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Abstract. We present an algorithm able to represent with a high accuracy any kind of stable

cavity, even when many static or dynamical defects are present, like misalignments, curvature

errors, surface irregularities, substrate irhomogeneities... We first present the theory, giving
ideas on its validity domain, and a discussion of its accuracy in terms of a RMS phase error, which

is found to be negligible compared to the phase noise due to roughness of optical surfaces. Then

we show that the well-known features of ideal resonant cavities are found by the algorithm with a

good accuracy. This tool can help for designing laser cavities, mode cleaners, or passive Fabry-
Perot standards as an example, some results are presented conceming the design of a very long
cavity planned for interferometric purposes.

1. Introduction.

In the development of new laser configurations, design of passive cavities, information is

often needed about tolerances on various optical or photometric parameters such as curvature

radii of mirrors, diffraction losses, misalignments, aberrations, bulk index homogeneity of

thick optical substrates. Quantitative studies of the behavior of the whole system in the

presence of thermal exchanges between the optical beam and the optical elements, or

dynamical response to mechanical excitation of these, are sometimes also necessary. A

general method of simulation of the optical state of a cavity in the presence of any kind of

perturbation is therefore of great use.

Search for specifications of optical components for a very long cavity storing a high power

light beam led us to develop a specific numerical tool, able to model weak departure of

parameters from nominal values, and to evaluate effects caused by surface distortions even

smaller than All 000 rms.

We started with the paraxial propagation technique due to Sziklas and Siegman II, based

on two-dimensional Fourier Transforms which allows modeling of all types of surface defects

and which is easy to use because a number of performing FFT routines are available in all



1288 JOURNAL DE PHYSIQUE I N° 7

supercomputer libraries. The original part of our work was to find procedures for the control

of resonance of high finesse stable cavities, and for the representation of optical surfaces.

Previous models, based on the work of Fox and Li [2], concem modeling of stable cavities

with apertures or finite size mirrors, by various resolution methods of the iterative diffraction

integrals, like the Prony method [3, 4], or the use of Laguerre-Gauss mode expansions [5, 6].

The direct consideration of the diffraction integrals in real cavities allows in a few cases [7] the

study of defects other than simply the finite size of the mirrors or apertures in the cavity. The

real advantage of our study is first the use of FFT in beam propagations, and second the fact

that we can consider separately or together many defects on the mirrors.

We have performed calculations for cavities with various combinations of defects or with

time varying defects, which are almost impossible to treat otherwise. We also give some

practical information about the accuracy and implementation of our numerical method.

2. Theoretical basis of the propagation method.

In the present section, we recall the mathematical basis of the propagation by Fourier

transforms, and propose a discussion of its domain of validity and accuracy. In the scalar

approximation, assuming a monochromatic field of time dependence exp(-iwt), the

propagation of light obeys the Helmholtz equation :

(A + k~) ll'
=

o (I)

where the complex wave function 1l'(x, y, z ) represents any component of the electromagne~
tic field, and k

=

talc. Discussion of equation (I) in a fully general situation involving the

knowledge of the field on a given surface could start from Kirchhoff's equation. However we

are going to deal with waves propagating along the z axis, and vanishing outside a finite region
of the (x, y) plane. We shall restrict our consideration to the class of functions 1l'having a

finite integral of the squared modulus, even when multiplied by powers of x and y, and such

functions have two-dimensional Fourier transforms (2D-FT) :

~1l'~p, q, z)
=

lax dy e~'P~ e~'~Y 1l'(x, y, z). (2)
R2

The reverse Fourier transform is written as :

~~ 4l (x, y, z)
=

~ ldp dq e~P~ e'~Y 4l(p, q, z) (3)
2 " R2

and, in the Fourier space we restrict again our consideration to the class of functions 4~ having
integrable square modulus of the 2D-FT even when multiplied by powers of p and q.

Such a class of functions involves for example, perturbations of the eigenmodes of cavities

which may be approximated by a finite linear combination of Hermite-Gauss modes. In a

given transversal plane z
=

zo, the preceding class of functions has a Hilbertian space

structure, with the scalar product :

I?1, ?2)
=

Pi (x, y, z) P~(x, y, z) dx dy (4)

and the square modulus :

i ?I
=

1?, ?)~'~ (5)



N° 7 SIMULATION OF NON-IDEAL CAVITIES 1289

2. I PROPAGATION FROM PLANE To PLANE. By taking the 2D-FT of equation (I) we obtain

a second order differential equation admitting wave solutions propagating to the left and to

the right :

~1l'~p, q, z)
=

e~~~ P~~~~A (p, q). (6)

The function A ~p, q) is determined by setting z = z i
then z = z~ in equation (6), giving the

propagation relation between the Fourier data on planes z = zi and z = z~.

