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Rdsumd. Les solides poreux biphasiques sont des exemples de milieux interfaciaux complexes.
La diffusion aux petits angles (SAS) ddpend fortement des propridt£s g£om6triques de l'interface

partitionant le milieu poreux. Les propri6t6s de la d6riv6e seconde de la fonction d'autocorr61a-

tion de densit6 d6flnit quantitativement le niveau de connection entre la diffusion aux petits
angles et les caract6ristiques statistiques de cette interface. Une expression utilisable de cette

seconde d£riv6e, impliquant les distributions de cordes assocides h la phase massique et au rdseau

de pores, fut propos6e par Mering et Tchoubar (MT). Mettant h profit la possibilit6 actuelle d'une

comparaison quantitative entre les techniques d'imagerie et la diffusion aux petits angles, ce

papier tente de compl£ter et d'6tendre l'approche MT. Dans un premier temps, nous montrons en

quoi la connaissance de ces distributions de cordes permet de dist1tlguer certains types de

d6sordres structuraux. Une relation explicite entre le spectre de diffusion aux petits angles et les

distributions de cordes est alors propos6e. Dans une troisibme partie, l'application h diff6rents

types de d6sordre est discut6e et les pr£dictions du modme compar6es aux r6sultats exp6rimentaux
disponibles. Par utilisation du traitement d'images, nous nous int£ressons h trois types de

ddsordre : le milieu aldatoire de Debye, pour ses propridtds h grandes distances, le ddsordre

«
corr616

» avec une attention particuli~re pour le cas d'un verre poreux (le Vycor) et enfin des

organisations complexes ok des propri6t6s d'invariance d'6chelle de longueur peuvent dtre

observ6es.

Abstract. Disordered biphasic porous solids are examples of complex interracial media. Small

angle scattering strongly depends on the geometrical properties of the intemal surface

partitioning a porous system. Properties of the second derivative of the bulk autocorrelation

function quantitatively defines the level of connection between the small angle scattering and the

statistical properties of this interface. A tractable expression of this second derivative, involving
the pore and the mass chord distribution functions, was proposed by Mering and Tchoubar (MT).

Based on the present possibility to make a quantitative connection between imaging techniques
and the small angle scattering, this paper tries to complete and to extend the MT approach. We

first discuss how chord distribution functions can be used as fingerprints of the structural disorder.

An explicit relation between the small angle scattering and these chord distributions is then

proposed. In a third part, the application to different types of disorder is critically discussed and

predictions are compared to available experimental data. Using image processing, we will

consider three types of disorder : the long-range Debye randomness, the
«

correlated
»

disorder

with a special emphasis on the structure of a porous glass (the vycor), and, finally, complex

structures where length scale invariance properties can be observed.
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1. Introduction.

Disordered porous solids play an important role in industrial processes such as separation
science, heterogeneous catalysis, oil recovery, glass and ceramic processings [I]. The

confinement and the geometrical disorder of these systems strongly influence the dynamic or

thermodynamic processes which can take place inside the pore network [2]. This raises the

challenging problem of describing the morphology of these porous solids. A structural

analysis can be handled using a number of techniques [3] : direct observation of the mass

distribution by optical or electron microscopy, molecular adsorption, direct energy transfer.

Correlations at different length scales of the mass distribution are generally probed by small

angle scattering (SAS). It is well known that the density fluctuations are the main origin of the

scattering. In the case of a biphasic matrix, these fluctuations are localized just at the sharp
interface which partitions the system. The small-angle scattering, considered as a purely
interfacial phenomenon [4], is then strongly dependent on the geometrical properties of this

oriented interface. This statement can be qualitatively understood if we consider a disordered

porous medium as completely defined either by its mass distribution or by the oriented

interface separating the
«

void
» space from the

« mass » part of the matrix. Properties of the

second derivative of the mass autocorrelation function quantitatively define the level of

connection between small-angle scattering and the statistical properties of the interface [5, 6].

