finally, in section 6 we take advantage of the form of the dynamic equations in superspace

to show that they can be solved in a
form that makes close contact with their static replica

counterpart. This is done however only above Tc, the more interesting
case

of low temperature
phase is being studied currently.

2. Hilbert space.

In this section we make a Hilbert space construction of the Fokker-Planck dynamics. The

purpose is twofold. Firstly we wish to show clearly what it is that
we are

calculating in the

functional approach. In particular, the boundary conditions in the path integral are important
since they can explicitly break the SUSY. The boundary conditions proposed in [5], which

are

periodic in both the boson and the fermion variables, are seen to have an interesting algebraic
meaning. For example the sourceless path integral corresponds to the index, a topological

invariant studied extensively in [9] which gives useful information: SUSY is shown to be
un-

broken for N finite. If
as a

result of the N
~

oo) saddle point evaluation it is broken it must

be restored as soon as one goes beyond that approximation. These boundary conditions will

be shown to yield the equilibrium correlations.

Secondly, this Hilbert space construction lends itself easily to generalizations to processes
such

as
Glauber dynamics; for which SUSY

can also be introduced.

2.I SUPERSYMMETRIC HAMILTONIAN. Consider
a

family of soft p-spin models with ener-

gies:

E
=

J;~...; s;~ s; h s; + h(s) (1)~
P p

~
l<ii<ia.. <i~<N I

where the J;~...;~ are
independent random variables with zero mean and variance J~pl/2NP~~

The factor h(s) is a spin length probability that dominates over the interaction term for large
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s;, for example (for p =
2) [4] :

h(S)
=

~ i) ro 81 + tt 811 (2)

We shall also consider
a

spherical constraint:

hsc(s)
=

lim
a

(~ s) N)~ (3)
a-m

I

The Langevin dynamics for this system at inverse temperature fl is given by

ri~ I'= -£
(SE) + f;(t) (4)

where f;(t)
are

Gaussian random variables with zero mean and variance

< t~ (i) t~ (if) > =

)
~u ~(i -1') (5)

Starting from
an

initial condition the system evolves into some point in phase space which

depends
on

the particular noise realization. If we consider the dynamics averaged over the

noise realizations we obtain a
probability P(s,t) that the system is in a point

s
of phase space.

The time evolution of P(s,I) is described by the Fokker-Planck equation associated with (4)
wich reads (see [6], chapt. 3):

=
-HFP P (6)

where

~~ ~

Ii
~~~

The Fokker-Plank operator HFP is non-hermitian:

HFP
"

£ A-; A+; (a)

;

A-;
= p; A+;

= p; ill
)

(b) (8)
1

but can be taken to an
Hermitian form by the non-unitary transformation I:

Hip
=

i~~ HFP il
=

~j A[;A[;= H)p (10)

where:

I
" eXP l~(flE(S)I (11)
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From the form of (10) H[p (and hence HFP) have eigenvalues > 0. The right eigenvector of

HFP associated with the eigenvalues zero is proportional to the canonical weight

P~q ~-

e~P~(~) (12)

while the left eigenvector is proportional to a constant, thus insuring probability conservation.

At this point we introduce 2N fermion operators a),aj
:

[al
,

ajl+
=

6ij (13)

and the SUSY operators

Q+
"

A+I a!
,

Q-
"

A-I a~ (14)~
>

~
; ;

their combinations:

Ql
"

Q+ + Q- Q2
"

(Q+ ~Q-) (~5)

and the fermion number operator:

NF
"

~ alai (16)

;

From (8b) they are seen to verify:

Qj
=

0

lQ+,NFI-
"

~Q+ (17)

Consider now the Hamiltonian:

H
#

r0 [Q+ Q-1+ (~)

"
To Q(

"
~o Q( (~)

=

) l~ IA-;
,

A+il+ +
L IA-I

,

A+jl- la~
,

a)I+
I ;,j

=
To
l~

p; (p;
I))

+ at
aj a( )

(C) (18)

, ~ j

It commutes with the SUSY charges and the fermion number:

lH
,

Q+1
=

0 (a) (19)

jH
,

N~j
=

o (b) (20)

Transforming Q+ through (II) they become hermitian conjugates; and Qi, Q2, H transform

into hermitian operators:

Q[
"

t~~Q+t"Q)

Ql
"

~t~~ Qi I
"

Qf Ql
"

~t~~ Q2 I
"

Q)

H'
=

i~ ~Hi
=

H'~ (21)
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and

H'
=

roo'~
"

YOQ'( (22)

These hermiticity properties are important, though the primed representation is not convenient

for actual calculations because H'is quadratic in the couplings Jj~__~~. In the next sections
we

shall only use unprimed quantities.
Again, since H'

can be seen to be the square of an hermitian operator Q'i
or Q'~ its spectrum

(and hence that of H) consists ofeigenvalues that
are greater or

equal than zero.

Denoting (@;) the (orthonormal) eigenvectors of H'
we have:

Blip;)
=

t-iHt j<~j
=

~~ji~j (23)

so that the right and left eigenvectors of H are:

i~2Rii =

tt iii), 1~2L;1= 1@;itt~~ 124)

Each pair (~7R;), (i2Li) has well defined fermion number.

Looking at (18) we note that within the zero ghost subspace H
=

HFP Hence the states:

(§'R0) =

~
~~

Ii e~flE
~;

ds;jl/2 ~ (0 ghost)

