
HAL Id: jpa-00246604
https://hal.science/jpa-00246604

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Local dynamics around structural order-disorder phase
transitions

B. Toudic, H. Cailleau, J. Gallier, R. Lechner

To cite this version:
B. Toudic, H. Cailleau, J. Gallier, R. Lechner. Local dynamics around structural order-disorder phase
transitions. Journal de Physique I, 1992, 2 (6), pp.829-844. �10.1051/jp1:1992182�. �jpa-00246604�

https://hal.science/jpa-00246604
https://hal.archives-ouvertes.fr


J. Phys. 1France 2 (1992) 829-844 JUNE 1992, PAGE 829

Classification

Physics Abstracts

64.60H 61.12E 76.60E

Local dynamics around structural order-disorder phase
transitions

B. Toudic (I), H. Cailleau (I), J. Gallier (I) and R. E. Lechner (2)

(1) Groupe Matihre Condens£e et Mat£riaux (*), Universit£ de Rennes I, F-35042 Rennes

Cedex, France

(2) Halm-Meitner Institut, Glienicker Strasse100, D-1000 Berlin 39, Germany

(Received 21 November 1991, accepted in final form 28 February 1992)

Rdsum4. La dynamique locale autour d'une bansition de phase structurale de type orate-

d£sordre est £tudi£e en padiculier en analysant l'influence des fluctuations collectives pr£kansi-
tionnelles sur la dynamique individuelle. Nous utilisons [es r£sultats exp£rimentaux de r£sonance

magn£tique nucl£aire du proton et de diffusion incoh£rente de neutrons du p-terph£nyle. La

combinaison des deux techniques donne une description plus complme de la dynamique locale

critique et non-critique dans de tels syst~mes et confirme notre premihre interpr£tation des

r£sultats R-M-N-, dirt£rente de celle d'autres auteurs.

Abstract. Local dynamics around an order-disorder structural phase transition is studied in

particular by analyzing the influence of pretransitional collective fluctuations on individual

dynamics. We use experimental results from proton nuclear magnetic resonance and incoherent

neutron scattering on p-terphenyl. The combination of both techniques yields a more complete
description of the local critical and non-critical dynamics in such systems and confirms our first

interpretation of the N-M-R- results, different from that of other authors.

1. Introduction.

The collective aspect of pretransitional fluctuations around structural phase transitions has

been extensively studied. In parallel, much attention was given to the way these critical

fluctuations modify local properties such as individual relaxational functions, phonon density
of states, Debye-Waller factor, heat capacity, etc. The clearest experimental evidence of local

critical dynamics usually comes from resonance techniques. In this paper we present an

analysis of a molecular crystal around its order-disorder phase transition discussing in parallel
Nuclear Magnetic Resonance and Incoherent Neutron Scattering results. The combined use

of both techniques actually appears necessary to elucidate both the local critical and non-

critical dynamics in such systems.

(*) URA au CNRS 040804.



830 JOURNAL DE PHYSIQUE I N° 6

This paper is divided in five pans. First we recall the formalism used to describe critical

dynamics around an order-disorder phase transition. In the second part we briefly review the

experimental techniques. In the following two pans local dynamics is analysed in the absence

of critical phenomena in the disordered and in the ordered phase, respectively. The last part
deals with local critical dynamics in the neighbourhood of the phase transition.

Experimental techniques that analyse local dynamics probe an autocorrelation function of

the local variable s,(t)

g(t)
=

)~( (s,(t)s,(o))
=

(s(t)s(0)) (I)

In the simplest case of dynamical disorder in a double-well potential, the local variable

s, (t) may be defined as a pseudo-spin variable (± I). The time average of this critical variable

ij
can be directly related to the order parameter ~

~ =

~ s,
e'~~'" (2)

N

~'~~~

where q~ is the critical wavevector defining the static periodicity of the ordered phase.
Pretransitional effects around such phase transitions are associated with the formation of

short range ordered clusters of finite lifetime. In both phases they correspond to collective

fluctuations of the local order parameter around its mean value. A description of the spatial

and time variation of these fluctuations is possible by introducing the Fourier components

s~(t) of the local variable

s,(t)
=

~ s~(t) e'~'~ (3)

q

The relaxational collective fluctuations are govemed by :

