
HAL Id: jpa-00246594
https://hal.science/jpa-00246594

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

In situ diffuse scattering of neutrons in alloys and
application to phase diagram determination

R. Caudron, M. Sarfati, M. Barrachin, A. Finel, F. Ducastelle, F. Solal

To cite this version:
R. Caudron, M. Sarfati, M. Barrachin, A. Finel, F. Ducastelle, et al.. In situ diffuse scattering of
neutrons in alloys and application to phase diagram determination. Journal de Physique I, 1992, 2
(6), pp.1145-1171. �10.1051/jp1:1992202�. �jpa-00246594�

https://hal.science/jpa-00246594
https://hal.archives-ouvertes.fr


J. Phys. Ifrance 2 (1992) l145-l171 mNE1992, PAGE l145

Classification

Physics Abstracts

64.60C 61.55H

In situ diffuse scattering of neutrons in alloys and application to

phase diagram determination

R. Caudron (1.2), M. Sarfati (1,2), M. Barrachin (1,2), A. Finel (I), F. Ducastelle(I)
and F. Solal (1,2.3)

(~) ONERA, B-P. 72, 92322 Chitillon Cedex, France

(2) Laboratoire Ldon Brillouin, CEN Saclay, 91191Gifsur Yvette Cedex, France

(3) Present address : Laboratoire de Spectroscopie du Solide, Universit£ de Rennes, 35042

Rennes Cedex, France

(Received 4 February J992, accepted in final form 6 March 1992)

Rksumd. Nous avons effectu6 des mesures de diffusion diffuse de neutrons h diff£rentes

temp6ratures sur des monocristaux de Pd3V, N13V, N12V, N13Cr et N12Cr. Nous avons traits les

donn6es par moindres cart£s, afin d'en extraire les param6tres d'ordre h courte distance. De ces

demiers, nous avons ddduit des interactions de paires effectives jusqu'au quatribme voisin, par

une mdthode de CVM inverse. La mdthode de moindres cart£s est d6tail16e, ainsi que

l'approximation CVM. Le comportement des interactions prdvu par les calculs de structure

61ectronique correspondent globalement h nos r6sultats. Ces demiers nous ont permis de ddduire

les stabilit6s de phases et les temp6ratures de transition des compos£s mesur6s. Pour les compos6s
de structure DO~~, le mod61e h quatre interactions rend bien compte de la situation

expdrimentale. Il n'en est pas de mEme pour les composds de type Pt2Mo, ok le neuv16me voisin

(330) joue un r61e important, ainsi que, peut-Etre, le triplet lin£aire dans la direction

(110).

Abstract. In situ diffuse scattering of neutrons has been performed at various temperatures on

Pd~V, Ni~V, Ni~V, Ni~cr and Ni~cr single crystals. The experimental data have been least

squares fined, in order to obtain short range order parameters, from which effective pairwise
interactions were deduced up to the fourth neighbour. The least squares procedure is explained,

togetller with the inverse CVM method used to extract interactions from tile short range order

parameters. We describe the CVM, which approximates the Ising model linking tile order

parameters to the interactions and the temperature. The trends of the interactions predicted by
tile electronic structure calculations fit generally w1tll tile experimental results. Phase stability and

transition temperatures have been deduced from our results : for the D022 structure, tlley are in

agreement with the experimental situation for the Pt2Mo-type structure, the role of the nintll

neighbour interaction (330) has been shown to be crucial. We also suspect other interactions, as

the triplet in the 1110) direction, to be important for this structure.

I. Introduction.

The study of many phase diagrams relies on the phase stability of substitutional alloys. In the

cases of clustering or superstructures of a given parent lattice, statistical mechanics methods
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are used, which assume that the intemal energy can be expressed as a rapidly convergent sum

of pair and higher order multiplet interactions between the atomic species :

H" £vmn(Pm~~)(Pn~~)+vimn~Pi~~)~Pm~~)~Pn~~)+° (1)

where c is the concentration and p~ are occupation numbers taking the values 0 or I depending

on the species at sites n.

In this framework, phase diagrams should be deducible from these interactions, along with

other properties, such as antiphase boundaries, core structures of the dislocations in ordered

compounds, etc.

A theoretical method to estimate the effective interactions, the inverse method, also called

the Connolly-Williams method, relies on band calculations of the ground state energy for a

series of ordered structures. The calculated energy for each compound is then expressed as a

sum of the effective interactions weighted by the known correlation functions of the

compound. A linear system of equations is obtained, and its inversion yields the interactions.

In this method, the choice of the significant clusters is rather arbitrary and the interactions are

not allowed to vary with the concentration, except through the volume variation.

On the contrary, the General Perturbation Method [1, 2] leads to qualitative arguments
enabling, in particular for transition metals alloys, to select the strongest interactions. This

method is founded on a perturbation development of the order energy, the reference state,

namely the random alloy, being calculated within the CPA (Coherent Potential Approxi-
mation). For alloys of normal metals, it legitimates expansion (I). For transition alloys, this

procedure, within the Tight Binding Approximation, leads to simple and general results :

The pair interactions are dominant versus the other multiplet interactions, I-e- the order

energy can be written :

H= £'J~~~~~~+h£~~ (2)

where the ~'s, related to the p's by p= (1-~)/2, are spin-like operators, taking
I or I values, the J's are the corresponding effective pairwise interactions and h is the

chemical potential difference.

The interactions between the second, third and fourth neighbours are of the same order

of magnitude, and generally small compared to the first neighbour interaction. Further

interactions are still smaller. This hierarchy is govemed by the number of first neighbour
(l10) jumps needed to connect the origin to the neighbour under consideration, with an

advantage to the straight paths (220) fourth neighbours for instance).

This paper is the partial fulfillment of a systematic program whose purpose is to obtain

experimental estimates of the effective interactions, in order to compare them with the

calculated orders of magnitude and trends and, ultimately, to build phase diagrams. Such

estimates could be deduced from the stability of a given compound, but, in this way, only

ranges for the interactions can be obtained, because of the discrete nature ~p
=

0 or I) of the

occupation operators in the ordered state. However, in the disordered state, this constraint is

lifted and, through an adequate thermodynamical treatment, the measurement of the

correlations (short range order parameters) gives a direct access to the effective interactions,

with an accuracy limited only to the experimental error bars.