~~'~~''~'~2)
=

e*~~~2-zj) p2_ 2
~ ~?~p, q, ~~ ~

The phase factor :

G~~p, q, z)
=

e*~~ P~~~~ (8)

in the Fourier space will be called the
« propagator ».

The
« + » or « »

sign corresponds to

right or left propagating waves. Note that equation (7) results from the only hypothesis that fl~

has a 2D-FT, and the direction of propagation results from the fact that in relevant cases,

when diffraction is well described by the paraxial approximation ~p~ + q~ «
k~, ~ fl~ vanishes

outside the circle p~
+ q~

=

k~. It is also the basis of the algorithm of Sziklas and Siegman [I],

and allows the representation of the wave propagation by a linear operator P, mapping the

Hilbert space at zi onto the Hilbert space at z~.

P
=

tF G~(z~ zi ) ~ (9)

This formulation of the propagation problem is very efficient with respect to the methods

based on direct integration of Kirchhoff's equation (see Refs[2~7]) because the two~

dimensional integrations here can be decimated by use of the FFT.

However, propagation from plane to plane is not sufficient for our purposes. In general we

need to represent propagation from a curved surface (for instance a mirror) to another curved

surface. For this purpose, we proceed in the following way : we split the propagation from a

surface 3 to a surface 3' into three sequences : first the propagation from 3 to its tangent

transverse plane fl then the propagation from lI to the tangent plane lI' of 3', and finally the

propagation from HI to Il.

2.2 REPRESENTATION OF OPTICAL SURFACES : SHORT DISTANCE APPROXIMATION. Propa~
gation from a curved surface to its tangent plane will be represented by a simple non~uniform

phase factor. We examine carefully this approximation because it depends both on properties
of the wave and on those of the optical surface. Namely, we shall consider waves which are at

least roughly matched to the nominal parameters of the cavity, and cavities with mirrors

having an almost ideal shape. To be more specific and without serious loss of generality, we

shall consider a reference cavity having a plane mirror Mo at z =

L, and a spherical mirror

Mi of curvature radius R at z =

0 with a =

R/L
~

l. It is well known that at the wavelength A,

such a cavity has a fundamental Gaussian mode TEMOO with its waist located on the plane
mirror, and a beam waist radius :

"~~=Lfi
at z=L and

"~~=L
~

at z=0. (10)
A A fi

In practice, considerations about stability and degeneracies of modes lead to values of a

such that a I is not very small (it means that the spot on the curved mirror is not hundred

times larger than the spot on the plane mirror).
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We first discuss propagation from plane z=0 to the surface 3 of the mirror

Mi, defined by
z =

f (x, y) (with f(0, 0)
=

0) ; by applying equation (7) we get :

9'(x, y, f (x, y =

)
dp dq eiPx e'~Y e'/~x> Y>

P~- ~~ ~ v~ ~p, q, o) (i1)
7r

If fl~ is close to the fundamental Gaussian mode of the cavity, and if y is a constant for which

we may neglect exp(- x) for every x ~ y, the preceding integral is practically bounded to

finite values of p and q, namely :

p~ + q~
<

~ ~ (12)
wj

and we have therefore :

~~~~~
~

~~i~(

gr

d$'
~~~~

furthermore, we can write :

~ 2 2
~

~ ~~' ~P' ~~ With U~P, qi
=

"
I I

P~ + q~
~

P~ + q~ 3 ~p~ + q2j2

therefore

~
2 k~ 8 ~4 + (14)

fl~ (x, y, f (x, y))
=

e~~f~~'~~
~
ldp dq e~P~ e~~Y [I ikf (x, y) u(p, q )] ~ fl~ (p, q, 0) (15)

4
gr

Let us evaluate the error caused by using :

§" (x, y, f(x, y))
=

e~~f~~~ Y~ §'(x, y, 0) (161

instead of equation (11). We can define an rms phase distortion 4l by :

ii
9' 9" 1~

= ii
9'1~ +

ii
9''11 ~ 21 9'?'1 CDS ~° (171

for the normalized waves 1l', PI and assuming a small distortion, this reduces simply to :

4l
= ii

9'- ?'1 (18)

The rms phase distortion induced by using the approximate short distance diffraction formula

is thus :

4l
=

ikf (x, y) e'~f~~'Y~
~

dp dq e~P~ e'~Y u~p, q) ~1l'~p, q, 0)
.