(s~ (t) s_
~

(0))
= s~ ~) e

°~~ j4)

where ([s~[~) is the mean square amplitude and T~ the relaxation time of the critical

fluctuation of wavevector q. On approaching the transition, the mean square amplitude
becomes larger and larger (divergence of the static susceptibility, I-e- of the correlation

lengths f which characterize the spatial range of the critical fluctuations at q~) and the latter

live longer and longer (critical slowing down of the fluctuations, I-e- divergence of the

correlation time T~ which characterizes the lifetime of the critical fluctuations at q~). Coherent

neutron scattering appears to be the best suited technique for the study of the collective aspect
of the pretransitional phenomena around structural phase transitions measuring the pair

correlation function (s~ (t)
s~

(0)) [1-3]. Let us note that the number of direct observations, by

this technique, of critical slowing-down of the fluctuations around order-disorder phase

transitions remains small [4-6].

The general expression of the autocorrelation function may be given by a summation over

the Brillouin zone of the collective fluctuations of wavevector q :

g(t)
=

) z (s, (ti s, (o))
=

) z (sq(t) s-
~(o)j (5)

~~~~

q
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The spectral density of the autocorrelation function G(w), Fourier transform in time of

g(t) is normalised to unity :

ldw G (w
=

g(0)
=

(6)

Up to now, almost all the studies of local critical dynamics have been carried out by using

resonance methods such as N-M-R-, N-Q-R-, E-P-R- [7-10]. These techniques are sensitive to

slow fluctuations and thus have been very fruitful in observing and analysing these

pretransitional local critical dynamics. However, the problem remains quite complex because

in such cases the spectral density of the fluctuations has a very complicated energy shape.
Resonance methods only allow the analysis of a very limited number of points (the resonance

frequencies) of this function, whereas its observation as a whole would be necessary. By its

principle incoherent neutron scattering allows the observation of the complete spectral
autocorrelation function [11-15]. Several conditions must be fulfilled however to obtain this

result and up to now this technique was seldom applied for analysing local critical dynamics.
The most elaborate work conceming an order-disorder transition has been done on

ammonium chloride, with a description of the single particle dynamics in both phases [16-18].
Unfortunately, as we will see later, the superposition of different types of motions makes the

problem complicated, and may perhaps have hidden the effect of the pretransitional
fluctuations. We have therefore retained a compound where no such a problem exists : p-

terphenyl. This compound is particularly suited for the study of local critical dynamics for

several other reasons :

the geometry of the molecular motion is simple,
it exhibits an almost continuous structural phase transition with large pretransitional

phenomena, previously studied by coherent neutron scattering,
total or selectively deuterated compounds are easily obtained as large single crystals

which permits all types of experiments to be made.

p-terphenyl is made of three phenyl rings connected by simple C-C bonds. In the gaseous
and the liquid state, the repulsion of ortho hydrogen atoms induces a non-planar

conformation of the molecule. In the crystal X-ray and neutron diffraction experiments have

revealed a doubly peaked probability density function for the phenyl rings, associated to a

double-well potential for the conformations of p-terphenyl [19]. These non planar confor-

mations may be described by the torsional angles of the phenyl rings relative to the mean

planar conformation. These angles are about ± 13° for the central ring of p-terphenyl and ± 5°

for the extemal rings. In the low temperature phase, the molecules stabilize in one of the two

non-planar conformations and the critical wavevector is (1/2, 1/2, 0) [19-20]. Our previous
results conceming local dynamics in this compound have been described in references [21-24].

2. Experimental techniques.

The two techniques which will be very briefly reviewed here are Incoherent Neutron

Scattering (I.N.S.) and Nuclear Magnetic Resonance (N.M.R.). Both are extensively
presented in books or review articles [7-12, 25-26].

2.I INCOHERENT NEUTRON SCATTERING. It is well known that incoherent scattering of

neutrons from hydrogen nuclei results from spin incoherence between the neutron and the

scatterer. The experimental separation of coherent from incoherent neutron scattering in

molecular compounds with a high concentration of hydrogen atoms is not trivial but

somewhat facilitated due to the very large incoherent scattering cross-section of the protons.
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The description of the
«

individual dynamics
»

of the atom is performed by introducing the

Van Hove autocorrelation function, g~(r', t), Fourier transform in space of the intermediate

scattering function1,~~(Q, t). The total incoherent intensity is the sum of the intensities of the