This has been known for a long time, almost for smooth and convex particles. As shown by
Guinier [7] and Porod [8], a relationship between the shape of a convex particle and its

scattering can be made using the concept of chord distribution. A chord is a segment
belonging to the particle and having both ends on the interface. It can be considered as a

linear path which correlates two distinct points of the interface. Many attempts have been

made to develop this concept further. Connections between small r expansion of the chord

distribution and local or semi-local properties of the interface such as the curvature, the

angularity were developed independently by Porod [8], Mering and Tchoubar [9], Wu and

Schmidt [10, 1II. These different studies were essentially dealing with convex particles where

only one chord distribution was needed. Extension to a biphasic porous solid (generally a

non-convex structure) is more complicated. The general expression of the second derivative

of the mass autocorrelation function involves a «
delicate

»
surface integral, as shown by

Ciccarillo et al. [5]. Mering and Tchoubar [12] have proposed a more tractable expression of

this second derivative, involving the «pore »
and «mass »

chord distribution functions.

Several hypotheses are involved in their analysis (I) the porous solid is considered as an

isotropic biphasic random media (it) their derivation considers the distribution of matter

along a random line (an one-dimensional analysis) ; (iii) a specific type of randomness where

uncorrelation between adjacent chords has to be assumed. At this time, in the sixties, no

attempt was made to give an explicit expression of the small angle scattering involving chord

distribution functions and able to be checked by independent experimental data. Based on the

present possibility to make a quantitative connection between imaging techniques and small-

angle scattering, this paper tries to complete and extend the approach of Mering and

Tchoubar. In section 2, we discuss how chord distribution functions can be used as

fingerprints of the structural disorder. As examples, we give analytical expressions and large r

expansions of chord distribution functions for two types of random binary media : (I) the

Debye randomness and (it) systems where a length scale invariance property can be observed

either for the bulk part or the interface. In section 3, the second derivative of the mass

autocorrelation, involving the
« pore »

and
« mass »

chord distributions, is computed using a

«
three-dimensional

»
derivation. We also give an explicit expression of the small-angle

scattering which directly depends on the Fourier transforms of chord distributions. In part 4,
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the application to different types of randomness is critically discussed and predictions are

compared to available experimental data. Using image processing, we will consider three

types of disorder : the long-range Debye randomness,
«

correlated »
disorder with a special

emphasis on the structure of the vycor porous glass, and, finally, complex structures where

length scale invariance properties can be observed.

2. Biphasic random medium and chord distribution functions.

2, I BACKGROUND. A simple description of a two-phase system includes two assumptions.
First, each phase is considered as homogeneous and is characterized by its average density.
Second, these two phases are separated by an ideal sharp interface. As discussed by

Ciccariello [13], the real structure is then probed with a coarse grain size larger than the

atomic scale. In this domain of approximation, it is possible to define at least two types of

chord distribution functions [14]. The chord size distribution
«

in number
»

(called for short :

chord distribution) is related to the conditional probability of having a chord size between r

and r + dr, knowing that the chord begins at a specific point of the interface. This distribution

will be noted f~(r) or f~(r) where the indices p and m stand for pore and mass, respectively.
The chord size distribution

«
in length

» g~(r) (g~(r)) gives the probability density to find a

pore (mass) chord having a size between r and r + dr and passing through a point M randomly
distributed in the pore (mass) phase.,These distributions are null for negative distances. The

relation between g and f distributions is [12, 14] :

g,(r)
~j~~

I
=

m, p (1)

with

j
=

j~ rf,(r) dr (2)
o

and

j~ f~(r) di
=

(3)
o

An interesting question can be asked at this level, conceming the possibility of using chord

distribution functions as fingerprints of different models of disorder. In the next two sections,

we discuss two of them : Debye randomness and disorder involving a length scale invariance.

2.2 DEBYE RANDOMNESS. A theory of small-angle scattering from a biphasic random

system was first proposed by Debye, Anderson and Brumberger [15, 16]. As recently
discussed by Ciccariello [17], randomness in Debye's sense is related to the theory of

stationary random functions [18]. More particularly, a «
lineal

»
analysis of a Debye random

system is closely connected with the model of the random telegraph signal solved by Rice [19].