(19)
4 gr

The order of magnitude of 4l can be estimated in the case where the surface 3 is nearly
parabolic, and the wave 1l'nearly Gaussian : the main contribution to the preceding integral
will come from the following terms :

~

j
~~2 ~ ~2~ ~ ~

f (x y )
=

~~ ~ ~~, ll'(x, y, oi
=

~
~e

~~ ~~

,
u ~p, q =

~ ~ ) (201
' 2 R grwi 2 k
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by definition of the phase distortion :

4~
=

j f~)jYl (al
+

ajj w(x, y, oj
j

(21j

which is given by a direct calculation :

4l=
j"~~ ~.

(22)
4

gr a(a I)~L

In the example of a small He-Ne laser, L
=

0.2 m, A
=

6.328 x
10~'m,

a =

1.10, we have

4l
=

6 x10~~rd
; for the giant cavities in Gravitational Waves Interferometric Detectors

L
=

3 x
10~ m, A

=

1.06 x
10~~ m, a =

1.15, we have 4l
=

4 x 10~ ~°rd
; note that a

distortion of the optical surfaces of All 000 rms (I nm at 1.06 ~Lm), is equivalent to a phase
distortion of about 6 x10~~ rd, 4l is thus generally negligible, and we can represent the

propagation from a plane to the tangent curved mirror by a simple phase factor. It can be

shown by a similar discussion that propagation from a curved mirror to the tangent plane can

be represented by a phase factor with the same accuracy :

§'(x, y, 01
=

e~~~f~~~ Y~ §'(x, y, f(x, yii (231

Finally, reflection on the curved mirror is equivalent to multiplication by the phase factor

~- 2 ikf (x. y ) (~ ~j

We have just seen that the surface of a mirror has the effect of adding to the phase of the

wave function a phase related to the surface equation of the mirror. But a mirror, and

generally any other optical component, acts also on the amplitude of the wave. Owing to the

previous analysis, to each of these we may associate a linear operator acting on the wave

complex amplitude. Refraction and reflection are represented by operators of the form :

T(x, y)
=

t e'f~~.Y~ d(x, y ) and R (x, y)
=

ir e'~~~~ Y~ d(x, y ) (25)

where t and r are the ordinary scalar amplitude transmission and reflection coefficients and f,

g two real functions representing the local phase change due to either the reflecting surface

shape (for a mirror) or the variable optical thickness (for a thin lens). d(x, y) represents the

diaphragm function of the optical element : d is zero outside, and unity inside. Note that a

gr/2 phase lag is assumed for a reflection. For a thick lens, we have first a refraction step, next

a propagation step and then a second refraction step.
The functions f, g and d may be the sum of a large class of terms, including the non-ideal

geometrical form and various perturbation terms such as : finite size of the mirrors, surface

defects, curvature errors, misalignments (transverse displacements and tilts on the optical
axis), or inhomogeneity of the substrate index.

The conclusion of this section is that we can represent propagation in the free space by a

phase factor in the Fourier space according to equation (7), and the reflection or the

refraction on curved surfaces by phase factors in the direct space. Thus, implementation of

the method requires a rectangular grid for sampling of the complex amplitudes and the optical
surfaces; the corresponding grid in the Fourier space will be used for sampling tile

transformed amplitudes and the propagator, a 2D-FFT subroutine, and a fast procedure for

multiplying two complex arrays. These requirements are especially suitable for vector

computers.
Let us now tum our attention to the specific form of the reflection and refraction operators.
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2.3 OPTICAL OPERATORS. Consider a mirror with a surface shape like that represented in

figure I, where z =

f(x, y ) is the equation of the non-ideal surface of the miror ; the other

surface is assumed to be a perfect plane laying at z =

0. The perturbed surface is assumed to

have a reflecting coating, while the substrate is assumed to have an index n. We have to

determine the phase factor corresponding to a transmission through the mirror or a reflection

on it.

i i

' i

i "
f(X, y)

'

,

,

,

,

i

,

,

,

,

,

i..- i _z
0 D

Fig. I. Sketch of a mirror with a surface equation z =

f (x, y ).