~~~~~
~~ ~

~~

'

~~~~~~~
~ ~~ ~~°~~~ (25)

are
stationary right and left eigenvectors with 2ero eigenvalue. We show below that they are

the only ones.

2.2 INVARIANTS. To show the uniqueness of the equilibrium distribution, and hence that

the fermions have not added anything spurious, we shall briefly review the discussion in [9] as

applied to our case. We refer the reader to that reference for the derivations.

Let n("° and nf"° be the numbers of zero energy states having even and odd fermion

numbers respectively. Consider first the total number (n("° + nf"°). It is shown in [9]
that this quantity is invariant with respect to a group of ("conjugation") transformations

in the Hamiltonian. One can easily construct a subset of such transformations that effects

an arbitrary change in the couplings Ji~
__i~

while leaving the spin length probability (which
dominates for large s;) invariant.

Secondly, and more important for us, the quantity n("° nf"° (the "index" of H) is also

left invariant by such changes.
Hence, both n("° and nf"°

are the same for any realization of the J;~ ;~; in particular for

J;~_ _i~ =
0. But it is easy to see that in the uncoupled case nB "

I, nF "
0 if the spin length

probability is reasonably chosen.

This proves that for any (finite) number of spins the only equilibrium (zero eigenvalue) state

is indeed the canonical distribution which is anihilated by the charges Q+. Hence for N finite

the SUSY is unbroken.

2.3 CORRELATION FuNcTioNs. As is well known [4], the dynamical approach can be

implemented without replicas because the path integral without sources does not depend
on

the realization of the couplings.
We construct now

the correlation functions in
a manner that is related to the topological

index and that yields the fluctuation-dissipation theorems (FDT) in
a

particularly convenient
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way. They are based on a trace, and are useful for the equilibrium properties, but do not refer

to a particular non-equilibrium initial condition.

Consider first the quantity
tr[e+~"~F e~~~] (26)

where T is not the physical inverse temperature fl but
a mathematical artifact that

on going
to infinity selects the equilibrium state. It is convenient to pass to the basis in which the

Hamiltonian is hermitian:

tr[e+~"~F e~~~]
=

tr[i~~~ e+i'NF e~~~ I]
=

" t~l~~~~ ~~ ~~~~'l
"

~j ~~~~'l#Sl~~~~~l#Sl (27)
I

Now, the positive energy eigenvectors of
a

supersymmetric Hamiltonian come in pairs of even

and odd fermion numbers [9]. Hence, only zero energy states contribute to (27) and
we get:

tr[e+~''~F e~~~]
=

n("° nf"°
=

(28)

I-e- the index for all T. Note that where it not for the factor e~'NF this would only hold for

T
- oo.

This suggests that we define (note the first factor in the trace):

< Oa(I + T) Ob(I) >T" tr [e'~~~ e~~~ Da e~~~ Ob e~~] (29)

Again, making the similarity trnsformation
as

in (27) we get:

< @;(T~~Obi~(@j >< ii (i~~obi~(~ai >

"
~j(~l)~~~~ ~~' ~~~' ~'~

~ §'Li (°a(§'Rj >< §'Lj (°b(§'Ri > (3°)
;,j

Now, if T
- oo (T finite);

< Da (I + T) Ob(I) >" llmT-cxo < Da (I + T) Ob(I) >T

"

~
e

~~' < §2L0(Oa(§2Rj > '< §'Lj(Ob(§'R0 > (31)
j

and if further
T - oo

(but still T (T( - oo

~lim < Oa (I + T) Ob(1) >=< §2L0(Oa(§2R0 >< §'LO(Ob(§'R0 > (32)

which is the product of the canonical espectations: the static quantity of interest.

2.4 FLUCTUATION DISSIPATION RELATIONS. Thanks to the introduction of the factor e~'~F

in the trace we
have fluctuaction dissipation relations valid for all times T. Let us

derive one

of them:

)
~ °a (~ + T) °b(~) >T" tr e'~~~e ~~°ae ~~(°b HI -~~~~ (33)



1340 JOURNAL DE PHYSIQUE I N°7

Using (18a), the Jacobi identity and the fact that:

e"'~FQ+
=

-Q+e"'~F (34)

we get after
a

short computation:

)
< °a (~ + ~) °b(I) >T" r0t~ ~'~~~~~~~oa~~~~ [ob

,

Q+I-
,

Q-j ~~~~~

~~l~ixNf~-TH jo Q Q ~-rHo rH (3$)
0 a +

,
b e

~

For example, putting Oa
=

Oh
" sk in (35) we get:

fi

$ ~ ~~ ~~
~ ~) Sk (I) >T"