The diffuse scattering of electrons, X-rays or neutrons yields directly the Fourier transform

of the pair correlation functions. However, except in favourable cases where the high

temperature disordered state can be retained by quench, experiments should be carried out at

high temperatures : this rules out X-rays or electrons because, in these methods, the inelastic
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scattering, which is very strong at high temperatures, cannot be separated out, and also

because the low penetration depth of X-rays or electrons gives a too important weight to the

surface, which easily gets contaminated or perturbed.
In the course of the paper, we successively present :

the criteria used to choose the alloys we have studied

the experimental procedure, with a description of the spectrometer specially built for

our studies

the data reduction procedure, which extracts the short range order parameters from the

experimental data. It includes the least squares fitting with its error propagation, and the

model on which it is based, which takes into account the contribution of the lattice distortions

to the scattered intensity ;

the data analysis, which deduces the effective interactions from the short range order

parameters
the discussion, where our measured interactions are compared with those calculated by

electronic structure models, and where they are used to predict the stability and the

transformation temperatures of the compounds studied. Those properties are compared with

experiment

some brief conclusions.

2. Systems studied.

We chose the Pd-V, Ni-V and Ni-Cr systems. The criteria of our choice, selected in order to

simplify the reduction and the interpretation of the data, were as follows :

Binary systems, in order to obtain directly the pair correlation functions from a single
experiment.

Alloys of transition metals because, in this case, the shorter range of the effective

interactions leaves less parameters to handle and also because the comparison is more

straightforward with the electronic structure calculations developed in our laboratory, which

rely on the tight binding method, better suited to describe the transition metals and alloys.
Non-magnetic alloys, in order to avoid paramagnetic scattering and complications due

to the interplay of magnetic and chemical interactions, although those aspects have been

treated successfully [3].

Systems exhibiting many ordered compounds based on the same underlying lattice as

the disordered phase : this ensures that the interactions are strong enough. However, too

strong interactions must be avoided, in order to leave a large enough temperature range

between the disordering temperature and the melting point. The phase diagrams of our

systems exhibit three ordered phases based on the FCC disordered lattice : Nisv-type, D022>
and Pt~mo-type. The N14Mo compound, which occurs in a similar system [4], pertains to the

same I 1/2 0 family as DO~~ and Pt~mo. The structures corresponding to the concentrations

we have studied are shown in figures la and 16. These compounds undergo a first order

transition towards the disordered phase. The Pt~mo-like structure is present in the three

systems : Ni~V, Pd~V and N12Cr disorder at 920 [5], 970 [6] and 580 "C [7] respectively and

their melting points lie around 300 °C. The two DO~~ compounds Ni~V and Pd3V disorder

at 045 [5] and 815 °C [8], and both melt around 1300 °C. Ni~cr is not known to order,

probably because its transition temperature is so low that the diffusion is not active enough to

let the order set in. Ni~V, which orders around 400 °C [5], is the only observed compound at

this stmchiometry for the systems we have studied.

Size effect as small as possible : the local distortions are then small, and their

contribution to the intensity can be estimated, and corrected, through a first order expansion
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Fig, I.-a) The DO~~ structure the arrows show the periodic antiphase displacements along

(1/2 12/O) transforming the L12 into the D022 structure. b) The Pt2Mo-like structure (solid lines) : the

dashed lines represent the underlying FCC structure.

of an exponential function of the lattice displacements. The atomic volumes of V, Cr, Ni and

Pd are respectively 13.9, 12.0, 10.9 and 14.7 13
a maximum lattice mismatch of 8 fb occurs

for the Ni-V system.
A sufficient contrast between the components of the alloy : the useful signal is the Laue

intensity 4 wc(I c)(bA bB)~ (c : concentration, b's : diffusion lengths of the elements),

which is modulated by the distortion and the short range order. This Laue intensity must be

sufficient compared to the incoherent scattering cross section, which is a weighted average of

the component values. The neutron scattering data for the components of our systems are

displayed in table1 [9, 10]. The properties displayed in table II were deduced for the specific
alloys we have studied, I,e. N12V, N12Cr, Ni~V, Ni~cr and Pd~V, together with those of

vanadium which, because of its isotropic scattering, is the reference element for our

experiments. The maximum value of the ratio of incoherent to Laue scattering occurs for

Ni~cr. It amounts to 4,12 which is not too strong a value.

Previous work has already been performed on the Ni-Cr system, for which the alloys are

easy to quench (the N12Cr phase does not order easily [7]). Schweika et al. [I I] and Sch6nfeld

et al. [12] carried out measurements similar to ours on quenched single crystals containing II

and 20 at,fbcr respectively. An experiment was performed by Vintaykin [13] on a Ni~cr

sample annealed at 500°C, I,e, out of equilibrium as T~=580°C. Except our own

preliminary publications, no work has yet been reported on Ni-V and Pd-V systems.

Table I. Neutron data for the elements.

V cr Pd Ni

Scattering length b (10~12 cm) 0.04 0.35 0.60 1.03

o~'nC°he~en~(bams) 4.78 1.83 0.09 4.8

~ true absorption (barns) 6.74 4.32 9.6 6.48
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Table II. -Neutron data for the alloys studied.

V Pd3V N13V Ni~V N13Cr N12Cr

«'~C°~e~e~~(barns) 4.78 1.263 4.79 4.79 4,14 3.92

Absorption coef, p
(cm-1) 0.85 0.35 1.23 1.26 0.90 0.86

Laue 4 wcA cB(bA bB )~ (bams) 0.96 2.74 3,14 1.115 1.341

~,ncoherent + Mult. Scait. ~~~~~ ~~~~~~ i ~~ i ~~ ~ ~o 4 1~ 3 ~~

We attempted twice to perform an experiment on Pd~V, but the single crystals, which were

perfect in the disordered state at room temperature, became polycrystalli~Je upon heating.

This phenomenon was explained by strains and small twins quenched in the sample : during

heating, under the influence of the strains, the twins are developed in the form of thermal

twins which destroy the single crystal structure [14].

3. Experimental.

3,I SPECTROMETER. Faced to our experimental needs, we were led to build a neutron

spectrometer dedicated to the in situ diffuse scattering of metallic alloys at high temperatures.
This work was performed together with the team of de Novion (Laboratoire des Solides

Irradids (I)). The instrument is located on a cold neutron guide at the Laboratoire Ldon

Brillouin. It is shown schematically in figure 2.