First, tile light which propagates from the plane z =
0 to tile plane z =D, outside tile

mirror, undergoes an optical patll change 8~(x, y)
=

nf (x, y) + (D f (x, y)) the first

term is for the propagation to the surface of the mirror, and the second is for the propagation
from the surface to the plane z =

D. The same optical path change is seen in a reverse

propagation. The refraction operator has the specific form :

T(X, yj
#

t e'*~' e'~~"~ ~~/~~~~ d(X, yj (26j

Let us now consider a wave propagating from the plane
z =

0, reflected on the coating at

the mirror surface and finally propagating back to the plane
z =

0. The optical path change is

then 2 nf(x, y). The reflection operator for a wave coming from the left of the mirror takes

the form

Ri~~~(x, y)
=

ir e~~~~f~~.Y~ d(x, y ) (27)

Finally let us take a wave coming from the right of the mirror, propagating from the plane

z =

D to the surface z =

f(x, y) reflected on the coating and then propagating back to the

plane z =

D. The optical path seen by the light is D f (x, y) one way, plus D f (x, y

back, and the reflection operator for the wave coming from the fight of the mirror is then :

R
~~~~~

(x, y )
=

r
e~ ~~

e
~ ~~f ~~. Y~ d (x, y (28

We see that the operators of reflection must be split into right and left operators, according

to the direction of the incident wave. Note also that D can be arbitrarily chosen : for instance,

we may take it as the maximum value of the function f(x, y).
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Note that tile imperfections of the substrate of the mirrors related to a non-uniform index

distribution can be represented by an integrated optical path change 8(x, y) for the light
which passes through the materials ; this means that we consider the imperfect substrate like a

phase lens. The corresponding refraction operator is for instance :

T(x, yi
=

t e~~~~~.Y~ d(x, y). (29)

Thus we know how to write the different optical operators related to a single mirror. We can

now take two of them and build a cavity.

3. Model of resonant cavity.

In this paragraph, we show how a resonant Fabry-Perot cavity working for instance as a

reflector can be represented by a linear operator and the reflected wave can be obtained with

a known incoming beam. We consider a cavity of length L illuminated by a wave of amplitude

$ii~. We call Ti and Ri the refraction and reflection operators of the input mirror.

Ri may be split into left and right parts, according to the previous section, depending on the

relevant defects. Let R~ be the reflection operator of the end mirror, and P the propagator of

the cavity :

P
=

~ G~ ~ (30)

With the help of the notation of figure 2, we get the following relations between the

amplitudes of the light in the cavity, before and after the interaction with the mirrors :

$i1
~

l~l $iin + ~l $i4

$i2
~

~$il

$i3 ~R2$i2 (3i)

$i4
~

~$i3

$iout
~

~l $'in + l~l $i4

where #i~~~ is the amplitude of the reflected wave, which is written :

9'out
~

R 9'in + Tl PR2 P9'l (321

The problem is thus reduced to the determination of the resonant intra~cavity wave

fl~i. If we define a cavity operator C, as :

C
=

Ri PR~ P (33)

It is easily seen that fl~i obeys the implicit equation :

#~I "

Tl #~in + C#~1 (341

The main task of the simulation consists in solving tllis equation, once all the operators have

been defined. From the numerical point of view, we start by taking the TEMW mode of the

ideal cavity times the resonance factor as a first estimate, because the correct solution is

expected to be close to it. Then we solve equation (34) by iterations until the standard

deviation between the last two estimates for the intra-cavity wave amplitude is less than a

certain level, which will be called the accuracy of the method and which will be defined below.

Now we tum our attention to the problem of the resonance of a non-ideal Fabry-Perot
resonator. The resonance conditions of an ideal cavity are well-known, but when the mirrors
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't~~ y 't~

i~~~ V~ if~

INPUT END

MIRROR MIRROR

Fig. 2. -Waves in a cavity : notation.

get strange shapes, or when they are tilted, we have to find the cavity lengtll corresponding to

the resonance. Note that tuning the length of the resonator, or the frequency of the source is

equivalent to adjusting a uniform supplementary phase in the propagator. Optimization of

this phase could be obtained by running many times the numerical code in order to find the

maximum of the stored power, but it will be too expensive in terms of computer time.

Hopefully, we always consider small defects, because the optics can be assumed to have a

fraction of wavelength of imperfections. This gives the idea of a perturbation calculation. Let

C be the cavity operator and let q~ a uniform phase we add to C : we want to optimize
q~ in

order to achieve the fine tuning of the cavity the intra-cavity wave #ii obeys the implicit
equation :

#~1 "

Tl #~in + c e~~ ~il (35j

Let Co be the ideal cavity operator corresponding to ideal shapes, without any optical
losses. The spectrum of Co is discrete, and the eigenmodes (for example Hermite-Gauss

modes) form a complete orthogonal basis for the space of the light wave amplitudes. Let us

note 4l)°~ the eigenmodes of the ideal cavity, and A )°~ the related eigenvalues, 4lj°~ being the

fundamental TEMOO mode (for the sake of simplicity in the notation, we use a single index,

although the Hermite-Gauss or Laguerre-Gauss modes need two indices to be explicitly
defined).

We assume that the incoming wave is, in the ideal case, perfectly coupled to one of the

eigenmodes of the ideal cavity, for example to the TEMOO, without loss of generality:
Ti #i~~ is then proportional to 4l)°~

Tl #~in "

~4~fl~ (36)

then we can write the zero-th order amplitude of the intra-cavity wave #i)°~ in the ideal case :

#i)°~
= ~~ 4lj°~ (37)

Aj ~iw

which is resonant if q~ =

Arg (Aj°~) : this is the resonance condition for an ideal cavity.
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Consider now the perturbed system : we may expand #ii, at the first order, in a series of the

eigenmodes 4~)°~ (this expansion is unique, as the 4l)°) build up a complete orthogonal basis) :

«

#~~ =

A 4~j°> + z a~ 4~j°> (38)

p=o

where A is an amplitude gain term. The summation runs from zero to infinite (and then

includes a component along 4~j°~ in order to make this term appear as a first order correction

to the ideal term, which is, according to (37), proportional to 4~j°~. Furthermore, we can

always find a scalar A and a wave #i so that :

c~ij=A~ii+~i (39)

with the following orthogonality condition, which definitely gives A and #i :

(#i, 4lj°))
=

0 (40)

Equation (35) then becomes :

«
I«

A 4~j°) + ~ a~ 4l)°)
=

Ti #ij~ + A e'~ A 4l)°) + ~ a~ 4l)°) +
e~' #i (41)

p=o p=o

and we get by projection this function onto the function 4lj°)

A
=