~~~ ~ ~~ ~~ ~ ~~ ~~~~~ ~~ ~~° ~ Pk (I + T) sk(I) >T ~~~

2.5 CAUSALITY. The following "causality" relations
use

explicitely the structure of the

ground state and are valid only for T (T( - oo
(unlike the FDT). They are easily read from

(31):

< PS (~ + ~) °(~) >"< ~) (~ + ~) °(~) >" o (37)

for any operator O, since pi and al anihilate the left eigenvector < ~7Lo(.
Finally,

we
shall use the relations:

llmT-0+ < Si (I + T) p;(I) >= I

limr_o+ < a~ (t + T) al (t) >= (38)

which
are

easily derived from the commutation relations.

2. 6 SUP ERSYMMETRY BREAKING. The previous arguments about unicity of the
zero energy

ground state hold for finite number N of spins. In particular they show that SUSY is unbroken.

However, in the saddle point approximation (N
-

oo) the SUSY can be broken, and hence

the FDT violated, by some saddle point solutions. The SUSY is recovered for large but finite

N by summing over the inequivalent SUSY breaking saddle point solutions.

This concludes the discussion in the hilbert space. In the following sections we work only
with functional methods.

3. Superspace.

Starting from the trace formula (29) we can now construct the path integral expressions for

the correlation functions. This can be done in any standard way; the only special feature is

that the presence of the factor e~'~F leads to ([6] chapt. 2) paths that
are

periodic both for

fermions and bosons, as opposed to the usual antiperiodic conditions in fermions.

We obtain the Martin-Siggia-Rose [2] path integral with its jacobian exponentiated through
ghosts:

Z
=

/
exPi-S)DIS;I DlPil DInil D14;1
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S
= £~ (To iinsn> + P>Si Pi) + j )

P; + j alll~ ninJ1 (39)

where we have rescaled the ghosts and momenta for simplicity of notation.

If at this point
one

integrates away the fermionic variables q;
,

j; one obtains [5] the expression
used in [4] where the fermionic term yields

an extra term in the action S. We do not do so
here

but keep these variables.

The expression for S can be written in a compact form in superspace ([6] chapt. IS),
we

introduce two anticommuting Grassmann variables 0, #:

[0 0]+
=

0~
=

b~
=

0 (40)

The integrals
over these variables

are defined
as:

/ld0
=

/ ld#
=

0

/
0d0

=

/
0d0

=
(41)

We also introduce the superfields:

ii
= si + 'ni + 4;0 + p;

Jo (42)

In terms of these fields it is easy to check using (40), (41) and (42) that:

Z
=

/
fl;Dj~;jexpj-SKIN SpoT]

s~~~
=

rp i f~ dad#di j ((~
(j

o ((~
o ;

SpoT
= /~d0dbdtE(#) (43)

o

The third equality is readily obtained by expanding E(#) around s;, a Taylor series which

terminates at the second derivatives because of (40).
At this point it is useful to introduce the two sets of SUSY operators:

~
fi

fib

~
fi

~
fi

fib fit

[D, D]+
=

-~
(44)

and:

-,
fi fi

~
" fi ~ °&

,

fi
~

" @

ID', b'l+
=

(45)
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The primed operators commute with the unprimed, and all D's
are nilpotent:

D~
=

D~
=

D'~
=

D'~
=

0 (46)

An operator which
we will make frequent use of is:

~
a2 a2 a

~~
"

~~'~~-
"