To collect as much information as possible, we avoided the powder method, which washes

out the intrinsic anisotropy of the problem : in our instrument, the sample can be rotated

accurately around its vertical axis, in order to perform experiments on single crystals.
The 2-axis geometry, with a multidetector rather than a position sensitive detector, and an

energy analysis performed by a chopper (3) and a time of flight, has been preferred to a 3 -axis

for the following reasons

The counting rate increase due to the multidetector overcompensates the loss of

intensity due to the chopper : the transmission of the chopper, whose slits are adjustable, is

generally around 10 fb and the spectrometer is equipped with 48 3He detectors (6), spaced

every 2.5°, at 1.5 m of the sample.
With the 2-axis layout, the sample geometry is better defined and it is possible to rotate

the sample without moving the fumace : the background and absorption corrections are

easier and safer.

A major drawback of the 2-axis geometry is that it gives access only to planes of the

reciprocal space passing through the origin, whereas, with a 3-axis spectrometer, any point

can be reached. However, the exploration of two planes of high symmetry treated with a least

squares fit has been shown [15] to be equivalent to a 3-dimensional scan processed by the

Sparks and Bone method [16].

The diffuse scattering due to chemical short range order is periodic in the reciprocal space :

this enables us to separate it from the non-periodic intensity due to the distortions induced by

(') CEA/CEREM/DTM/SESI, Ecole Polytechnique, 91128 Palaiseau Cedex, France.
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Fig. 2. The spectrometer designed for in situ diffuse scattering of neutrons. I : Neutron guide 2 : 002

Pyrolitic graphite monochromator ; 3 : Chopper 4 ; Vacuum vessel (0.8 Meter diameter) 5 Fumace

resistor (Nb 0.I mm thick, 30 mm diameter) 6 3He filled detectors.

the different sizes of the atoms. Therefore, the explored range must include at least the

second Brillouin zone and a short enough incident wavelength is needed : in our instrument, it

can be continuously varied from 5.9 to 2.6 h. At 2.6 I, which is the most frequently used

wavelength, the wavelength accuracy is 3A/A ~10~~ and the flux on the sample is

3 x
10~ n/cm~ without chopper. With the usual setting of the chopper, the flux is reduced to

3 x
llJ~ and the energy resolution is about 5 and 3 mev for phonon annihilation and creation,

respectively.
The sample is located at the center of an evacuated stainless steel vessel (4), in order to

minimize the stray scattering by air. The diameter of this vessel is 80 cm, so that the neutrons

scattered by the entrance window cannot reach the detectors if they are properly collimated.

Thanks to these features, the background is reduced down to 100 counts per hour and per
detector.

The fumace resistor (5), 30 mm in diameter, is made of a 0. I mm thick foil of niobium. A

100 mm diameter screen, made of the same Nb foil, enables us to reach 1300 °C without

injecting too strong a current through the resistor.

3.2 SAMPLE PREPARATION. Single crystal rods of random orientation were grown by the

Bridgeman method, by J.L. Raffestin (ONERA) and by R.Rafel (CNRS Grenoble,
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Cristaltech). If the length of the as~grown crystal was sufficient, two cylinders were spark cut,

with their axis along 11 00) and ii10) (or ii I Ii ), and placed vertically in the spectrometer.

If the crystal was too short, one cylinder only was cut, with its axis along a direction halfway
between (100) and ii10) in the spectrometer, it was tilted by 22.5° towards one or the

opposite direction to scan the (100) or ii10) plane. The various sizes and tilt angles of the

samples are given in table III. The samples were checked by the neutron Laue method, to

ensure that they were single crystals. Their orientations were adjusted to an accuracy of

± 1° by the X-ray Laue method. Their concentrations were measured by electron microprobe :

table III also displays the results of the analysis.

Table III. Characteristics ofthe samples used : diameter, height, tiltangle and concentration.

Pd3V N13V N12V N13Cr N12Cr

Planes 100 l10 100 l10 100 III 100 l10 100 l10

Diameter (mm) 8 6 10 8 5 6.5

Height (mm) 16 10 35 9 6 10

Tilt angle (deg.) 0 45 0 0 0 0 0 0 24 21

V or Cr content 25 25 32 26 36

4. Data reduction.

4, I ELASTIC SELECTION. At the temperatures corresponding to the disordered state of our

samples, strong phonon annihilation processes occur, and an energy analysis in necessary to

reject the corresponding intensity. This is performed by a time-of-flight system. A typical
time-of-flight spectrum is shown in figure 3. As a consequence of the long incident wave

counts

Mi

100 ~s

t

Fig. 3. Time of flight spectrum.
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length, there is no phonon creation, except at the close vicinity of the Bragg peaks : the right,
low energy, sides of the spectra retain the trapezoidal shape typical of the incoming burst. We

integrate the spectra from the right side until they deviate from this shape, and we use the

symmetry to restitute the remaining data.

4.2 CORRECTIONS AND CALIBRATIONS. The scattering cross sections were deduced from

the integrated time of flight spectra, after standard corrections, I-e- :

The instrumental background It
was subtracted from the measured intensity

I~. It is given by :

~~
"

~BN + I~S(°)(lE ~BN)
,

where IE denotes the intensity without sample (empty fumace) : about 100 counts per hour

and per detector, I~~ is the intensity measured on a piece of boron nitride having the same

shape as the sample : the same order of magnitude as IE> Ts(0) is the transmission coefficient

of the sample in the direction of the unscattered beam (2 o
=

0).
The data were corrected for absorption by a linear interpolation of the table published

by [9] for cylindrical samples. This table displays, for a given value of the diffraction angle
2 o, the transmission coefficient T(2 o), calculated by an averaging of the absorption along
all possible paths in the circular section of the sample by the scattering plane. To evaluate the

linear absorption coefficients needed for these calculations, the Laue and incoherent cross

sections were added to the true absorption cross section. The calculated values are displayed
in table II. The maximum error induced by the cylindrical approximation is about 5 fb for the

most tilted sample (Ni~cr, 24°, 6.4 mm diameter).

The incoherent scattering ~'~~, displayed in table II, was subtracted from the measure-

ments, together with the multiple scattering ~"~, estimated by the Blech and Averbach

method [17].
The value of B entering the Debye-Waller correction exp(B)q)~), with )q)

=

4 w sin o/A, can be estimated from the elastic constants of the alloys, through a harmonic

Debye model. However, this model is unrealistic because strong anharmonic processes occur

at the high temperatures of our experiments: B was left as an adjustable parameter
Bo in the least squares procedure described below.