~~~ ~~~' $°
(42)

-Ae~~~
I+ao

The scalar product in equation (42) denotes the coupling between the incoming wave, which

excites the cavity, and the eigenmode we want to excite. It means that now it is clear that the

value of
q~

which gives the maximum of A (and then the maximum power in the cavity) is :

q~ =

Arg (A ) (43)

From equations (38), (39) and (40), we get A at first order :

~
~

jc ~p (o) ~p (o)j ~44~

which is very similar to the results of the perturbation calculation applied to Hermitian

operators in Quantum Mechanics (although here the cavity operator C is not Hermitian).

The result we obtain is then very simple : in order to tune the cavity at resonance on the

TEMW mode, we just have to add the uniform phase
q~

given by :

q~ =

Arg ( jc4~j°), 4~j°)j ) (45a)

to the cavity operator phase, or equivalently, we add the uniform phase q~~~~ given by :

v~pmp =
Arg ((c4~1°1 4~]°~) ) (45b)

to the propagator phase. The factor 1/2 appears in equation (45b) because the propagator

appears twice in the cavity operator (see Eq. (33)).

Physically, tllis locking condition means that the entering beam (assumed to be closed to

the ideal TEMOO mode) constructively interferes with the same beam which has performed a
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single round trip in the cavity. This constructive interference will assure an optimal increase of

the power in the cavity, as the
«

mode
»

builds up.

The computation of expression (45) needs only one round trip in the cavity and is therefore

very fast. Note that if we want to tune the cavity on another mode, say 4~)°~, the same

calculation is valid, except that we have to change 4l)°~ into 4l)°).