Let Q;(r) denote the probability that no collision with the interface occurs along a segment of

length r starting from a random point M located either in the pore (I
=

p) or in the mass phase
(I

=
m). Assuming a Debye random system, the probability that no collision occurs in the

interval of length r + dr reads as :

Qi(r + dr)
=

Q,(r) (i p, dr) I
=

p, m (4)

In this equation, two hypotheses are implicitly assumed. First, any event occurring on one

side of the random line going through M is independent of any events occurring on the other
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side. Second, the probability densities, p~ and p~, of hitting the interface from the pore or

the mass part of the matrix are constant. The probability that the first crossing point appears

in the interval (r, r + dr) is written as :

P;(r) dr
=

Q;(r) p, dr I
=

p, m. (5)

Combining equations (4) and (5) we get :

P,(r)
= p, exp( p, r) I

=
p, m (6)

The chord size distribution functions in length are computed using the convolution of

P;(r) with itself :

r

gi(r)
=

HI eXp( /l, (r rl)) eXp( /l, rl) d~l (7)

Using equation (I), the two chord size distribution functions in number read :

f,(r)
=

I
exp( r/j) (8)

with

ij
=

i/p; (9)

As shown in section 3, equation (8) permits the retrieval of the exponential variation of the

bulk autocorrelation and consequently the well known Debye expression for small-angle
scattering [16]. However, the negative exponential form of f~(r) and f~(r) raises some

questions conceming the local properties of the interface. For a completely smooth

(differentiable) interface, the small r expansion of the two chord distributions scales as r. The

positive slope of this linear relationship is directly related to the curvature properties of the

interface [10, 20]. Debye randomness acts in a different way. Small r expansion of

equation (8) exhibits a positive value at the origin and a negative slope. This type of disorder

involves a strong interfacial angularity [5, 8, 9, 12]. This explains why the scattering intensity
predicted by Debye does not follow the asymptotic behavior predicted by Kirste and Porod

[21] for &mooth and curved interfaces.

2,3 DISORDER INVOLVING A LENGTH SCALE INVARIANCE. We consider disordered

systems with length scale invariance properties. More specially, we will focus on the long-

range behavior of chord distribution functions. Let us consider a biphasic medium having a

self similar interface. The intersection of this surface with a random line is also a self similar

set of points. Using the rule of thumb conceming intersection of sets [22], the number of

intersection points along a distance R is :

Ns(R)
=

Fs R~~~~ (10)

where ds is the fractal dimension of the interface and Fs, a shape factor. The average chord

lengths for the pore (or the mass) portion of this matrix, computed on a characteristic size R,

is given by :

(j)~
oz (~°'(~~ i

=
m, p (i1)
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where ~P;(R) is the average volume fraction of the phase I, measured on the length scale R.

From equation (2), we have

R
(ij)~

#

rf;(r) dr (12)
0

and the long range behavior of chord distribution functions can be written as :

d(ij)~)
(13)f;(R) °° # dR " ~' ~'

Let first consider the case of a matrix having a self similar surface and a compact (non-fractal)
distribution of the mass and the pore networks [23]. ~P~(R) and ~P~(R) are independent of R

and we get :

f~(R) oz i
=

m, p. (14)
~ds-1

A second interesting situation concems a biphasic medium having a fractal distribution of

mass as found, for instance, in diffusion limited aggregates, cluster-cluster structures [24], In

this case, the mass volume fraction scales with R as :

~P~(R)
=

F~ R"~~~~ (15)

and

Alp(R)
=

i ~P~(R) (16)

where F~ is a shape factor. For a mass fractal, the two exponents d~ and ds are equal [23] and

we obtain from equations (10) and (11) :

~
F~

( m)~
= ~ (17)

The average « mass »
chord length is independent of the scale used in the computation, The

mass chord distribution function has a well-defined first moment and must decay faster than

I/r~ to avoid a logarithmic divergence at large r, On the contrary, the pore chord distribution

function scales as :

f~(R) oz (18)

R
~~

In the three former examples, large r expansions of chord distribution functions exhibit

specific properties of the structural disorder. It can be observed that equations (14) and (18)

can be directly used on a random section of the matrix, In this case, the exponent, such as

(1s -1), gives the fractal dimension of the intersection of the 3D interface and a random

plane.

3. From chord distribution to small-angle scattering.

According to classical theory, the small angle scattering I(q) is related to the 3D Fourier

transform of the fluctuation autocorrelation function :
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~
ir)

=

(
dro(p(ro) >) (p(ro + r) >) (19)

where p(r) is the mass (the density) distribution and p the volume average of p(r).

As mentioned in the introduction, small-angle scattering is strongly dependent on the

geometrical properties of the interface separating the pore and the mass part of the matrix.