individual incoherent scatterers. The intermediate incoherent neutron scattering function

reads

1(Q, t)
=

' L (e'~'~~~'e~'~'~'~°~) (?)

,

ii

Let us now consider the simple case of a relaxational motion of the atoms in a double-well

potential, whose minima for each atom are defined by the vectors a and + a. The local

pseudo-spin variable may here be defined as :

s, =
+ I if r, =

+a

and (8)

s~ =
I if r, = a.

The intermediate incoherent scattering function for this relaxational process is then :

Ij~(Q, t)
=

I
ii + cos (2 a Q )i +

I
ii cos (2 a Q )i

I z (s, (t) s, (0)j (9)
2 2 N

,

The first time-independent, term, is the well-known Elastic Incoherent Structure Factor

(E.I.S.F.) A o(Q). All the information conceming the dynamics is included in the pseudo-spin
variable autocorrelation function g(t) defined by equation (I). The complete expression of

the incoherent scattering function is

~'~~~~~ ~ ~

~~
~

~~ ~~~
(~~C(Q, W +

sjjj'(Q,
~ ~j ~~~~

The first term is the detailed balance factor, the second term is the Debye-Waller factor.

S,$~(Q, w) is the time Fourier transform of the reorientational intermediate scattering
function1$~(Q, t). The last term corresponds to inelastic processes and is directly related to

the scatterer-weighted phonon density of states. In the case of an order-disorder phase
transition the local dynamics mainly affects the reorientational scattering function S$~(Q,

w ).

Let us mention here that in the displacive case, not further treated in this paper,

Ao(Q) and consequently 1$~(Q, t) is Q-independent and always equal I. Local critical

dynamics, which in the displacive case results from a softening of a phonon branch, will

modify S]]['(Q, w) and consequently the associated Debye-Waller Factor.

2.2 NUCLEAR MAGNETIC RESONANCE. In this paper we will only consider nuclear

magnetic resonance of nuclei having spin I
=

1/2 because this technique is the closest to

incoherent neutron scattering. In molecular solids, dipolar interactions yield the main

broadening of the resonance lines. Van Vleck [27] has shown that in the rigid lattice the

second moment of this line is directly related to the geometrical arrangement of the spins I, j

in the crystal

M)
=

~ y~h~l(I
+ I)~z~

( ~ ~°~~
~')

~
(11)

2N jr
'= J» <J

b,~ is the angle between the vector r,~ and the direction of the applied magnetic field.
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Through the time dependence of the interactions, the motions narrow the resonance line

when their characteristic frequencies are of the same order of magnitude as the frequency
strengths of the dipolar interaction. The reduction of the second moment of the line is

AM~
=

M) f with :

3 N i N

~~
2 N

"~~~~
~~ ~ ~~ i l~ l~~ ~°~~ ~iJ ') (rip (~~~~~~l~ (12)

The information conceming the spectral function of the thermal fluctuations of the crystal is

obtained by measuring the spin-lattice relaxation rate T/ This value is proportional to the

transition probability W~~ between the states k, m of the system of the spins, resulting from

the interaction with the lattice :

W~~
=

~ ldt e~'~~~ ~~~ G~~ (t) (13)
h

G~~(t) is the autocorrelation function of the perturbing time dependent part of the dipolar
interaction Hamiltonian 3C(t) :

G~~(t)
=

(3C~~(t)3C~~(0))
=

[3C~~[~ j(t) (14)

J(w ), time Fourier transform of j (t), is the spectral density for the involved autocorrelation

function of the variables coupling the nuclear spins and the lattice.

In conclusion of this experimental presentation, one sees the analogy between the

dynamical spectral autocorrelation function G (w ) defined for I-N-S- and J(w ) defined for

N-M-R-- However, one has to keep in mind that G (w probes the local dynamics of a given
nucleus whereas J(w ) probes the local dynamics of vectors connecting a given nucleus with

the interacting nuclei interacting with it.

3. Local dynamics in the disordered phase far above Tc.

In the high temperature phase, the mean value (~) of the order parameter is zero.

Furthermore, the fluctuations of the order parameter around this mean value are also

assumed to be negligible. This is the case around a first order phase transition or around a

second order phase transition far above the transition temperature Tc. Then the motion of

one molecule in its double-well potential is not correlated with the motion of its neighbours.
The description of such non dispersive dynamics may be done in real space. In the case

illustrated in figure I of a relaxational process between two equivalent sites with a mean

residence time TR on each site, the calculation of the eigenvalues of the equation of motion

gives the well known expression for the dynamical part of the autocorrelation function

g(t) :

_u

g(t)
= e

~~ (15)

The incoherent scattering function is then composed of an elastic peak and a quasielastic line

of Lorentzian shape with a half width at half maximum 2/T~,

Slc(Q,
W

)
"

A0(Q) 8 (W ) + ii Ao(Q)i G (W ) (16)

with

G(w )
=

£i (w
=

1
~/(R

~,
(17)

r~ « (2/T~) + w