In the next section, we illustrate the preceding theory by checking the agreement of a

numerical model with the classical results about Fabry~Perot resonators, and show that the

eigenfrequencies found correspond accurately to the theoretical eigenfrequencies.

4. Checking the method : numerical results.

We have performed numerical calculations with a model of a very long cavity, as planned in

the French-Italian Virgo Project [8] for the interferometric detection of gravitational waves

[9, 10]. The Virgo cavity is 3 km long, the input mirror is plane, with a power reflectivity
Ri

=

0.85, and the end mirror is a spherical high reflectivity one (R~= I ) with 3.45 km

curvature radius. We call ideal a cavity obtained by giving a reflectivity of one to both mirrors,

keeping the same geometry.
The numerical computations have been performed on the Siemens VP~200 vector

supercomputer of the Centre National de la Recherche Scientifique. In any case, the

complete execution of the code (including the definition of the different operators, the

calculations of the resonance conditions, of the resonant intra-cavity wave and reflected

wave) never exceeds about thirty seconds on the VP-200, whatever the defects of the cavity.
The same order of magnitude (a factor of 2 at worst) is found for runs on a Cray 2.

Two sorts of noise must be considered in these experiments :

I ) The numerical calculation induces round off errors which result in a phase noise for each

optical step (reflection, refraction or propagation) depending on the machine precision and

on the sampling rate. All our calculations are performed within the Fortran complex *J6 and

real *8 options, which induce a phase noise of about 10~'6 rad.

2) Discrete sampling of the optical waves and other elements on an n x n grid replaces the

linear operator C (for example) by an
n~

x
n~ matrix, whose eigenvectors are not exactly the

discretization of the true continuous modes (an n~xn~ matrix has no more than

n~ eigenvectors, whereas the ideal cavity has an infinity of modes).

We evaluate this discretization noise by computing, for optimized window sizes, tile rms

phase distortion of a discretized ideal TEMOO mode after one round trip in the discretized

ideal cavity ; we find :

4l
=

1.3 x
10~~rad, for n

=

64

4l
=

2.6 x
10~'rad, for n

=

128

4l
=

2.5 x
10~'rad, for n

=

256

and we see the advantage to run with n=128, rather than n=64. Especially, for

n
=

64 tile discretization noise may be not negligible with respect to small defects that we

want however to consider for example, in section 2.2, we have seen tllat a geometrical
distortion of an optical surface of All 000rms is equivalent to a phase distortion about

6 x10~~rad. This discretization noise is the main limit for the accuracy of the numerical

code, and we have to be aware of it ; all numerical examples in tile following sections have

been performed w1tll n =

128, which implies a very small discretization noise (2.6 x
10~' rad.

corresponds to a 4.3 x
10~~

nm surface distortion, not measurable by the present state of the

art).
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4. I EXCITATION oF TRANSVERSE MODES AND SPECTRUM. In this first
«

experiment », we

use a mismatched incoming wave (having a tilt angle 9) in order to excite a series of Hermite-

Gauss eigenmodes of the ideal cavity [I Ii. By varying an arbitrary uniform phase q~
in the

propagator, we simulate a continuous tuning of the reference cavity, and the intracavity

power exhibits resonance peaks at locations we want to compare with the theoretical

assignment. The resonance condition for the TEM~~ mode is, after KogeInik and Li [12] :

kL- (m+n+I)Arctg
lfi) +I= (q+I)gr (46)

~rwo ~

where q is an arbitrary integer. For the arbitrary phase of the propagator, this locates the

resonances at :

q~
(m, n )

=

(m + n Arctg ~~~ modulo
gr

(47)
~rwo

the phase offset being chosen at a resonance of the fundamental mode. Figure 3a is a plot of

the intracavity power versus q~. Vertical bars show the theoretical eigenphases
q~

