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Abstract. The finite volume fluctuations of the free energy in disordered systems can be

characterized by means of the replica method. This is achieved by introducing a canonical

ensemble in the space f1of disorder realizations. In this space the role of energy is played by the

free energy of the original system, and that of the temperature by n~~, where n is the number

of replicas. We apply this method to analyze the fluctuations in random directed polymers
and in the Sherrington-Rirkpatrick model for spin glasses. Anomalous fluctuations are

found

in both cases. For the low temperature zero field phase of the Sherrington-Kirkpatrick model

this approach predicts a
N~~/~ law for the relative fluctuations of the free energy per spin of a

N-spin system.

The analysis of finite volume fluctuations in disordered systems is
a

subject which has

attracted an
increasing attention in recent times. One of the central issues is the comprehension

of mesoscopic effects which
can

become quite relevant in many experimental situations. The

replica method is one of the most important tools for the study of this problem ill.
As far as we know, the first result on this subject has been obtained by Toulouse and Derrida

[2] who reconstruct the probability distribution of the free energy in the high temperature phase
of the Sherrington-Kirkpatrick (SK) model [3] from the moments of the partition function, I-e-,
from the free energy per spin f(n) of n non-interacting replicas.

The aim of this paper is to show how the replica formalism can give informations on the

finite size fluctuations of the free energy among different realizations of couplings in spin glasses
and other disordered systems.

Consider
a generic spin model with Hamiltonian:

1,N I,N

HN (J]
=

£ J;j «;«~ h £
«; (I)

I<j I

where «; =
+ I is the value of the spin on the site I, the couplings J;j are independent random

variables with probability distribution P[J], and h is
an external magnetic field.
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For any fixed coupling realization J, the partition function of the N-spin system at temper-
ature I/fl is given by

ZN(J]
=

£ exp(-fIHN(J]). (2)
la)

The quenched free energy per spin is fN
"

-lnZN /Nfl, where t indicates the average

over the couplings realizations. We assume that the thermodynamic limit of the free energy,
limN-oc In ZN (J] / Nfl exists and is equal to the quenched free energy f

=
limN-oc fN for

almost all coupling real12ations J (self-average property). It is worth noting that this property
corresponds in the context of dynamical systems, or of random matrix products, to the Oseledec

theorem for the characteristic Lyapunov exponents [4]. Indeed if the partition function
can

be

expressed with the help of transfer matrices, then f is the maximal Lyapunov exponent of the

product of these matrices [5].
The analytic computation of the quenched free energy, I.e., of the average of the logarithm

of the partition function, is a quite difficult problem, even in simple
cases as nearest neighbour

interaction in one dimensional models. However, since the integer moments of the partition
function are easier computed, the standard method uses the

so
called "replica trick~' by con-

sidering the annealed free energy F(n)
=

nf(n) of n non-interacting 'replicas' of the system
Ill,

~(~)
" ~ffl~

~
~ll ((~N@])"j (3)

°C

The quenched free energy of the original system is then recovered as the continuation of f(n)
to n =

0,

~ ~$ /f~oc ~~~~~~ ~$~~~~' ~~~

In real experiments
or

numerical simulations, the number of spins N is finite and the real-

ization J fixed. Therefore what one computes is

The elf-average property ensures that for almost all realizations J yN ~ f when N

large

but finite
systems

yN is still a
andom

quantity whose obability

distribution depends
in

a omplicate way on that of J. It
of the free energy (5) in large systems.

In general one may address two
ifferent

The first concerns
the fluctuations of

yN
about its average value w in a

eviations
of yN from the

asymptotic
value f.

i~ ~-pNVn i~@ £ ~k
~k (~)

N

~

~j
k=I

where Ck is the kth cumulant of In ZN> I.e., Cl
"

In ZN, C2
=

(lnZN)~ (ln ZN)~, etc. The

factors fl and N are
introduced for convenience. From (3) and (7) we see that

L (( n~
=

-fINFN(n) (7)~l
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where FN(n) for integer and positive
n

is the free energy of n replicas on the system of size

N. Thus if FN(n) is known the cumulants are identified with the coefficients of the Taylor
expansion of FN(n) in powers of n. In particular the fluctuations of yN about its average value

are given by the coefficient of n~
as

C2
"

fl~N~ (gj~ §N~). (8)

Unfortunately what one
usually evaluates is not FN(n) but its thermodynamic limit F(n) for

N
~ oo. Consequently (7) has to be replaced by

-fl>(n)
=

Ii ) ~ i) n~. (9)~l

From this equation it follows that if the cumulant Ck is o(N) then the term n~ will be missing
in the Taylor expansion of F(n). In particular if, for example, C2

~'

N~~? with1 > 0 the

expansion does not contain the n~ term. Vice versa if this term is present, then

)- w~ ~'N~~ (10)

I-e- normal fluctuations. As a consequence the absence of the n~ term in the expansion of

F(n) signals anomalous fluctuations. In this case to have the correct scaling of C2 with N one

has to use
FN(n) which includes finite N corrections. In general, however, the calculation of

FN(n) is difficult, and hence the study of C2 in presence of anomalous fluctuations is quite
unpractical.