The calibration relies on the scattering, at room temperature, by a vanadium standard

of the same shape as the sample, corrected similarly for background and absorption, but with

a fixed Debye~waller coefficient B~
=

0.0036 i~ [18]. The neutron data used for vanadium

are displayed in table II. The final formula was, in units of the sample Laue scattering
~Laue.

s

S
Ii - II

~~~ Ill [illia~llli~~loi Iii] ~~~
~~~~ ~~'~ ~~~

Most of the symbols in this formula have been defined before, the lower indices s and v

refer to the sample and to the vanadium standard, respectively ;
It is the intensity measured

without sample at room temperature, as for the vanadium standard. ~]~~ and ~f~
are

evaluated in Laue units. The error on an experimental counting I~, calculated on grounds of

Poissonian errors, is given by :

(1 + ~(~~ +
~f~) j~~ ~ ~~

+

~~ ~ ~~
(4~

( J J b)2 ( j f b)2
s s v v
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4.3 CORRECTED RESULTS. Examples of the corrected maps are shown in figures 4a and b.

Except in the neighbourhood of the Bragg points, their symmetries are very close to those of

the reciprocal lattice of the FCC lattice : the smallness of the deviations show that the

distortion effects are not too strong. Because of the imperfections of the elastic selection, the

Bragg peaks are strongly broadened, and elongated along directions which do not agree with

the other symmetries of the maps : the symmetry of the phonon branches, which should be

consistent with those of the reciprocal lattice, is broken by the scattering geometry.

The maxima showing up in the 1110) or ii II ) planes correspond to saddle points in the

i100) planes, situated on the l10 lines.

The intensities should be identical along the 100 and 110 lines, which are common to the

i100) and 1110) maps (only the l10 line is common to the i100) and ill Ii planes) :

discrepancies reaching 4 fb of the total intensity for N13Cr (incoherent scattering included)

can be explained by the small size of the samples, which cannot be accurately aligned in the

beam. Before the fit, correcting factors F~ were applied to the il10)
or ii I I) data, in order

to compensate these discrepancies.

4.4 MODEL. Throughout the paper, the Relative Lattice Units (RLU) [19] will designate
the coordinates hi, h~, h3 of the scattering vector q =

2
w (bj hi + b~ h~ + b3 h3), where the

,

a~ xa3
bs are the unit vectors of the reciprocal space (e.g. bj

=
,

where the
aj (a~xa3)

,

J

*

'

i

y~

Ii

(

~

'

~

j ~

a) b)

Fig. 4. - a) Map of the as measured iffuse
intensities

in the (100) plane for Ni~cr at 560 °C.
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a's are the edges of the FCC unit cell). The following formalism can be found in

reference [20].

The general expression for the intensity scattered by binary alloys at the scattering vector q

is :

N N

~ ~~~
~

i I ~, ~J ~XP [iq(R~ R~ + 8~ 8~)j
,=iJ=i

where : R~ is the position of the I-th site, b~ and bj are the scattering factors for the atoms I and

j, 8~ and 8j are the displacement vectors from the lattice position to the true atom position.
The sums run on the sites of the FCC lattice.

If the
8~~ = 8~ 8~ are small, the exponential can be expanded to first order and the

scattered intensity is split into two additive terms, due respectively to the short range order

and to the lattice distortions :

N N

Ii (q)
=

£ £ b, b~
exp[iq(R~ Rj)]

, i j i

N N

~~d I~(q)
=

£ £ iq
8~~ b~ b~ exp [iq(R~ R~)]

,=I j=1

After separation of the Bragg scattering and thermodynamic averaging, the first term

becomes the standard expression for the intensity due solely to the short range order :

N

I
j
(q )

= 1~~~~ z
a R~ ) exp (I qR~ ) (5

n o

where the a (R~) stand for the usual Warren~cowley short-range order parameters [21]. This

expression is periodic in reciprocal space and linear in the a's.

The second term can be evaluated by taking into account the cubic symmetry of the

problem :

12(~)
"

~/CA CB (bA ~B)~ £ (hi Ylmn + ~2 Y'mn + ~3 Y~mn ) SlEl 2 " (hi + h2 hl + h3 ~ )

f,
m, n

(6)

where f, m, n stand for the coordinates of the vector R~ R~ joining two sites.

This intensity is not a periodic function of q, as it is a linear combination of the components
hi, h~, h3 of q with periodic coefficients. It is linear in the distortion parameters :

~~ ~A ~B
l~

~B ~~ ~~ ~
~A

~~
~~

~

where, for instance (x($$) is the averaged x component of the displacements 8~j between two

A atoms. This expression has been derived from a more complicated one involving also the

average displacements between unlike species (8(~ ). The latter quantity has been eliminated

by noticing the existence of an average lattice [22].

A third term is added by the adjustment procedure for the Debye-Waller factor

exp(- B q )~) : the exponential is developed as ( I AB q (~) exp (- Bo( q ~), Bo being a

trial value adjusted to obtain a small AB. The data are divided by the second factor before the

least squares procedure. I (q) is still multiplied by ( I AB q ~). This factor is converted into
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an additive contribution I (q) AB q(~, which is linear in AB and can therefore be included

in the multilinear least squares fit providing the short-range order and distortion parameters.
If not small, the values for AB can be added to Bo, and the fit can be iterated until AB is really
small.

4.5 SELECTION OF THE RELEVANT DATA. Some data must be discarded, because they are

polluted by quasi-elastic scattering. This circumstance, together with the scanning of only two

unequivalent planes passing through the origin, removes us from the ideal sampling of the

reciprocal space, which would be an evenly spaced three dimensional mesh. The criteria of

our choices rely on the comparison between the experimental maps and the intensity function

reconstructed using relations (5) and (6), with the parameters a and y supplied by the fit.

Around the origin, the phonon intensity is negligible, and the data are valid down to

0.3 h-I
or 0,17 RLU [19], a reasonably low limit due to the extension of unscattered beam.

These data are important because, even in the absence of distortion, no equivalent points can

be reached using the reciprocal space periodicity : in the vicinity of the Bragg peaks, many

data points are spoiled by quasi-elastic scattering.
Around the Bragg points, a simple way to discard unrelevant data points would be to keep

only those whose distance from the Bragg positions is longer than some radius R~. Because of

the strongly asymmetric broadening of the Bragg peaks, R~ must be adjusted to the huge value

of 1.16 h-I
or 0.65 RLU, so that some 600 experimental points are eliminated, on a total of

about 4 000. The distortion parameters are then allowed to take too strong values and the

reconstructed intensity oscillates, leading to unphysical (negative) values in the regions where

too many data have been suppressed. This behaviour is induced by the elimination of a lot of

valid data, which would be useful, as their comparison with those collected around the origin
contributes to the distortion parameters. To avoid these difficulties, we recover the points

contained in the circles of radius R~ if their intensity is lower than a threshold value

I~, if I~ is chosen too low, the points kept in the circles are too scarce, and unphysical
oscillations of the reconstructed intensity occur ; if I~ is too high, the wings of the broadened

Bragg peaks are selected and the reconstructed maps exhibit an anomalously steep increase

around the origin and the Bragg positions. With this procedure, some 400 data points were

recovered among the 600 excluded points in the 0.65 RLU circles centered around the Bragg
peaks.