(m, n ). The

error in location corresponds to a 10~ ~ Hz detuning which gives an idea of the accuracy of the

method. We found it useful to give the shape of the intracavity wave at some special

resonances (see Fig. 4). Note that the reference cavity having mirrors of non unity
reflectivities, the spectrum is continuous, which means that at each frequency, the intracavity

wave is a mixing of Hermite-Gauss modes. For instance, the first resonance is mainly TEMIO
but also contains small amounts of TEMW, TEM~O... This is why the geometry of this mode

is only almost that of the TEmjo.
In a similar way, we are able to excite the first transverse Laguerre-Gauss modes, denoted

by TEM~i where p is the radial order and I the angular order : for example, we illuminate the

cavity with a TEMOO wave having a waist not perfectly matched to the cavity ; thus we obtain

all the series of the axisymmetrical Laguerre-Gauss modes (the non axisymmetrical Laguerre-
Gauss modes are non excited with such an incoming beam). In figure 3b we see that the peaks

of the numerical resonances are well fitted to the theoretical peaks, which are obtained in the

case of Laguerre-Gauss modes from the resonance phases :

q~ ~p, ii
=

(2 p +
ii Arctg

lfi
modulo gr

(48)
grwo

4.2 STUDY OF DEFECTS. We now describe a scheme for the analysis and the evaluation of

the intrinsic defects of the cavity and give some examples. In each case, we launch the

matched TEMOO Gaussian wave fl~i~, and let the reflected wave fl~~~~ interfere with

fl~i~. The interference involves an arbitrary phase lag which is chosen to minimize

[
fl~~~~ fl~~~[[. This minimum value of [

fl~~~~ fl~~~[[
is the rms global phase distortion,

recalling equation (18) ; it has the mean of a measure of a geometry deviation from the perfect
TEmoo mode.

In each case we give the intensity distribution
fl~~~~ (x, y ) fl~~~(x, y ) ~ which corresponds

to the dark fringe pattem of interference.

4.2. I Scaling the sizes of the mirrors. The ideal cavity has infinitely large mirrors. The first

perturbation to be studied is the finite size of the mirrors : 5 cm radius for the input mirror

and 14 cm radius for the end mirror. This means that the radii exceed by a factor 2.5 the beam
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Fig. 3. Spectrum of a cavity. a) Spectrum obtained by illuminating the cavity with a tilted laser

beam the corresponding Hermite-Gauss modes are excited. b) Spectrum obtained by illuminating the

cavity by a laser beam with an unmatched waist the axisymmetrical Laguerre-Gauss modes are excited.

sizes on the mirrors. The interference pattem between the beam reflected by the cavity and

the perfect TEMOO mode is shown in figure 5.

We note that we find the characteristic ring pattem due to the well known coupling of the

fundamental mode with higher order axisymmetrical Laguerre-Gauss modes. The rms phase
distortion with respect to the ideal TEmoo wave is 3,I x

10~~ rad.

4.2.2 Angular misalignments. In this example we have tilted the end spherical mirror of

the cavity by an angle equal to 0.I ~rad, which corresponds to 0.3 mm seen over the 3 km

length of the cavity. The interference pattem between the reflected wave and the TEMW
mode is shown in figure 6.

We may recognize the interference figure between two pure Gaussian waves but with

different propagation directions. This may also be interpreted by the coupling of the TEmoo
mode of the cavity witl1higher order Hermite-Gauss modes, mainly TEmio as shown by the

figure. The phase distortion is 3.5 x
10~~ rad.
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Fig. 4. View of the different modes excited by the previous methods. Fig, a, b and c show the

Hermite-Gauss TEMIO, TEM20 and TEM30 modes, respectively. The intensity isocontours correspond-
ing to the lines (-,

------, -,
---) encircle 50 9b, 80 9b, 90fb and 95 fb of the power

respectively. The modes are not perfect because the cavity has some «
losses

»
(reflectivity of the input

mirror), so there is in fact a mixture, which results from the coupling of transverse modes to the

fundamental TEMOO mode what we call a TEmio mode is in fact a mixture mainly of TEMOO and

TEMIO (and also higher modes).

4.2.3 Curvature error. In this example, the end minor of the cavity has not its nominal

curvature radius (3.45 km). The relative curvature error is I fb and is of the order of

magnitude of the accuracy announced by most manufacturers. The interference pattem
between the reflected bqam and the perfect TEmoo is shown in figure 7.