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Fig. I. Random relaxational motion in a double-well potential with mean residence time

r~ in a well. Schematic representation a) of the double well potential, b) of the time evolution of the

conformation of the molecule and c) of the autocorrelation function.

The I-N-S- experimental study of p-terphenyl has been performed at the Institut Laue

Langevin combining the time of flight spectrometer INS and the high resolution backscattering

spectrometer IN13. In order to amplify the decrease in Q of the EISF, a selectively deuterated

p-terphenyl C~DS-C~H4-C~DS was synthetised. Diffraction and coherent neutron scattering
studies have shown that this compound presents a similar phase transition as CjgHj4 or

CjgDj4. The only difference observed (isotopic effect) concems the transition temperature
(Tc

=

193.3 K for CjgHj4, Tc
=

185.3 K for C~DS-C~H~-C~DS and Tc
=

178 K for

C181~14).
Figure 2 presents the I-N-S- results measured on the spectrometer INS above 245 K, that is,

far above the transition temperature of the selectively deuterated p-terphenyl. At these

temperatures, the random reorientational model gives a very good description of these data.

From this analysis, the reorientation rate I/T~ was found to follow an Arrhenius law. The

activation energy, associated to the height of the barrier of the double-well potential is

E~
=

I.I kcal/mole [24]. At room temperature the reorientation rate I/T~ equals 84 GHz in

this compound.
The same kind of information may be extracted from a proton Nuclear Magnetic

Resonance Study. This was performed using a Bruker SXP spectrometer operating at the

Larmor resonance frequency v~ =

90 MHz. The spin-lattice relaxation times have been

measured by the saturation 90°- pulse method. The second moment M~ of the resonance line

was derived from the free induction decay be a least squares fit. All measurements were

performed on powdered samples. Far above Tc, the random reorientational motion of the

molecule induces the same kind of motion for the proton-proton vectors which carry the

dipolar interaction :

j~~~ ~- or ~

In the case of p-terphenyl T~ '
=

Tj ' for a pair of protons of the same molecule whereas

T~ '
=

2. Tj for pairs of protons of different molecules. Considering the well known B-P-P-

model, the spin-lattice relaxation rate is simply expressed as a function of the spectral density
J(w) at the Larmor resonance frequency w~.

Tj '
=

y2 AM~, jJ(w~) + 4 J(2 w~) j. (19)



N° 6 LOCAL DYNAMICS AROUND STRUCTURAL PHASE TRANSITIONS 835
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Fig. 2. Fit of the incoherent scattering spectra (points) with the model of random relaxational jump

motion in a double-well potential. These results were obtained on INS on powdered p-terphenyl C6D5-

C~H4-C6D5 at a scattering angle 4
=

96° (Qo
"

1.5 A~
~).

In the fast motion limit defined by I/T » w~, the spin-lattice relaxation rate Tj is directly

proportional to T
and thus follows the same Arrhenius law :

Tj '
=

~~ y~ AM~ T
(20)

Such a behaviour is observed in p-terphenyl in the high temperature phase above 240 K, as

illustrated by the straight line in figure 3. The activation energy is E~
=

1.05 kcal/mole, in

very good agreement with I-N-S- results. The difference between the second moment of the

resonance line in the completely ordered phase and in the disordered phase is AM~
=

2.2 G~

(Fig. 6). Using this value, the characteristic rate I IT is found to be equal to 160 GHz, at room

temperature. This value is in rather good agreement with that found by incoherent neutron

scattering, keeping in mind the differences pointed out above. It should be mentioned here

that this interpretation [21] is different from the interpretation given by other authors [28, 9-

l0]. As we will see later, these authors assume that critical dynamics dominates the spin-
lattice relaxation process in the whole high temperature phase. By analogy with magnetic

systems, where indeed individual Arrhenius processes do not exist, these authors did not

consider the molecular jumps.
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Fig. 4. The low temperature phase, neglecting the fluctuations of the order parameter : schematic

representation a) of the double-well potential whose asymmetry is govemed by the order parameter ~,

b) of the individual dynamics of the molecule in this potential and c) of the resulting autocorrelation

function g(t).

The asymmetry of the local potential, characterised by the energy difference AV between the

two minima, is then a simple function of the order parameter [29] :

AV(~)
=

kT, ln
~~ ~ '~~. (22)
(1 ~1)

Neglecting the fluctuations of the order parameter ~ around its mean non-zero value, one can

again calculate the dynamical autocorrelation function g(t) in real space :

g(t)
= 7~

~
+ (i

7~ 2~ e
~'~' (23)

with

T'~ '
=

Tj + TI (24)

This function is still exponential but it no longer tends to zero at infinite time (Fig. 4c). In the

low temperature phase, the reorientational incoherent scattering function is then :

s(c(Q, ~°)
"

IA 0(Q) + Ii A0(Q)1' '~ ~) '8(~°) +

+