4.6 LINEAR LEAST SQUARES PROCEDURE. The data were fitted using a multilinear least

squares routine based on the singular value decomposition [23]. Let I~ (q= I...Q,
Q

=

number of experimental points) be the vector of the measured intensities. The problem
is to determine the vector p~ of the parameters (altogether short range order, incoherent

scattering, distortion and linearized Debye-Waller correction) (r= I...R
=

number of

unknown parameters, «Q), the intensity being given in terms of the parameters by

I~ m
Mp

~.

This relation is to be solved in the sense of least squares. The known rectangular
matrix M(Q, R ) is made of Q lines and R columns.

To obtain the decomposition in singular values, the following double unitary transformation

is made, using the unitary matrices u(Q, Q) and w(R,R): A~
=ui~; p~=w$~ and

M
=

uXw + The relation I~ mmp~ is replaced by I~ mXp~, X(Q> R) taking the form :

M
=

[~ j, where all the elements of the sub-block 0 (Q R, R ) are zeros, and the remaining

sub~block D (R, R is diagonal, its elements being the singular values A~.
The routine supplies the singular values and the matrices u and w. The problem is solved by
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f~rst calculating i~
=

u+ I~. The elements of i~ are then multiplied by the inverse singular

values Al to obtain the elements of #~, and finally w is applied.

This method is equivalent to a standard least squares method, but it is more efficient and,

moreover, it gives access to the error bars : as the intensity is nearly constant because of the

strong incoherent component, the uncertainity volume on the vector I~ can be assumed to be

a hypersphere of radius 81~ whose order of magnitude is given by (4); the unitary
transformation u does not change this volume which, in the i~ space, can be assimilated to a

hypercube; the multiplication by Al' stretches it into a known «brick», and the

transformation w is easily applied to obtain the error in the p~ space. The error on the I-th

parameter can be written :

R

3 p(
=

81~ £ (w;~/A~ )

j =1

With a Gaussian superposition of errors, we obtain :

JR8 p(
=

81~ £ (w~~/A~ )~

j

The routine also supplies the residual

1( (J
~

ijaic)2

z
=

~

~ ~
(8)

which is given in table IV and is to be compared with the error for the individual data points
(4), generally around 0,1.

4.7 DISTORTIONS AND SHORT RANGE ORDER PARAMETERS. The (100) and (l10)
or

(Ill) planes were fitted together. The number of short-range order and distortion

parameters was increased until the introduction of further parameters did not modify the

previous ones. The short-range order parameters are displayed in table IV, with their error

bars, for all alloys at all temperatures. This table also displays the residual £ given by (8), the

final Debye-Waller coefficient B and the correcting factor F~ mentioned in section 4.3,

needed to compensate the discrepancies between the (100) plane and the other planes. The

distortion parameters are shown in table V, only for Ni~V at 955 °C, for which they are the

strongest. Examples of maps reconstructed with these parameters are shown in figures 5a and

b : they faithfully reproduce the raw data of figures 4a and b.

As expected, for a given alloy, the order parameters decrease with increasing temperature.
The parameter ao should be equal to unity because it represents the scattering averaged in

the first Brillouin zone. The discrepancies happen to be large, especially for Ni~V and N13Cr.

The latter sample is tiny, and a small misalignment can attenuate significantly the signal. This

explanation is not valid for the other samples. The N12Cr behaviour seems correct, but the

discrepancies for N12V remain to be explained.
Table V shows that the lattice distortion parameters for Ni~V are generally small. They

behave similarly, but they are smaller for all the other alloys we have investigated. The most

prominent one is yoo~= 0.03. Using formula (7) and noticing that the y's are mostly
sensitive to the nickel displacements, we can estimate (x#j~~) ~-2.4 x10~~ times the

lattice parameter. The order of magnitude of the Cr~cr displacements should be similar. The
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Table V. Lattice distortion parameters for Ni~V at 955 °C.

imn Yimn

101 0.0162(7)

200 0.031(2)

l12 0.0086(5)

211 0.0015(6)

202 0.012(1)

103 0.0052(7)

301 0.0010(7)

222 0.0080(8)

123 0.0042(4)

213 0.0052(5)

312 0.0037(4)

400 0.008(2)

l14 0.0006(4)

303 0.0015(6)

411 0.0026(5)

sign of this quantity means that, on the average, two nickel atoms in second neighbour
position are closer to one another than the two undisplaced positions of the average lattice :

this is consistent with the small size of the nickel atoms compared to the other components of

the alloys. The magnitude of this quantity tells us that, as q is at most 2.5 RLU [19], the

product 2 wq 8~j is smaller than 0.04, and the expansion leadint to (6) is validated.

The Debye~willer parameters are stronger than expected from the harmonic theory : this

is not surprising, as the anharmonic effects are strong and a static Debye-Waller component

may be important.
The (100) maps reconstructed with the short range parameters only are shown in

figures 6a, b, c, d and e.

For nearly all the samples, the maxima occur at the I 1/2 0 special points, located in the

(100) planes. The only exception is Pd3V, for which the maxima occur at the 100 special
points. This location is surprising as Pd3V orders on the D022 structure, which shows

superstructure peaks at I1/2 0 positions : we will show later on that this contradiction is
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Fig. 5. a) Map of the diffuse intensities in the ( loo) plane for N13Cr at 560 °C, reconstructed with

the fitted short-range order and distortion parameters. Laue units. b) Map of the diffuse intensities in

the 1110) plane for N13Cr at 560 °C, reconstructed with the fined short-range order and distortion

parameters. Laue units.

explained by a peculiar set of interactions. The same problem apparently arises for the A~B
composition for which the superstructure peaks show up at the 2/3 2/3 0 positions, but the
situation is not the same because, at this composition, no structure can be built with I 1/2 0

concentration waves.

5. Data analysis : effective interactions.

We have obtained the correlation functions (a's) in the disordered state. Our purpose is to

deduce the interactions (J's), which are linked to the (a's) by the Ising Hamiltonian (2). We

will first explain the methods to solve (2). But this method will yield the a's as functions of the

J's we will then explain the reversing method used to obtain the J's as functions of the

a's and we will explicit the error propagation. The results and some comments will finally be

given.