Properties of the second derivative of the mass autocorrelation function quantitatively define

the level of connection between small-angle scattering and the statistical properties of this

interface [5]. For an isotopic biphasic random medium, an expression of this second

derivative, involving the
« pore »

and
« mass »

chord distribution functions has been proposed
[12]. This computation is based on a statistical analysis of the medium along a random line and

gives, for 0 w r :

~ir)"
=

(G(r) 2 &(r)) (20)

with

G(r)
=

f~(r) + f~(r) 2 f~(r)
*

f~(r) +

+ fm(r)
*

fp(r)
*

fm(r) + fp(r)
*

fm(r)
*

fp(r) (21)

The convolution product is symbolized by a star. Sv is the total interfacial area per volume

unit. G(r) is null for r ~
0. The Dirac distribution on the rhs of equation (20) is directly

connected with a finite discontinuity of1~ irl' at r
=

0 (I.e. a finite value of Sv). This singular

part of equation (20) determines the q~~ leading term in the high q expansion of the small

angle scattering (The Porod law) and the linear behaviour of l~ir) at very small r.

The regular part of
1~

~(r)", noted [1~
ir)"] and equal to Sv G(r)/4, can be retrieved using a

«
three-dimensional

»
computation. Let us start from the functional expression proposed by

Ciccariello et al. [5] :

16'l
i~)

~ l
~

~) j ~
dS

~
dk~("S k~)

~
dS'( OS' k~) 3(~SS'

k~)j
(22)

w

r is positive or null. S is the total surface. &s is the unit vector perpendicular at the surface S in

the point to which the differential element dS refers. &s and &s, lie outside the mass network.

Equation (22) is mathematically significant if the boundary S is such that a tangent plane can

be defined almost everywhere, except for a set of singular points having a null measure.

Looking around a statistical point Os belonging to the interface, the angular average over all

possible directions ib can be split into two equal parts. The tangent plane to the surface, at

Os, defines two half spaces: one for directions pointing to the pore network (noted

il +), and one for solid angles pointing to the mass phase (noted il ~). Equation (22) can be

written :

i~ir)"i
=

~j
iF+ (os, r) + F-(os, r)> (23)

with

~~~~~°~' ~~ ~

~~_~ d6~(*s ~+) ids,~~
S

~''
"~ ~~~SS' r6~) ~~~~

The brackets stand for the total surface average, defined by the first integral in equation (22).
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Let us consider a local orthogonal coordinate system specified by the tangent plane at the

point Os (x and y axis) and the direction &s (the z axis). Using standard differential geometry

one gets :

ds'(&s< 6~)
=

do'dw'P(o', w', o~, w~) (25)

and

3(rss, r")
=

~ ~
3(8' 8 w) 3(w' w w) 3(rss, r) (26)

where (rss<, W', o') and (p~, o~) are the spherical coordinates of Os, and & respectively.
P is a lengthy function involving partial derivatives of rss, with respect to o' and

W"

However for o'
=

o~ and p'= p~, we have :

P(o~, w~, o~, w~)
=

sgn (&s< 6~)R$ sin (o~). (27)

The second integral of equation (24) gives a series of contributions respectively associated

with each intersection of the interface with a line having the direction &. For il + half space,

the first intersection from Os involves a pore chord, the second a pore chord followed by a

mass chord, and so on. Using equations (24), (26) and (27), we get :

F~ (Os, r)
=

ld&(ds &) x

~+

x ~-
~(~~

3(R~~p~ r) + ~~~ ~~
3(R~~p m~

r) ~~~~l'~ 3(R~~~
~ ~~

r) + (28)
r r r

R~~~~ is the length of the pore chord which goes from Os to the first intersection along the

direction &. Related to the second intersection, R~~~, ~~
is the total length, along the direction

&, of the pore chord followed by a mass chord, and so on.

The next step consists in averaging equation (28) over all possible positions of

Os. There is no simple and general way of obtaining this average. If adjacent pore and mass

chords are strongly correlated, the computation has to take into account distribution functions

involving two, three,... consecutive chords. Following Mering and Tchoubar [12], we have to

consider a specific type of randomness where statistical isotropy of the matrix and

uncorrelation between adjacent chords are assumed. This is a strong hypothesis which must

be checked for each system. in this case, we have :

ld&(&s &)
~ ~~~

8(R
~~~~

r)
=

n+
r~

2 w
w/2 ~2

=

dp~ do~ sin (o~) cos (o ~) duf~(u)
j

3(u r)
= gr

f~(r) (29)
o o

r

and

Ii da(&s. 6~)