~ @ ~ ~~ @ T ~~~~

jD(2)j2
~

fi
(~~)

~2

We also write the grassmann delta function:

6~(£l1 62)
=

(#1 b2)(01 b2) (49)

and the superspace delta function:

6(1 2)
=

6(ti t2) 6~(£l1 £l2) (50)

Here and in what follows we will denote:

la (ti,01,01)
,

2 e
(t2,02,02) etc. (51)

Integrating by parts the kinetic term becomes:

SKIN
=

~° /
d@d#dt £(#iDl~)#j) (52)

2

In the superspace notation all correlation and response functions are encoded in
a

single

superspace function:

< Qli>2) >"
j £

< 4ili)4S12) > (53)

;

this contains 16 components which can be read from (42) (the first magnitude in a bracket in

(54) is evaluted at ii and the second at t2)1

< Q(1, 2) > =

j £ I< s;s; > +#~0~ < sip; > + Ii oi < p;si > +

~

-01b2 < (>ii > -#iJ2 < n;ni > +J2 < S;ni > +t

-bi < list >
-b~

< sit; > #101b~ < piqi > #ibi#~
< pill > +

+bi#~0~ < iiPi > @iJ~0~ < nipi >
(54)

~

Most of these correlations,
as we

shall see, vanish.



N°7 SUPERSYMMETRY IN SPIN GLASS DYNAMICS 1343

4. Action functional for the dynamics averaged over the couplings.

4.I INTERACTION TERMS. We turn now to the calculation of the path integral averaged

over the couplings. Let us first compute the average of the interaction term:

exp dl Ji~...i~ iii II) #ip (1) (55)~
i<ii<...<ip<N

where dl e (d01d01dti). In an exactly analogous manner as in the static replica case (see
[10]) once the Gaussian integral

over the couplings is performed, the average can be expessed
in terms of the magnitude:

Q(1,2)
=

j L4;(1)41(2) (56)

;

This suggests we multiply the functional integral by:

J Dioi &INQ(1, 2) L ii(i)1;(2)
=

/
Dioi Di~i

exp

- /
dld2(NQ(1

,

2)~(l, 2) ~(l, 2) £ #I(I)#I(2)
j

(57)
~

i

The functional integration is over
Q(1,2), ~(l,2) such that Q(1,2)

=
Q(2,1) and ~(l,2)

=

~(2,1); both 16-component superspace functions, periodic in the two times11
,

t2.
Following the same steps as in the static replica calculation we have for the

ac tion functional,

to leading order in N:

S
=

SKIN N
~~~~~ /

dld2 QP(1,2) +
~ /dld2 ~(l, 2) Q(1, 2)

4 2

-) /dld2 [1(1, 2) £ ii (I) ii (2)

-flh f di (L ii (i)
/

di h Ii) (58)

4.2 SUP ERDIAGRAMS. In the computation of the preceding subsection we have begun to en-

counter a
formal similarity between the static replica calculation and the dynamics when writ-

ten in superspace. This similarity becomes more complete by carrying further the functional

integration over the superfields #;. For this we need to consider (but only very superficially)
Feynman diagrams in superspace ("superdiagrams").

We will consider two cases: the case in which the spin probability weight is of the form:

h(S)
= ro

L Sl + L f (Si) (59)

where f(si) is of higher order in the si (for example quartic in [4] ), and the case in which in

addition the spins are spherically constrained:

£ s)
=

N (60)
I
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For simplicity we shall
assume zero magnetic field in both cases, and indicate

a t the end how

the derivation has to be modified for finite h.

Consider first
a spin weight (59). The superfields uncouple and we get:

=

/
dld2QP (1,2)+

/
dld2 ~(l,2)Q(1,2) + W(1) (61)

2

where:

exp[W(~)]
=

/
D[#]exp[-j

/
dld2 #(1)K(1,2)#(2) +

/
dl f(#)] (62)

and:

K(1, 2)
=

lri~ Di~~(2) + ro16(1 2) +1(1, 2) (63)

where D(~)(2) is the operator (47) written in terms of the variables t2,#2,@2. W(I)
can in

principle be expressed as a sum over connected (super) diagrams with propagator [K]~~
If

we now
demand that S be stationary with respect to I(1, 2) we get:

Q(1,2)
=

~()~~
m

jj(i)j(2)) (64)

where the bracket "( )" denotes average taken with (62). We observe that Q(1,2) is the

"dressed" propagator; reexpressing W(I) in terms of Q amounts to performing mass renormal-

i2ation. It is well known ([iii,
see the presentation in [12]) that W expressed in terms of Q is

given by (the extension of the proof for superdiagrams is trivial):

W(Q)
=

tr[In~j]
/

K(1,2)Q(1, 2) dld2 + 4l(Q) (65)
2

where 4l(Q) is the sum of two-line irreducible diagrams of (62j calculated replacing the bare

propagator k~~ by the dressed propagator Q.
We have also introduced the supertrace:

IiIA(1, 2)1 =

/
di All,1) (66)

and [Inlj] stands for the logarithm of Q considered as an operator I-e-
:

/
Qil,2)1fi12) d2

=
141filii) 167)

Replacing this expression in the action
we

finally get:

~~~~
=

~~~~~ /
dl d2 Q~(1, 2) tr[Inlj]

N 4 2/
dld2 ([(rp Dl~)(2) + ro)6(1 2)]Q(1, 2)) + 4l(Q) (68)

2

Consider this expression. The important point is that if
we

hacl been dealing with a static

replica calculation with the order parameter Qop we would have gone (at least in principle)
through exactly the same steps. The superdiagrams with dressed propagator Q(1,2) would

have been replaced by ordinary diagrams of the same form with dressed "propagator" Qap, the
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supertraces would have been substituted by ordinary traces, etc. Hence except for the kinetic

term in (68), proportional to Yp~, we would have obtained
an expression that is formally

identical. We shall return to this.

Before finishing this subsection let us see how expression (68) is modified by a spherical
constraint. The addition of

a
contraint term (3) in the path integral

can
be seen ([6] Sect.

16.7) to be equivalent to having a factor: 6(£ #) N) in the path integral. Notice that this

I
encodes four relations (two relations if the fermions

are
integrated away). This leads to be

constraint:

Q(I, I)
=

(69)

again involving four relations. Exponentiating (69) with a Lagrange multiplier superjield Z(I)
yields an extra term in the action

f
di zji)Q(i,1)

f
di zji) (70)

2 2

The Lagrange multiplier has four components:

Z(I)
=

Zo(ti) + 21(ti)0 + #Zi(ti) + 22(ti)#0 (71)

Let us now
briefly mention how this has to be modified in the presence of

a
magnetic field (or

any term linear in the spins in his) ). In such a case
ill, 12]. One first has to make the Legendre

transform to reexpress the functional in terms of the averages ii; ), and only then perform mass

renormalization on the one-line irreducible diagrams that result. Again, the important thing
here is that such

a
procedure is paralleled by

a
similar procedure in the replica treatment.

4.3 CORRELATION FUNCTIONS. The correlation functions
are given by:

iQ(1, 2)1 =

/
Dlol Qii, 2) exPl-S(Qil (721

or, in a spherical model

tori, 2))
=

/Dlol DlZl Qii, 2) exPl-S(Q, Z)1 (73)

The normalization is absent because it is unity.
Since S(Q) is multiplied by N in a

long range system, one can evaluate this by saddle point.
If there is a single saddle point we have:

< Qil, 2) >N-oc" Q(1, 2jjsaddle
point

(?4)

However, if there is more
than one relevant saddle point, their contributions should be added.

This will certainly happen when the saddle point Q(1, 2) breaks a symmetry of the action,
as

is the case below the critical temperature.

4.4 Two EXAMPLES. Let us end this section by giving two examples. The first has been

considered (statically) by Jagannathan and Rudnik [14], it is
a

spherical spin system with

ordinary two spin interaction but with
a

spin length probability perturbed by
a

small quartic

term
~-

(£ s) 1)~.
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The replica expression for the free energy and the dynamic action functional read, respec-
tively:

j
=

(~
/ L(Qap)~ )~l'nol

u
L(Qap)~ + L zo (i Qool (751

~ ~

ap o,p o

~
=

~~~~ /
dl d2 (Q(1, 2))~ Tr[In~j] u

/
dld2[Q(1, 2)]~

N 4 2

+
/

dl Z(I) (I Q(I,1))
~° /

dld2[Dl~)(I)b(1 2)] Q(1, 2) (76)
2 2

The other example is
a

p-spin model with
a

spherical constraint (and
no

other spin length
probability weights) that has been considered both statically [10] and dynamically [13] by
Crisanti and Sommers

~
=

-~~~~ £(Qop)P ~~[lno] £ Zo (I Qoa) (77)
~ ~

ap
~

o

~
=

-~~~~
/[Q(1,2)]Pdl d2 lF[In~j] /dlZ(I)(I -Q(I,I))

N 4 2

-~( /
dld2 [Dl~)(I)b(1 2)] Q(1, 2) (78)

We note that, roughly speaking, the dynamical action is obtained from the replica free energy
by substituting replica indices by superspace variables, Kroeneker deltas by superspace deltas,

etc; and then adding
a

purely kinetic term proportional to rp~.
This formal analogy can be handled better if

we
denote simultaneously for the dynamic and

the static case the two products:

(AB)(1, 2)
=

/
d3A(1, 3) B(3, 2) (AB)~p =

£
,

Aa~ B~p (79)

~

(operator product) and:

IA
.