5.I SOLVING THE ISING HAMILTONIAN : THE CLUSTER VARIATION METHOD. The CUM

is now recognized as one of the most precise techniques for solving the Ising model when no

exact solution is available. Since its first derivation by Kikuchi [24], many review articles have

been written on the CVM formalism, see e,g. [25, 2]. Hence, we will not give any detail, but

rather try to illustrate the basic ideas which underline the theory.
The equilibrium properties at finite temperature are govemed by the equilibrium free

energy :

F
=

U TS
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Fig. 6. a) Short-range order intensities in the (100)
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coo Cl 002 Laue units.
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where U, the intemal energy, is the thermodynamic average of the Hamiltonian H, and S is

the entropy. More precisely :

U= £p(C)H(C)
c

S
=

-k£p(C)Logp(C)
c

where p(C ), the probability of the configuration C, is given by :

p (C )
=

exp (- pH (C ))/Z ; Z
=

£ exp(- pH (C ))

c

Naturally, the problem is that we do not know how to compute p (C ) in the thermodynamic
limit of an infinite system. The basic ingredient of any mean field theory is then to

approximate these probabilities.
The well-known Bragg-Williams approximation (or the standard mean-field theory)

consists in factorizing p (C ) on the site probabilities :

p(c)
=

flp(~n)

where p(~~) is the probability function of site n. In other words, the total entropy S is

replaced by the sum of site entropies. Due to the variational properties of the free energy, the

functions p(~~) are subsequently determined through a global minimization of the

approximate free energy functional. Obviously, this approach neglects the correlations

between site occupancies.

The next approximation consists into re-introducing the pair correlations. More precisely,
the probability function p (C) is now factorized on the first neighbour pair probabilities :

P (C )
#

fl p (~n ~m)/ fl P~~ ~(~n)

where the denominator has been introduced in order to correct the pair overlap. Indeed, if p
is the connectivity of the lattice, each site belongs to p first neighbour pairs and then, in a way,
is counted p times in the numerator. This overcounting is suppressed by the denominator and

it is easily verified that this factorization scheme is exact in the high temperature limit.

The CVM is just a generalization of the above procedure to any given basic cluster
a. For a

given choice of a, the approximate probability reads :

p~~~(c)
=

fl *p(~
~

where the asterix means that the product runs over the subcluster p included in at least one

cluster of type a. As above, the coefficients up are determined in such a way that they

suppress the overcounting due to the cluster overlap (for the basic cluster a, the coefficient

a~ is of course equal to one). The equilibrium free energy is finally obtained by minimizing the

CVM functional with respect to the cluster probabilities p~.

Obviously, the quality of the CVM relies on the choice of the basic cluster which can, and

must, be adapted to the Hamiltonian of the problem. In the present case, we need pair
interactions up to the fourth shell on the FCC lattice. The smallest clusters to be used in such a

case are the face-centered cube itself, which contains 14 points, and, simultaneously, the 13~

JOURNAL DE PHYS,QUE i -T. 2, N. 6, JUNE ,992 43
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point cluster formed by one site surrounded by its twelve first neighbours (see Fig. 7j. This

approximation is referred to as the 13-14-point approximation.

,

'

t t

t~ ~~
t

,

~
t

#
'

13 point 14 point
cuboctahedron fcc cube

Fig. 7. Basic cluster used for the CVM approximation.

5.2 REVERSING THE RELATIONSHIP. -Whatever the method used to solve the Ising
Hamiltonian (2), the a's will present themselves as non-linear functions of the J's, To reverse

this relationship, we use a trial and error method, similar to the Newton method used to find

the zeros of one-dimensional functions.

The J's and the a's can be considered as vectors, denoted J and a respectively. A first

estimate of J can be used to calculate a in order to compare it to its experimental value

da~
a~. At the same stage, the matrix A of the partial denvatives ~ is also calculated. The J

d

increment J~~~-J~id is obtained by solving the linear system a~ a =

A (J~~~-J~id) and the

process is iterated until it converges.

5.3 ERROR PROPAGATION. The error propagation is given by a local linearization of the

relationship between the J's and the a's, which is summarized by the A matrix : the error for

the effective interaction ( is given by

JRdI,
=

£ (A j 8 a~ )~

j=1

The A matrix can be diagonalized. Assuming identical error bars on the a's (spherical

error volume), the eigenvector associated with the smallest eigenvalue points towards the

direction of the most accurately determined combination of the interactions, the direction of

the loosely determined combination being associated with the strongest eigenvalue. We

measure the conditioning by the ratio C of the maximal to minimal eigenvalues. If C is strong,
the system is badly conditioned, I,e, the errors on all interactions will be substantial, except
for some linear combination of them. This situation is independent of the experimental data :

it reflects only the local behaviour of the relationship between the J's and the a's.

5.4 RESULTS AND COMMENTS. As, in our case, the CVM cart yield interactions up to the

fourth neighbour only, we used only four short-range order parameters.
Table VI displays the values found for the interactions obtained, their errors and the

C parameters, together with the antiphase energy f
=

J~ 4 J3 + 4 J4 which, for the

A3B composition, is proportional to the energy needed to shift one half of the crystal by a

(1/2 1/2 0) vector located in the (100) separating plane. This energy is relevant because, in a
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Table VI. Effective interactions obtained by inverse CVM from the short range order

parameters displayed in table IV. The combination f =J~- 4J~ + 4J~ is also displayed
(Units : mev) ; same notation of error bars as in table IV. The C ratio is a measure of the

conditioning.