~~)
~'~

3(R~~~, ~~
r)

=
grf~(r) *

f~(r) (30)
n+ r

Finally we get :

(F~ (os, r))
=

gr( f~(r) + f~(r)
*

f~(r) f~(r)
*

f~(r)
*

f~(r) + ) (31)
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and

IF- (Os, r))
=

«( + fm(r) fm(r)
*

fp(r) + fm(r)
*

fp(r)
*

fm(r) (32)

l~ ir)"I
=

(
~fm(r) + fp(r) 2 f~(r)

*
f~(r) +

+ fm(r)
*

fp(r)
*

fm(r) + fp(r)
*

fm(r)
*

fp(r) (33)

This result is similar to the regular part of equation (20).
Let us now try to connect the chord distribution functions to an explicit expression of the

small-angle scattering, I(q). For an isotropic medium we have :

I(q)
=

l~ 4 grr~l~ ir) ~~~ ~~~~
dr (34)

~ qr

l~ir) being an even function, the former equation can be written :

i(q)
=

~
"

)
(Real ( I 2(q)) (35)

with the general notation :

+ w

@(q)
=

w(r) exp(iqr) dr (36)
-

w

Using the standard properties of the Fourier transform of distributions and knowing that

l~ir)" is also an even distribution, we get from equation (20)

~
sv

i (q)
= j

Real (I G(q)) (37)
2 q

with

~~~~ l~~ ~~~~ ~~~~~~~~ ~~ II °~

G(r) exp~iqr~ ~~ ~~~~

The modulus of /~(q)
or /~(q) ranges between 0 and I. Looking at the Fourier transform of

the rhs of equation (21), we find a converging geometrical series and d(q) reads

~
fm(q)

+ fp(q) 2 f~(q) f~(q)
~~~~~

l fm(q) fp(q)

Finally using equations (35), (37) and (39), the small-angle scattering can be written as :

grsv d Ii (l /m(q)) (1 fp(q))
(40)~~~~

~ i dq q2~~~ f~(q) /p(q)

The well known Debye expression can be recovered using the chord distribution functions

given in equation (8) :

8 gr@~(l @~) d~
I(q)

=

(41)
(1 +

f q~~
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where basic stereology gives two general relations :

I
~

l
(42)

d i~ ip

and

4 @p(I ~bp) (43)Sv
"

4. Application to diwerent types of disordered media.

From the experimental point of view, two questions can be raised. First, are the chord

distributions efficient to give specific information on the structural disorder ? Second, is the

connection with small-angle scattering really described by equation (40) ? In other words, can

we find different types of disordered structures where uncorrelation between adjacent chords

can be assumed ? Based on the present possibility to make quantitative connections between

imaging techniques and small-angle scattering, we critically discuss possible applications to

different types of randomness.

4,I EXPERIMENTAL PROCEDURE AND IMAGE PRocEssiNG. For an isotropic and biphasic
random medium, the fluctuation autocorrelation function, defined in equation (19), is one of

the few characteristics that remain unchanged whether you observe them two- or three-

dimensionally [25, 26]. In the following, digitized sections of different porous structures are

numerically analyzed. Direct computation of l~ir) is performed along several bundles of

parallel lines. These are uniformly distributed along different random directions. To minimize

size effect, the maximal value of r is less than 1/3 of the average size of the picture. The small-

angle scattering I(q) is computed from equation (35). The chord distribution calculation is

performed in four steps : (I) definition of a random direction ; (it) localization, along this

direction, of a pair of nearest neighbor pixels having different values (0 for the pore, I for the

mass). This pair defines the first end of a chord (iii) estimation of the chord segment along
the direction chosen. This chord can belong to the pore or to the mass network and (iv)

computation of the size histogram by iteration of the former steps. This algorithm gives the

chord size distribution in numbers and was checked on basic figures (the cerde for example)
where analytical expressions are known. A good agreement is obtained except for the first

pixels where the discrete nature of the digital image induces slight artefarcts.

4.2 LONG-RANGE DEBYE RANDOMNESS. Figure I shows a digitized section of dolomite

adapted from [27]. The evolution of the pore and the mass chord distributions follows two

successive regimes (see Fig. 2). As is the case for a smooth and curved interface, these

distributions scale with r at small distances. Just after the maximum of each distribution, a

negative exponential form is observed. This is a good example of long-range Debye
randomness. In figure 3, we compare the direct computation of I(q) from the image with the

chord distribution formalism (Eq. (40)). On the same scale, one observes a good agreement.