Bl(1, 21 =
A(1, 21B(1, 2) IA

.
B)op

=
Aap Bap (80)

("pointwise"
or

"element" product); and the corresponding powers:

A~(1, 2)
=

[AA. A](1, 2) (A~)ap
=

[AA. A]op (81)

A(r)(1, 2j
=

jA(1, 2jjr (AirJ)ap
=

(A~p)r (82)

With these notations the dynamical and static replica exponents become (typographically)
identical except for the kinetic term proportional to rp~ Note that this is quite general.

5. Invariances.

The action functional S[Q] for (S(Z, Q) for spherical constraint) has several invariance proper-

ties related to those we have already described in section 2.
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5.I SUPERSYMMETRY. Consider the SUSY algebra:

D'
=

D'(I) + D'(2)

D'
=

D'(I) + D'(2)

~~'~~'~~
i~l

~ ~2 ~~~~

Using the periodicity in the boundary conditions, one can check directly that S(Q) is invariant

with respect to a
change Q

-
Q + IQ, where IQ is generated by any of the three operators in

(83). If there is
a

spherical constraint, then S(Z, Q) is invariant when Q is varied
as

before but

simultaneously Z
-

Z + bZ where bZ(I) is D'(I)Z(I)
or

D'(I)Z(I)
or

~~~~~ respectively.
fill

This SUSY of the action is
a

general fact and is valid for any Langevin process whose drift

force derives from a potential.

5.2 GHOST NUMBER. The invariance with respect to the ghost number NF described in

section 2 reflects here in the fact that S(Q) (or S(Q,Z)) is invariant with respect to changes
generated by:

N(I)+N(2)=@1(-#i~+02~-#2( (84)
1 2 @2

in Q(1,2) and by N(I) in Z(I) for spherical constraints.

5.3 CAUSALITY. The causality relations discussed in section 2 imply a number of restric-

tions on the components of (Q(1, 2)) for T (T( - oo
and N finite (c.f. (37) and (54)).

.
The coefficients proportional to 0202 and 0102 (0101 and 0102) are zero for11 < t2 (t2 <

ii)-

.
The coefficient of 01010202 is zero

The action is also invariant with respect to a discrete transformation involving time reversal

plus ghost exchange.

5.4 UNBROKEN SYMMETRIES. In the saddle point approximation, the function Q(1, 2) (and
Z(I)) may or may not break the symmetries we have discussed.

If the ghost number symmetry is unbroken then:

lN(I) + N(2)lQ(1, 2)
=

Nil) z(1)
=

0 185)

This implies that all but the six components of Q(1, 2) having an equal number of "unbarred"

0(s and ("barred") 0js cancel. In particular the only correlation functions that do not vanish

are boson-boson or fermion-fermion For Z(I) it implies that

Z(I)
=

Zo(ti) + 010122(ti) (86)

Consider SUSY: it can be partially or totally broken. If it is totally unbroken then:

D'Q(1, 2)
=

D'Q(1, 2)
=

(~
+

~)
Q(1, 2)

=
0 (87)
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(the last relation implying time homogeinity), and:

Di(i) z(i)
=

o'(i) z(i)
=

)
z(i)

=
o (88)

For Z(I)
one can easily check that (88) imply that Z

=
Zo, a constant independent of ii, Ii, 01.

It is easy to construct the most general supersymmetric Q(1,2); however if we in addition

require 2ero ghost number and causality, then it is [6] (chapt.16):

Q(1, 2)
=

ji
+ j(ii i~) pi + ~~ j~i o~) ~(ii i~)j)) cjii i~)

m
jD(2)(1) ~(ii i~)

)j
&2(ei e~)

(i~i
i~) (89)

where f(T) is the sign of T. This is the most general ansatz for Q satisfying fluctuation-

dissipation relations and causality. It is,
as we shall see, the general form of Q (for T

- c~o

(see Sect. 2.5) for spin glasses above the critical temperature.

5. 5 SOME usEFuL ALGEBRAIC RELATIONS. Consider two superspace functions A(1, 2), B(1, 2)
and their two products:

Cl
=

AB
=

f d3 A(1, 3) B(3, 2)

C2
=

A
.

B
=

A(1, 2) B(1, 2) (90)

I) If both A and B posess any of the symmetries discussed above, the ir products Cl and C2
also do.

it) If A and B are both causal, the Cl and C2 are also causal.

iii) The functions 6(1 2) and D(~)(l)6(1 2) are supersymmetric.

iv) The supertrace of a supersymmetric operator is zero.