One can recognize the interference figure between two pure Gaussian waves but with

different curvature radii. This may also be interpreted by the coupling of the TEMm mode of
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Fig. 5. Interference pattem from a perfect TEMW and the beam reflected by the cavity in the case

where mirrors have finite sizes. For this chart and all the following, the horizontal scales are expressed in

cm and the vertical scale in W m-2 Note that a numerical window of 45 cm has been used.
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Fig. 6. Interference pattem from a perfect TEMW and the beam reflected by the cavity in the case of

an angular tilt of the end mirror.
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Fig. 7. Interference pattem from a perfect TEMW and the beam reflected by the cavity in the case of

a curvature error of the spherical end mirror of the cavity.

the cavity with higher order axisymmetrical Laguerre-Gauss modes, mainly TEmio as shown

by the interference pattem. The resulting phase distortion is 3.7 x
10~~ rad.

4.2.4 Surface defects. This last example concems the surface defects for the input mirror.

The ideal input mirror is a plane mirror, and the distorted surface is shown in figure 8, the rms

value of the aberration being A/60. The related interference pattem between the beam

reflected by the cavity and the TEMOO mode of the corresponding ideal cavity is shown in

figure 9, giving a phase distortion of 2.4 x
10~~ rad.

5. Conclusion.

The presented simulation tool for resonant cavities allows accurate studies of the effects of

various static defects and can be employed for optimization of resonators. Because of its time

sparing conception, the code can be used in dynamical simulations in which it must be run at

each time step with updating of parameters. This makes it possible to study non linear

problems such as the detuning of the cavity by thermoelastic deformation of the mirrors

heated by the beam [13]. The complete study of thermal effects in passive cavities will be

treated in another paper.
The numerical code that we have built has been intensively used in order to determine the

specifications of the optics involved in the Virgo Project of a Gravitational Wave Antenna.

The results show that the specifications are very stringent and do not exist simultaneously on

the same optics yet. This also shows that the code can deal with very weak defects, and

confirms that the noise of the method is much below the weakest defects that we have

considered in our studies, which are for instance about All 000 rms for the surface quality of

the mirrors.
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Fig. 9. Interference pattem from a perfect TEMW and the beam reflected by the cavity in the case of

surface defects of the input mirror of the cavity. The interference has been computed with the surface

shape seen in figure 8.



N° 7 SIMULATION OF NON-IDEAL CAVITIES 1303

References

[Ii SzIKLAS E. A. and SIEGMAN A. E., Mode calculations in unstable resonators with flowing
saturable gain : Fast Fourier method, Appl. Opt. 14 (1975) 1874.

[2] Fox A. G, and LI T., Computation of optical resonators modes by the method of resonance

excitation, IEEE J. Quant. Electron. QE-4 (1968) 460.

[3] SIEGMAN A. E, and MILLER H. Y., Unstable resonator loss calculations using the Prony method,

Appl. Opt. 9 (1970) 2729.

[4] PICHE M., LAVIGNE P., MARTIN F. and BELANGER P. A., Modes of resonators with intemal

apertures, Appl. Opt. 22 (1983) 1999.

[5] KELLOU A, and STEPHAN G., Etude du champ proche d'un laser diaphragmmd, Appl. Opt. 26

(1987) 76.

[6] WANG L. Yu and STEPHAN G., Transverse modes of an apertured laser, Appl. Opt. 30 (1991) 1899.

[7] RAzumovsKii N. A., Effect of irregularities of the mirrors on stimulated oscillators in a open
cavity, Opt. Spectrosc. USSR 67 (1989) 410.

[8] BRILLET A., GIAzOTTO A. et al., Virgo Proposal for the construction of a large interferometric

detector of gravitational waves (1989, revised 1990) unpublished.
[9] GIAzOTTO A., Interferometric detection of gravitational waves, Phys. Rep. 182 (1989) 365.

[10] THORNE K. S., Gravitational Radiation in 300 Years of Gravitation (Cambridge University Press,

Cambridge, 1987).
II Ii ANDERSON D. Z,, Alignment of resonant optical cavities, Appl. Opt. 23 (1984) 2944.

[12] KOGELNIK H, and LI T., Laser beams and resonators, Appl. Opt. 5 (1966) 1550.

[13] HELLO P, and VINET J.-Y., Modelling of the VIRGO interferometer, Proceedings of the Elizabeth

and Frederick White Research Conference on Gravitational Astronomy : Instrtlment Design
and Astrophysical Prospects, D. E. Mcclelland and H.-A. Bachor Eds. (World Scientific,
Singapore, 1991) p, 1-13

HELLO P., Thesis (Paris XI University, 1990) unpublished.