4.3
«

CORRELATED
» DISORDER. The small-angle scattering of some porous solids shows

a peak corresponding to the existence of a relatively well defined correlation length. We

discuss how a chord distribution model can succeed or fail to predict the scattering properties
of these correlated structures.

Let us first consider the case of a porous glass (Vycor 7930, lot 742098, Trademark

Coming). The matrix is prepared by leaching a phase separated borosilicate glass and appears
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Fig. 3. Small angle scattering of a porous solid having a random section as the one shown in figure I,

The open circles are the direct computation from the image and the solid line is the calculated scattering
using the chord distribution model (Eq, (40)),
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Fig. 4, Digitized pore network of a very thin section of the porous vycor glass obtained from a

transmission electron micrograph [3],

corresponding to a length of 3001. The two chord distribution functions are shown in

figure 6. A specific mode (a peak) can be observed for each of them, followed by a exponental
tail, Computation of the small-angle scattering from equation (40) is in good agreement with a

direct estimate using image processing (see Fig, 5). Morover, the
«

chord distribution
»

model
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Fig. 5. Small-angle scattering of the porous vycor glass. The open circles are the direct computation

from the image. The solid line is the calculated scattering using the chord distribution model (Eq. (40)).

The full circles are the measured small-angle X scattering. This curve is normalized to the calculated

scattering using equation (40).
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Fig. 6. Pore and mass chord distribution functions calculated from the digitized image 4 (the porous

vycor glass), Full squares : the pore (p) Open circles the solid (m).

fits the experimental correlation peak observed by small-angle X ray scattering. However,

two discrepancies can be observed. The model slightly underestimates the left part of the

correlation peak and exhibits a q~ ~ dependance in the high q regime (above 0. I h~'). For this

material, the experimental asymptotic behaviour is characterized by a power-law dependence
of the form q~ ~.? The resolution of the digitized pore network, typically 15-20 1, is in fact too
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low to handle possible local roughness of the interface [3]. Nevertheless, the hypothesis
conceming the uncorrelation between adjacent chords appears to be acceptable in this

«
correlated

» porous medium.

Another interesting example is displayed in figure 7 showing a thin section of a granular
material, built from smooth and almost convex particles. The mass chord distribution exhibits

a peak around 100 pixel, followed by an exponential tail (see Fig. 8). The pore distribution

Fig. 7. Digitized picture of a section of a granular material, adapted from reference [31]. The pore

network is shown in white. The horizontal bar gives, in pixels, the numerical resolution.
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Fig.

section
of granular porous medium. Full squares : the pore (p) ; Open rcles :

the
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continuously decreases from the origin and very rapidly evolves as a negative exponential
function. This trend recalls some geometrical properties of a random packing of identical hard

spheres. It is known that such a random system exhibits strong correlations spreading on

several shells of coordination. Morover the pore chord distribution is shown to have an

exponential form [28, 29]. In figure 9, we compare the direct computation of I(q) from the

image with the chord distribution formalism (Eq. (40)). The chord model does not fit the

scattering curve correctly and gives negatives values at small q This example shows clearly
the limitation of the chord distributions in predicting the small-angle scattering of a strongly

correlated system.

7 10~

6 0~ °

5 o~

4 0~ °

3 10~ °

'(Q)

2 10~ °

1 1 o~

o i o°

-i i o~

-2 10~

0 0.05 0.1 0,15 0.2

Q(Pixel'~)

Fig. 9. Small angle scattering of a porous solid having a random section as that shown in figure 7. The

open circles are the direct computation from the image and the solid line is the calculated scattering
using the chord distribution model (Eq. (40)).

4.4 COMPLEX STRUCTURES WITH LENGTH SCALE INVARIANCE. Let us first consider the

bidimensional structure shown in figure 10 and known as the diffusion limited aggregate [24,

30]. This is a mass fractal having a fractal dimension of 1.7. The mass chord distribution shows

a maximum followed by an exponential tail (see Fig. I IA). At large distances, the pore chord

distribution exhibits a I/q" form, with
a

between 1.65 and 1.70 (see Fig. I lB). These results

are in a good agreement with analytical expressions and large r expansions of chord

distributions of a mass fractal (See Sect. 2 where d~ I gives the fractal dimension of the

intersection of a 3D mass fractal and a random plane). The DLA shown in figure 10 does not

match any bidimensional cut of a 3D matrix. In that sense, we will focus our attention on the

bulk autocorrelation function. As shown in figure12, the chord model fits the function

l~iq) which was computed directly from the image. Two distinct parts can be observed : a

Porod regime, at high q, running as
q~~ and a self similar regime, at small q, in a good

agreement with the mass fractal dimension of 1.7.