ID -Ao(Q)I li ~2j £T'-i(w) (25)

This result was first developed to describe the II to HI phase transition of NH4CI [16, 17].

There the problem is experimentally more complex because there are two types of statistically
independent motions for the NH4 tetrahedron : the fourfold and the threefold jumps. At this

transition, the ordering process concems the first motion only while the second one,

essentially not affected, continues to yield a quasi-elastic scattering in phase III. The main

advantage in p-terphenyl is that the ordering phenomenon is directly associated with a unique
reorientational motion. Actually the use of a single crystal of the selectively deuterated

compound C~DS-C~H4-C~DS even reduces the problem to the simplest case treated in part
2. I of one proton in a double-well potential ; in this case the temperature dependence of the

purely elastic incoherent scattering is directly given by formulae 10 and 25, as shown at

different Q values in figure 5. The quasi-elastic line measured in the low temperature phase is

found to be Lorentzian with an integral which decreases quickly upon cooling down. However
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Fig. 5. Semi-logarithmic plot of the elastic incoherent scattering intensity measured on the

spectrometer IN13 at the ILL using a single crystal of selectively deuterated p-terphenyl C~D~-C~H4-

C6D~. ((.) Q~
=

I. 19 A ', (D) Qo
=

1. 79 A ', ( A ) Q~
=

3. 76 A with Qofla *. ) The straight

lines in the high temperature phase take the temperature dependence of the Debye-Waller factor into

account. Below Tc, the lines are meant as a guide to the eye.

this component remains quite broad as its width is essentially dominated by the inverse of the

mean residence time Tj ' in the non-favorable well [29-30]. The relaxational process may even

become faster in the low temperature ordered phase than in the disordered phase as found in

p-terphenyl using formulae 22 and 25. Ten degrees below Tc, the reorientational rate

I/T'in this compound is found to be of the order of 30 GHz.

A similar calculation in nuclear magnetic resonance yields the same kind of result for the

second moment of the resonance line :

M~(t)
=

T
+ 7~

it) [Ml ii (26)

The temperature dependence of the order parameter is determined through neutron

diffraction experiments from the intensities of superlattice reflections in the low temperature
phase [20], and it may be described by a power law ~~ ((To T~/To)~fl with p 0.14.
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Note that this small value of p probably indicates a weakly first order phase transition within a

mean field theory [31]. Indeed the metastability limit TC of the disordered phase is found

some 0.I K below the transition temperature To. The resulting values of M~(T~ are plotted in

full line in figure 6, showing a good agreement with the experimental data. Quite clearly the

increase of the second moment in the low temperature phase occurs because of the ordering

process of this phase and although we are still in the fast motion limit (I/T' » v~). The general
expression of the spin-lattice relaxation rate is then :

Tj1
=

y2AM~(1 ~ 2~
iJ(w~) + 4 J(2 w~)1 (27)

By analogy with the analysis of the incoherent neutron scattering results in the low

temperature phase, the N-M-R- process may be interpreted in terms of a spectral function

whose integral behaves as (1 ~ ~. However the behaviour of the spin-lattice relaxation time

Ti is govemed by the order-parameter below the transition temperature only when the

contribution of the collective fluctuations in this phase becomes negligible (Fig. 3). Other

authors [28] have taken the measurements between Tc and Tc 5 K, and only them, to

determine the temperature dependence of the order parameter using the following formula :

Tj
=

Tj/. (I ~ (28)

This expression is wrong since the spin-lattice relaxation rate determined at Tc, Tj/, is

govemed by the critical pretransitional fluctuations of the order parameter. Formula (28)
corresponds to formula (27), if Tj ( is the value of the spin-lattice relaxation rate extrapolated

at Tc without considering the contribution of the critical fluctuation (Fig. 3). This description
is based on the assumption that the local potential is actually not much deformed by the

collective fluctuations.

M~

jG2) ~18 ~14

12,O

ii,o

io,o

#

~~

~

Tc
zo

~°°
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5. Lucal critical dynamics (7'- 7(.).

In the prcsencc ol'pretmnsiiional phcnomcna, around coniinuou; or almt>st coniinuou~ pha,e

transitions the influence of'[he conl'orrnaiion of'a moleculc on ii; ncighbour, becomc,

important. This local order may be described by a larger occupation probability for one of the

wells during the finite lifetime of the fluctuations in «clusters» characterized by the

correlation lengths (Fig. 7). The autocorrelation function must integrate all the,e collective

fluctuations over the whole Brillouin zone

sz

g(t) ~ ([s~[~) .e~"~~ (29)

q

T-Tc

~~
b)

q(r)
t

-r~ + +

= r

__

=÷-~

i

idusier

~, d)

g t

I -t /~~

i
Sq

~
~