These relations are easy to verify.
As an

application this immediately implies that in general, since the action S is constructed

using the products and the operators (iii) then:

v) S(Q, Z)
=

0 (as it should) if Z, Q are supersymmetric.

Note that the converse is not true, the action could be zero even for non supersymmetric
solutions.

6. Replica symmetric statics and supersymmetric dynamics.

Above the critical temperature, in the replica approach, replica symmetry is unbroken. From

the dynamic point of view, Sompolinsky and Zippelius [4] have proposed that the solution

satisfies the FDT, which
we

recogn12ed in the previous section [in the superspace language)
as

the fact that also SUSY is unbroken.

In this section, diregarding the boundary conditions,
we show that there is a general direct

connection between (unbroken) replica symmetry and (unbroken) SUSY plus causality. More
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precisely, we show that if one lets the time scale To
- oo

("fast motion" the superspace

becomes in a certain sense equivalent to (n
-

0) replica space.
This connection holds for any model, but let as consider for definiteness the p-spin spherical

model (77) and (78). Differentiating (77) with respect to Q(1, 2) and Z(I)
we have the equations

of motion:

Q(I, I)
=

I

rpi D[~) 6(1- 2) + z(1) 6(1- 2) + ~fl~~~po(P-i)(1, 2) + Q-i(1, 2)
=

o (91)

The static replica saddle point equations are:

Qoo
"

I

Za SOP +
~)~~P

lo~~~~~laP + (Q~~)aP
"

° (92)

If
we now make the supersymmetric-causal ansat2 (89) in (91) (which also implies Z

=
Zo) we

obtain the "one time scale" dynamic equation proposed and solved in [13] for C(ti t2). The

spin-spin correlation function decays from C(0)
=

to C(ti t2)
- q as (11 t2(

- oo.

Let us consider instead the 'last motion" dynamics for ro large, we intend to compare it

with the static replica solution. Let us first make a brief disgression concerning the static

replica symmetric solution, solving (92) in
a fancy way. Put:

Q"ll~q)Ui+qUo

Za
=

Zo (93)

where we have denoted:

lUi]op
" Sop

[Uo]ap
=

I V mfl (94)

Consider the two products (in the notation of Eqs. (79) and (80) ), the "element to element"

product:

UiUo=Uo

Uo
.

Uo
=

Uo

Ui
.

Ui
"

Ui (95)

and the operator product:

Ui Uo
=

Ui

Uo Uo
=

Uo

UiUi
"

0 (96)

In the last relation
we have made (abstractly) for the operators the limit

n -
0 (U(

=
nUi

=
0).

In particular:
[(I q)Ui + q Uo]~~

=
(l q)~~ Ui q(I q)~~ Uo (97)

It is easy to see that if one inserts the ansatz (93) in (92) using the algebraic relations (95)
and (96) one gets the equations for q and Zo (with the limit

n -
0 already taken).

JOURNAL DE PHYSIQUE -T 2, N'7, JULY 1992 49



1350 JOURNAL DE PHYSIQUE I N°7

Now let us turn back to the ("fast") dynamic approach. In order to make manifest the

relation between static and dynamic approach
we

will define,
a

"causal-supersymmetric" reg-
ularization of the superspace delta function. Consider any function A((T() such that

Alo)
=

i la) (98)

~ljj A(lTl)
=

° (b) (99)

and let
us construct a

rapidly decaying supersymmetric-causal function:

bsc(1- 2)
=

lim (I + j(bi #2) [bi + b2 (bi b2)f(ti t2)(])A(6(T() (100)
b-CO 11

(c.f. Eq. (89)). It is easy to see
that 6sc(1- 2) indeed tends to the ordinary superspace delta

(50) as
6

- oo. Moreover, by construction we have that evaluated at11
=

t2,01
"

0~,Si
= #21

6sc
"

(101)

A more suprising property is:

6sc(1 2) 6sc(1 2)
=

bsc(1 2) (102)

by which we mean
that the product is made of two expressions like (100) (with different

functions Ai((T() and A2((T() both satisfying (99)) and then the limit 6
- c~o is taken.

If we now define

Ui
"

6sc(1 2) (a)
Uo(ti,#i,bi,t2,#2,b2)

=
(b) (103)

(where in (b) "I" stands for the ordinary number I!)
we

immediately check that they satisfy
the

same