Pd~V Ni~V Ni~V Ni~V Ni~V Ni~V N13Cr N13Cr N12Cr N12Cr

°C) 100 °C) (955 °C) (560 °C) (720 °C) (650 °C) (800 °C)

J, 45 35(3) 24(5) 25(6) 24(3) 26(6) 10.3(6) 10.9(2) 12.9(5) 12.5(7)

16(3) 17(3) 17(2) 1913)

J~ IA 12(2) 21(4) 17(4) 15(2) 9(5) 6.2(3) 5.5(2) 3.0(5) 2.8(6)

18(7) 15(7) 13(3) 9(6)

J3 5.7 3(2) 1(2) 0(3) 1(1) 0(3) 1.5(3) 1,1(2) 0.4(2) 1.0(3)

2.4(1.5) 2(2) 2(1) 1(2)

J4 6.6 411) 12(3) l14) 9(2) 8(4) 4.3(2) 4.0(1) 2.8(3) 2.4(4)

8(5) 8(5) 6(2) 5(4)

f 16(5) 31(5) 27(5) 25(5) 23(5) 7(5) 15(5) 7(3) 3(3)

25(5) 24(5) 20(5) 18(5)

C 30 13 15 13 13 5 3 9 7

model limited to four interactions, it is the energy difference per atom between the

L12 and DO
22

ordered states and also because, in the Bragg-Williams approximation, the

short-range order maxima are located at 1/12 0 or 100 points if f is positive or negative.
The deviations of ao from unity (Sect. 4.7) must be taken into account : if they arise from a

bad estimate of the incoherent scattering, the error is additive and the a's must be used

without correction; if they are due to errors in the sample size or in the absorption
coefficient, the a's must be corrected by multiplying the

a s by the ratio of the expected

average intensity ~~~~ +
~"~

+ l to its experimental value. For Ni~cr and N13V, this ratio is

close to unity, the two procedures yield nearly the same interactions and we give only one

result. For N13Cr, a volume error is highly probable, and we give only the set of interactions

deduced from the corrected a's. For N12V, we give both sets of interactions calculated with

the corrected and non-corrected a's : the truth should lie between the two results.

The antiphase energy is positive for all the alloys studied. This is consistent with the

stability of D022 at the A3B composition. These positive values are not driven by the

J2, which are generally negative, but rather by a positive J4 or a negative J3. From the

electronic structure standpoint, J4 (indices 022) can be expected to be stronger than

J~ and J3, because it involves two aligned 011 first neighbour jumps.
For Pd3V, except for the antiphase energy f, the error bars are very large. This is due to

the very large value of C, which is correlated with the low value of f. Indeed, with the set of

interactions found experimentally, the system, at low temperatures, hesitates between two

ordered structures which have nearly the same energy, but very different values of the

a's. If this remains true in the disordered state, small variations of the interactions should

induce large variations of the order parameters. Thus, for given error bars on the

a s, we obtain a very accurate determination of f. The opposite situation will prevail if, in the

space spanned by the four J interactions, we move into planes for which f is constant. In this

case, the
a s will hardly be modified. Hence, for given error bars on the a's the related
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individual interactions will be loosely determined. The eigenvalue of A in the f direction is

small and the other eigenvalues are large : a large C ratio is expected.
Except for N13V and Pd3V, for which we lack information, the thermal variation of the

interactions remain within the error bars : this implies that our experimental procedure is

sound, and that the short-range order physics is well described by our truncated interaction

model. However, a small systematic increase of J~ with increasing temperature shows up for

Ni~V.
Whereas the interactions should be temperature independent, because the electronic

structure is not sensitive to the temperature, they are expected to change with the

concentration, which drives the electron per atom ratio. It is the case for the Ni-Cr system, as

shown in figure 8, where we have plotted, as a function of the Cr concentration, the

interactions found for our alloys together with the results of experiments performed by other

authors on quenched samples containing 11 and 20 at,fb Cr [I Ii, [12]. Large discrepancies
between our results and those of other authors would have led us to doubt of either set of

results : it is not so, though significant variations are obvious.

Similarly, except for J4, the interactions decrease, in absolute value, from N13V to Ni~V, in

qualitative agreement with the decrease of the transition temperature. No previous
experimental results were available for the Ni-V system, probably because of the impossibility

to quench the disordered state in a whole range of concentrations.

The interaction Jj between first neighbours is found to decrease from N13V to N13Cr. From

Ni~V to Ni~cr, it increases : these points will be discussed later on.

20
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Fig. 8. Comparison, for the Ni-Cr system, of our interatomic pair interactions (25 and 33 9b Cr), with

the values found by other authors for II 9b [10] and 20 9b [1Il.
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6. Discussion.

We first discuss the specific case of the 100 locations of the diffuse scattering for Pd3V. Then

we compare the interactions we have measured with the available electronic structure

calculations. In the present state of the calculations, we can only expect qualitative
comparisons, I,e. trends and orders of magnitude. In a second step, we submit our results to a

more stringent test : we introduce them into models of statistical physics, and the predictions
of these models are compared with other types of experimental results, such as phase stability
and transition temperatures.

6. I Pd~V : BREAKDOWN OF THE MEAN FIELD APPROXIMATION. First, let us briefly discuss

the case of Pd3V and its comparison with Ni~V, which has already been explained elsewhere

[26]. In a 2-interaction model (Jj and J~), the DO~~ structure, which is the ground state of

both alloys, is stabilized for Jj
~

0 and 0 <J~/Jj
<

1/2, whereas Ll~ would be stabilized for

J~
<

0. In the mean-field approximation, the regime of J~
~

0 corresponds to diffuse intensity
maxima located at I 1/2 0 positions, whereas the regime of J~

<
0 leads to maxima located at

0 0 [27] : the mean-field theory leads to a correct prediction for N13V, but not for Pd3V. To

explain this discrepancy, we first performed CVM calculations, in the tetrahedron-octahedron

(T.O.) approximation, including the effective interactions Jj and J~. The resulting phase
diagram shows a narrow region (J~/Jj

<
0.08), where the DO~~ structure disorders towards a

short range ordered FCC phase with diffuse maxima located at the 100 positions-100 regime,
corresponding to the Pd3V situation, whereas the N13V pertains to the I1/20 regime

(J~/Jj ~0.08) where the D022 structure disorders towards a I1/20 disordered state.

Provided that the first neighbour interaction is dominant, this phase diagram should remain

qualitatively valid upon changing J~ into the antiphase energy f. The values of f/Jj are 0.05

for Pd3V and 0.6 for Ni~V : the critical value of 0.08, is in between, in agreement with the

phase diagram we just mentioned, based on a Jj and J~ model, with J~ replaced by
f.

6.2. COMPARISON WITH THE ELECTRONIC STRUCTURE CALCULATIONS. We first compare

the trends suggested by our results with those calculated by the available models. This test is,

to us, the most significant physically. We then try to compare the measured orders of

magnitude with the calculated values.