~~~l

q

,

iclusicr
~

i

Fig. 7. Schematic representation of the influence of the collective critical fluctuation,
on the local

properties a) the time evolution of the double-well potential for a given molecule, b) the ;patial

fluctuation of the order parameter around its mean value, cl the dynamics of a molecule and d) the

resulting autocorrelation function.

The mean square amplitude of a collective relaxational mode of wavevecior q 1;

~~ ~~~~~ q~~f~~ ~~~~

In [he ab;cncc ol'collective fluctuations (T»Tc and T«Tc), thcrc I; i negligihlc
di;per,ion in ihc correlation time; r~. On [he contrary, the collective t'luciuation, into(luce .i

,lr<)ng di;per;it)n in the;e correlation time, clo;e lo T~. (Fig. 8). Iii J nieJn l'iel(I de,ciijiiioii
cl<),e ii) the critical wavcveclor q~. (), one ha;

T~~
T( /) II )

with

rj t ~ l'I' I'~.i (,1?)
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1-1 a) T »Tc

b)T~TC ~~ ~~~~
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,
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/
/

f

J

q~ ~-i q

Fig. 8. Schematic representation of the dispersion relation of the correlation times in reciprocal

space, a) neglecting the collective fluctuations (T MT c) and b) in the presence of the collective

fluctuations (T
~

T c).