A more complex organization is exhibited in figure 13 where the digitized image of a thin

section of cement (Hydrated calcium silicate) is shown [31]. At large distances, the mass and

pore chord distributions evolve in a similar way (See Fig. 14) and approximately decrease as

I/r"~~ The small-angle scattering computed from equation (40) is shown in figure15. The
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400P

Fig, 10. Bidimensional DLA adapted from reference [30]. The solid is shown in black. The horizontal

bar gives the numerical resolution in pixels.
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Fig. ll, A) The mass chord distribution functions calculated from the digitized image 10 (the 2D

DLA). B) The pore chord distribution functions calculated from the digitized image 10. The solid line

has a slope of 1,7.
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Fig. 12. Computation of the Fourier transform of the fluctuation autocorrelation function
~~(r) in the case of the DLA shown in figure 10. The full squares are the direct computation from the

image, using lD Fourier transform of equation (19). The solid line is the calculated scattering using the

chord distribution model (Eq. 137)).

curve scales as I/q~.~ for small q and exhibits a Porod law above q
=

0,6 pixel~' It can be

observed that the chord distribution model gives a less noisy result than a direct computation
of I(q) from the image, According to the literature [32, 33], the small-angle scattering appears

to be related to a surface fractal having a fractal dimension of 2.7. An the other hand, the

similar algebraic evolution of the two chord distributions can be described by equation (14)

which gives a fractal dimension of 2.65. A different way to check the possibility of a fractal
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Fig. 13. Digitized picture of cement, adapted from reference [31]. The pore network is shown in

white. The horizontal bar gives the numerical resolution in pixels,
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Fig, 14. Pore and mass chord distribution functions calculated from the digitized image 13. Full

squares : the pore (p) Open circles : the solid (m).

surface is to analyse the properties of the hull separating the mass and the pore network, On

the picture, this interfacial region is defined as the set of pixels belonging to the pore (the
mass) network and having one nearest neighbor pixel inside the mass (pore) distribution. This

set can be described by using a density which is one in the interfacial region and 0 everywhere
else. Figure 16 shows the conditional autocorrelation function of this density. This function
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Fig. 15. Small-angle scattering of a porous solid having a random section as that shown in figure 12.

The open circles are the direct computation from the image and the solid line is the calculated scattering
using the chord distribution model (Eq, (40)).
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conditional autocorrelation function calculated from the digitized image shown

in figure13 (see text for definition).

gives the average density of interfacial sites at a given distance r of an origin point located

inside the interfacial region. At large distances, one observes a
I/r°.~~ dependence related to a

fractal dimension (in 3D) of 2.76. This result is in a reasonable agreement with the other two

determinations.
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5. Conclusion.

The former section shows that the analytic form of chord distribution is sensitive to a specific

type of structural disorder. A close inspection of the medium and long-range behaviour of the

mass and pore distributions provides a way to distinguish between long range Debye
randomness, correlated disorder and mass or surface fractal systems. Computation of small-

angle scattering, based on the chord distribution model (Eq. (40)) applies to different types of

random binary media. Obviously, equation (40) fails in predicting the scattering of a strongly
correlated system where the level of disorder is strongly reduced. The example of porous

glass, shown in figure 4, is an interesting intermediate case where correlation and disorder

coexist at the mesoscopic scale.

Quantitative connection between imaging techniques and small-angle scattering is very

appealing, almost for isotropic systems. This comparison provides a way to clarify different

scattering features and to check the likelihood of the image. In this respect, chord distribution

functions are not essential but provide enough information to be a valuable structural tool in

the elaboration of a reliable and understandable model of disordered porous systems.
Application of these distributions is not restricted to small-angle scattering. They play a

central role in some transport processes such as direct energy transfer and Knudsen diffusion

in a porous medium [3, 34, 35]. In this regard, a direct connection between imaging
techniques and small-angle scattering can also be considered as an interesting way to get a

reliable description of these chord distribution functions.
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