Informations on the deviations of yN from its asymptotic value f, on the contrary, can
be

obtained directly from F(n) by using
a

method largely used in the last years to study the

finite time fluctuations of the Lyapunov exponent in dynamical systems and of the localization

length in the Anderson model [6].
The idea is to perform statistical mechanics in the space Q of all the possible realizations of

disorder J. For any fixed temperature fl~~,
a state in this space corresponds to a well defined

system with a given free energy yN. The states in Q
can

be classified according to the value y

of yN, and the space divided in classes w(y) labelled by y. The probability distribution P(y)
is hence proportional to the number of states in w(y), I-e-,

P(y)
c~

(# of states in w(y)) c~
e~/~~(V) (11)

where by definition -N S(y) is the entropy of the class w(y). We have explicitly displayed the

extensive dependence
on

the system size N so
that in the termodynamic limit S(y)

-J

O(I).
We are

indeed using
a

microcanonical ensemble in the Q-space where the role of the energy is

played by the free energy y of the original system. In particular, the self-average property of

the free energy is equivalent to the existence of the thermodynamic limit in the Q-space- As a

consequence, -S(y) must be maximal for y =
f. Since the entropy is defined

a part from
an

additive constant, we can take S(y
=

f)
=

0 and S(y) > 0 if y # f.
A direct calculation of S(y) is not easy, but from thermodynamics we know that it can be

obtained from the free energy, which in the Q-space reads

f~ ~-N (S(V)+flvn) ~-Nflnf(n) ~i~~~

where (fin)~~ is the temperature in the Q-space- We have introduced the factor fl for conve-

nience. This does not change the results since
we

work at fixed temperature.
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We are interested in the leading term of N S(y) in N, thus we can assume N very large
in (12) and evaluate the integral by saddle point. This yields the usual relation between free

energy and entropy
fin f(n)

=
min (S(y) + tiny) (13)