From coherent neutron scattering experiments performed on the high resolution spec-

trometers IN10 and INll at the I-L-L- we found for deuterated p-terphenyl :

Ti
m

[0.25 (T T c) GHz (33)

The anisotropy in the correlation lengths were f~: f~. f~m3 : 8 :1 [32]. Considering an

isotropic description, the mean diffusion coefficient D
=

f ~/Tc was found to be of the order of

2x l~fA~ ~LeV. The calculation of the critical part of the dynamical autocorrelation

function may been done analytically in the isotropic case :

g~~~(t) kT
~~

dq
q~

~- ur~

0 q
~

+ f 2
(~ ~~

q~ defines the critical volume in the reciprocal space where the dispersion given by formula

(31) is assumed valid. Let us note that this is the same calculation as that performed to

determine the fluctuation correction for the specific heat [33]. For a second order phase
transition, at T

=

Tc(f~
=

0 and T£
=

0), g~~~(t) has this simple expression :

g)~[ T~(t) kT
c
l~ dq e

~~~~ ~
~ (35)

For very long times (t»T~), one can only consider fluctuation modes q«q~, I-e-

q~ - tx~, and one has

gfi Tc(t) kTc
)

(36)

corresponding to the spectral function

Gi~f Tc(~°) kT
c

)
(3?)
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At the transition temperature, the low energy part of the autocorrelation function

(w « Tj~) behaves as w~ ~'~. Even if it probes a local property, the point at zero energy

transfer diverges for a second order phase transition. The experimental evidence of the latter

result has often been reported by N-M-R- through the divergence, in the fast motion limit, of

the spin-lattice relaxation rate T/~ at Tc [7, 9-10]. The temperature dependence of this

divergence is much dependent of the anisotropy of the correlations. If d characterizes this

spatial dimension, one finds

w

J(0) T/ (T T c) ~ (38)

Thus, in principle, N-M-R- measurements give the dimensionality of the correlations.

However the determination of the exponent goveming T/ is not obvious at all because here

one has to consider both critical and non critical dynamics. If, like Guillon et al. [28], one

considers that the critical phenomena govem the N-M-R- process at all temperatures, the

fluctuations are found to have a 2-dimensional character. But if, as shown in part 3, the

critical phenomena actually dominate the spin-lattice relaxation process only up to 30 K or

~
~
<
~
~

=
0

m
~
©
~

z
~
w

=
12 uev

=
24 uev

O

T-T< (K)

Fig. 9. Theoretical temperature dependence of the spectral density of the autocorrelation function at

points hw
=

0, hw
=

12 iueV (v
m

6 GHz) and hw
=

24 iueV (v
m

12 GHz) in p-terphenyl, in the

presence of collective fluctuations. The phase kansition is assumed to be continuous and is described in

the frame of a mean field theory.
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40K above the transition temperature, the fluctuations are found to have essentially a 3-

dimensional character [17, 19]. The analytical calculation of local critical dynamics considering
the actual anisotropy of the correlation is quite complicated. The numerical simulation,
however, shows that the spectral shape of this critical part is essentially not different from that

obtained in the isotropic case, its relative weight being simply increased [34]. The theoretical

behaviour of the different points of the critical part of the autocorrelation function is shown in

the isotropic case in figure 9. The experimental evidence of this result for these three

frequencies is given in reference [24]. The complete observation of the spectral autocorre-

lation function has been obtained by incoherent neutron scattering [23]. Contrary to N-M-R-,
the analysis of these data require a realistic description of the dispersion of the collective

correlation times over the whole reciprocal space [23, 30].
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