rules (95), (96) for their corresponding two products. The ansat2 (93) (with, now,

Uo and Ui of (103)) now describes
a

rapid decay of the correlation functions, satisfying FDT

and with C(ti t2)
- q as

iii t2(
- oo.

But we
also have that (103) provides a concrete real12ation of the algebra (95), (96) (equiv-

alent to that of "dimension
=

0 matrices"). Furthermore, if we neglect the kinetic term

proportional to rp~ in (91) it is easy to see that the formal identity of the equations plus the

same algebra in the solutions leads to the same values of q, Zo. (Note however that the kinetic

term has not been completely neglected, in that it has determined causality).
One

can
easily convince oneself of the generality of this argument.

We now compute the eigenvalues of the quadratic fluctuations around this solution. We find,
perhaps at this point not surprisingly, the

same
eigenvalues

as in the static replica treatment.

Crisanti and Sommers [10] have calculated the eigenvalues of these quadratic fluctuations 6qap
around the replica symmetric saddle point. They found three eigenvalues:

Al
"

~)~~
(P I)qP~~ + A~ for £6qap

=
0 Va

P

A2
=

Al + (n 2)AB for ~j 6qap
=

0, £ bqap # 0

off fl

A3
"

A2 + nAB + n(n I)B~ for £ bqap
=

0 (104)

a,fl
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where:

A
=

(i q)~~

B
=

-q(i q)~~ Ii + (n i)ql~~ (lob)

note that
as n -

0, A2
=

A3. Consider now the dynamic equation (91). If we solve for Z(I)
(neglecting the kinetic term) by multiplying both sides of eq. (91) by 6sc~

6(1 2)Z(1)
=

6sc(1 2) (~~~ p Q~P~~)(1, 2) + Q~~ (1,
)j

(106)

reintroduce this into (91), differentiate with respect to Q(3,4) and substitute the ansatz (93)

we obtain the equation for the eigenvalues A:

(AI A)6q(1, 2) +ABC If d3 6q(1, 3) + f d3 6q(3, 2)] + B( f 6q(3, 4)d3 d4

-6(1 2)[2ABo( f d3 6q(1, 3)) + B] f 6q(3, 4)d3 d4]
=

0 (107)

where Bo is the value of B at n =
0 and we have used the fact that bq(I, 1) =

0. By integrating
first over the variables "I" and "2", we easily conclude that unless:

/bq(1, 2) dl d2
=

0 (108)

then:

A
=

Ai 2ABo (109)

If instead (108) holds
we integrate (107) only

over "I" to find the same eigenvalue unless

/
bq(1, 2) dl

=

/
dq(2,1) dl

=
0 (l10)

in which case the eigenvalue is:

A
=

Ai (iii)

The steps parallel closely the ones taken in the replica case; and, furthermore we obtain the

same results (104) but with the limit
n -

0 already taken.

7. Conclusions.

We have presented the spin glass dynamic problem in a manifestly supersymmetric way. In

order to make the paper roughly self-contained,
a

considerable portion of this paper is spent
in notation, but possibly a very suggestive one.

The superspace presentation puts the problem of spin glass dynamics in
a rather more

standard field theoretic language, I-e- SUSY breaking and restoration, Ward identities, etc. It

also brings the dynamical problem into closer formal contact with the replica treatment.

Above the critical temperature, the connection between superspace and
n -

0 replica space
has been explicitated; and

one can see how the equivalence of static results obtained in both

cases comes about formally.
However, the real challenge is to complete this connection to the case of replica symmetry

breaking below Tc. This would have several advantages, the first obvious (formal)
one as

verification of the replica trick. At a more physical level, finding the solution in all its details

would yield new information such
as

the time scales.

A possible way in which the connection could come about (at the level of "fast dynamics"
could be to generalize the procedure of the last section by finding

a set of superspace fun-

tions representing the algebra of "n
=

0 Parisi matrices", and then to write an ansatz as a

combination of them. Work is under way on these lines.
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