v

and the well known relation
~~~

~. ~~~

~~ ~~~~

among the entropy -S(y), the energy y and the temperature (fin)~~ The relation (14) shows

that each
n

selects
a

class w(y*) with free energy y*. The higher n, the less probable is the

corresponding class of realizations. We remark that in this way we
consider only the extensive

part of the entropy. In other words
we

neglect any term o(N) in the exponent of II). In usual

statistical mechanics terms o(N), in general, correspond to surface contributions. They do

not affect the thermodynamic limit, but one should control their effects on the finite volume

fluctuations. In generic systems, these terms are expected to be unimportant. We do not

consider them
on

the same ground of what is done in the standard treatment of finite volume

fluctuations in statistical mechanics. By this assumption, we can use (11) and (13) to derive

some predictions on the finite volume behaviour of disordered systems.
The entropy can be obtained by inverting the Legendre transformation (13-14),

s(v)
=

fl>(n) tiny (15)

where n(y) has to be eliminated with respect to y with the help of

~(~~~l=
y (16)

'~ n(v)

The important point is that to evaluate S(y)
one

needs just the extensive part of F(n) which,
for integer positive n, is what one usually computes with the replica method.

Standard probability theory theorems iii imply that f(n) is
a

monotonic, non increasing
function of

n. For small n we can expand F(n) in powers of n, I-e- an high temperature
expansion in the Q-space- Let us suppose that

?(n)
=

fn )n~ + O(n~). (ii)

with /t > 0. Inserting this form into (15) and (16) one gets

~~ ~~2S(v)
=

fl
~~

(18)

so that the variance of the fluctuations is given by,

(v f)~
=

). (19)

In some cases
it may happen that the n~ term is missing. In this case

(19) is not valid

anymore. Assume for example that for
n > 0

F(n)
=

fn ~ n~ + O(n~) (20)
3
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with
a > 0 for convexity. Note that the condition n > 0 is necessary since (20) with a > 0 is

not convex for n < 0. An easy calculation shows that this leads to,

The
restriction

on the sign of f - y
follows from the n > 0

what one has
in ordinary magnetic systems here an xternal field selects a phase

of

magnetization, e-g-
ositive

or
negative.

here n can be also seen as an external

magnetic field, in
which case

y ecomes a sort of agnetization.
As for an ordinary magnetic

ield, sign
of n

leads to a
on the ign of the

magnetization,

which in our case is
f - y.

In (21) we
took f -

y > 0 because
S(y)

was evaluated
hence in

the
n > 0 hase.

S(y)

distribution
of y in the y < f phase.

Note that if the moments
@ grows

more
than an exponential with n

the
probability

istribution is not uniquely termined
by F(n) [8].

evertheless
(21) gives

the
mall from f.

Therefore, from

f y) c~
N~~/~, f y)2 c~

N~~/~

However, to calculate the cumulants, e-g- C2, we need the full probability distribution.

Unfortunately
we are not able to evaluate directly S(y) for y f > 0 since this would require

the calculation of % for negative n.

By looking at (21) we see that the second derivative of S(y) with respect to y diverges as

y ~
f~, I-e- n ~

0+ This implies
a

second order phase transition in the Q-space at n =
0. If

we exclude some very patological cases, in general the critical exponents are equal from both

sides of the critical point. By this assumption it readly follows that

or, equivalently,

F(n)
=

fn + ~n~ + O(n~),
n < 0 (23)

3

with b > 0. In general a # b.

A free energy of the form (20) appears in the study of random directed polymers [9]. In

fact by employing
a

replica method one has for the integer positive moments of the partition
function [9]

%
= exp

(- f L (n n~)), L » (24)

where L is the total length of the walk on the polymer. From the above result, therefore, one

readily concludes that the probability distribution of the free energy F for small deviations

from the asymptotic value L f is

P(F) c~ exp (-a& (L f F(~/~ L~~/~) (25)

where we take a+ if Lf F > 0 and
a-

if Lf F < 0. A similar form with a+ = a- was

proposed by Zhang [10], and later by Bouchaud and Orland ill]. However, in contrast with

their formula, (25) leads, in general, to an asymmetric probability distribution. This is in

agreement with recent numerical results [12].
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From (25)
one can conclude that if a+ #

a-

(L f F)
c~

L~/~ (26)

in accord with references [10] and ill], and with the numerical results of Mdzard [13]. By using
(25)

a
straightforward calculation leads to the the Kardar scaling [9]

Cj/~
-~

L~/~ (27)

Sinfilarly one can find that C(/~
-~

L~/~ The available numerical data [12] are in quite good
accord with these scalings with the exponents 0.333 + 0.003 for the second cumulant, and

0.37 + 0.02 for the third.

The above arguments can be repeated for any powers of n, as long
as

there is a power n~

with
m > I in the expansion of the extensive part of F(n) nf. If the first non-vanishing

power is n~, then for m > 2

(f v) CK
N~~~~~~/~ (28)

f y)2 ~
N-2(m-i)/m (~g)

Note that if a+ = a-
then (f y)

=
0. In this case (28) is valid only if we restrict to the

f y > 0 (< 0) phase.
As last example, we now apply this method to investigate the fluctuations in the Sherrington-

Kirkpatrick (SK) model [3]. Before addressing the problem of the low temperature phase, let

us spend a
few words about the replica symmetric phase. In the high temperature phase, I-e-,

above the de Almeida and Thouless line there is
no

replica symmetry breaking [14]. An explicit
calculation shows that for h # 0, the extensive part of F(n) contains the term n2 [3]. On the

other hand if h
=

0 the latter is missing and (19) is not valid. In this case
F(n)

= n f, which

can
be seen

formally as the m ~ oo limit of the above case. Therefore from (28) and (29) it

follows

(f Y)
+~

N-i, f y)2
-~

N-2 (30)

Indeed
an

explicit calculation leads to [2]

fl f
=

~
ln 2 ln(I fl~)

~~ (31)
fl/t

= -j (fl~ + In(I fl~))

where /J is the coefficient of the n~/2 term, which can be related to N(f y)2. Note that /J
diverges at the spin glass transition fl

=
I. This is

a
general result. The I/N terms contain

the fluctuations about the saddle point, and hence it is not difficult to understand that the

coefficient of n~/N should diverge at the spin glass transition where the replica symmetric
solution becomes unstable [14].

The more interesting phase is, nevertheless, the low temperature phase where the replica
symmetry is completely broken and many different minima of the free energy appear ill. We

limit ourselves to the case h
=

0. At the spin glass transition the overlap matrix qap between

different replicas is zero and
one may perform an expansion in powers of qap. This leads to

the
so

called "reduced"
or

"truncated" model. Using this model Kondor [15] found that the

replica symmetric solution is stable only for n > n~ =
)T +

,

where
T = (Tg T)/Tg is
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the reduced temperature and Tg is the spin glass transition temperature. For
n < ns a

stable

solution is found using the Parisi ansatz. This leads to [15]

f(n)
=

fp(T) ~ n~ + for n < n~(T) (32)
5120

with
~3 ~4 ~s

~~~~~
6

~
12

~
10'

(33)

From (32) it follows that the first non-vanishing power (excluding the linear term) in the

expansion of F(n) is n~ and hence from (28) and (29)
we

have

(f Y) '~

N~~~~, (f v)~
'~

N~~~~ (34)

Assuming an asymmetric probability distribution, I-e- a+ # a-, this result implies that the

correction to the extensive part of the free energy is of order N~/~, in agreement with recent

suggestions [16]. A straigthforward calculation leads to the scaling law for the second cumulant

C2
+~

N~/~ (35)

Numerical data iii, 18] for the zero temperature energy fluctuations for systems of sizes 6 <

N < 200 leads to C2
~'

N? with i ci 1/2. We note, however, that if only the data for

50 < N < 200 are taken into account these can be fitted with i m 1/3 (see Fig. 9 Ref. [17]).
We conclude by noting that our arguments allows one to interpret the "searching for the

maximum", which in the standard replica trick follows from the fact that the space dimen-

sionality of the order parameter qap becomes negative for
n ~

0, in a very natural way. In

fact, the physics is given by the infinite temperature limit, in the Q-space, and hence by the

largest free energy. This also explains why in spin glasses the metastable states have lower free

energies [19], which at first glance may look strange.
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