6.2, I Trends. The concentration variation of the interactions for Pd-V and Ni-Cr systems
has been calculated by the tight binding approximation (+ coherent potential approxi~
mation + generalized perturbation method [28], [29] or + DCA [30], which yields equivalent
results), and the KKR approximation (also + CPA + GPM) [31], [32]. Thanks to the physical
insight provided by the tight binding approximation, the concentration trends obtained by this

method (but not the orders of magnitude) can be extended to Ni-V. For the same reasons,

only this model can give access to the dependence of the effective interactions on the atomic

species.
Figures 9 and 10, extracted from references [28] and [30] summarize, with some simple

calculations added, the results obtained within the tight binding approximation on Pd-V like

systems. They both show a decrease of Jj with increasing vanadium concentration. This is

consistent with our results on Ni-V. For Ni~cr, only [28] gives information in the range we

have studied. The calculated trend, I,e, a decrease from N13Cr to Ni~cr, occurs to be opposite

to the experimental one. This discrepancy can be explained by non~diagonal disorder, not

taken into account, by the size effect, which is stronger for Ni-Cr than for Pd-V, or by an

overestimated value of the diagonal disorder parameter 8
=

(e~-s~)/W: indeed, a
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Fig. 9. Interaction Ji calculated by the TB/CPA/GPM approximation. Jj is plotted as a function of the

concentration c of the element A in B. The parameters are the electronic concentration N~ of the B

element (which, for N~
=

9, is Ni or Pd) ; the difference AN of electronic concentration between B and

A (if A is V or Cr, AN
=

5 or 4 respectively) and tile difference 8 of atomic energy levels between the

two components, in units of the bandwidth [28]. The dashed vertical lines represent the alloys we have

measured (arbitrary units).

Fig. lo. Concentration variation of the interactions J,, J~, J~ and J4 calculated by the TB/Direct

Configurational Averaging formalism [30]. Concentration I and 0 represent pure Pd or V, respectively.
The dashed vertical line represents Pd3V.

decrease of this parameter tends to shift the minimum of the Jj curve for Cr towards the low

vanadium concentrations. The general decrease of Jj from the Ni-V to the Ni-Cr system is also

correctly predicted by [32] although the decrease is far too strong. An overestimated

8 can also account for this discrepancy.
For Pd3V, the tight binding models predict an increase of the antiphase energy

f with the vanadium concentration, which is consistent with the observation of a diffuse

scattering located at 100 for 18 at,fb V and at I 1/2 0 for 29 fb [6] (electron microscopy on

quenched samples). The values of f are not accurate enough for N13V and Ni~V to extract a

valid trend for the Ni-V system.
The KKR calculation performed on the Pd-V system [31] is doubtful as it predicts a

decrease of f with the vanadium concentration. On the other hand, the trends of

Jj and f predicted by the KKR calculation performed on the Ni-Cr system are in agreement
with the experiments, if the combined accuracy of our results and those of Sch6nfeld [12] is

sufficient to extract experimental trends for f.

6.2.2 Orders of magnitude. For Pd3V, the only system for which tight binding calculations

exist, the bad conditioning of the reversing procedure only enables us to establish a

comparison for f, which is correctly predicted by both tight binding calculations [29], [30].
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Using first neighbour jumps arguments the tight binding model is generally expected to

yield, and indeed yields, J~ much lower than Jj (about 10 fb) and J4 a little bit stronger than

J~. The experimental results, and the KKR calculations yield values of J~ hardly smaller, in

absolute value, than Jj. May be this is due to the neglect, by the TB model, of direct paths
between second neighbours, which should be important for J~.

For the Ni-Cr system, the interactions J~, J3 and J4 (hence f) calculated by KKR [32] are

about twice the experimental values. The calculated Jj is negative, which is unphysical, as it

would lead to phase separation. The authors explain this discrepancy by charge transfer

effects, or a high sensitivity to the Fermi energy. J~ and J4, considered as functions of the band

filling, are nearly minimal. Hence, they are not too sensitive to the Fermi energy.

For N13V, the antiphase energy has been calculated directly by comparing the energies of

the DO~~ and the L12 compounds, obtained by band structure calculations [33-35]. All the

calculations yield f m100 mev, which is much stronger than the experimental value. This

discrepancy could be explained by the distortion included in the calculations for the ordered

structures : these distortions are not present in the disordered phase, because of the cubic

symmetry. However, these distortions are weak (lfb for N13V, 2 fb for N12V). In

reference [33], interactions calculated by the inversion method were used to build a phase
diagram. These interactions are not displayed explicitly in the paper. We extracted them by
inversion of a 7 x 7 linear system, and we obtained Jj

m
40 mev, which is in agreement with

our results.

6.3 PREDICTIONS BASED ON THE MEASURED INTERACTIONS. -From the interactions we

have obtained, two types of information can be deduced about the phase diagrams : the

transition temperatures of the compounds we have studied and their phase stability.

6.3,I Phase stability. At zero temperature, the phase stability of a compound of

concentration c results of the comparison of its energy E with the energy E2 of a two-phase

state, made of two neighbouring compounds, in such proportions that the average

concentration is the same as the homogeneous compound. If the concentrations of the

neighbouring compounds are c~ and c~, and their energy E~ and E~, the energy of the two-

phase state can be written :

c~-c c-c~
E~= E~+ E~.

cR-c~ cR-c~

Similarly to (2), the energy of an ordered compound can be written :

4

E= m~x,(,I
,=i

where ( is the interaction for the I-th shell, m~ its multiplicity [36] and xi its correlation

function.

The multiplicities and pair correlation functions up to the ninth shell are given in table VII

for the phases built on I 1/2 0 concentration waves. Also shown are the correlation functions

and multiplicities fot the linear triplet along the ii10) direction.

As a first step, we assume the interactions to be concentration independent. E E~ can

then be easily calculated as multilinear functions of the interactions : for the decomposition of

Pt2Mo into A2B2 and Au5Mn2 (see Tab. VII), in the framework of the four-interaction

model, it depends only on J~ and J4 : E E~
=

4/9(2 J~ + J4).
For the decomposition of D022 into Au~Mn2 and N14Mo, the result is less simple:

E E~
=

1/3 Jj + 2/3 $ 2/3 J3 + 4/3 J4.
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Table VII. Multiplicities and correlation functions for some ordered compounds based on

I 1/2 0 concentrations waves.

20 fb 25 fb 28.6 fb 33.3 fb 50 fb

Shell N° Index Mult. N14Mo DO~~ Au~mn~ Pt~mo A~B~

011 6 1/5 0 1/21 1/9 1/3

2 002 3 7/15 2/3 3/7 1/9 1/3

3 l12 12 7/15 1/3 1/3 1/3 1/3

4 022 6 1/5 1/3 1/21 1/9 1/3

5 013 12 1/3 0 1/21 1/9 1/3

6 222 4 1/5 0 II? 1/3

7 123 24 7/15 1/3 2/7 1/9 1/3

8 004 3 7/15 3/7 1/9

9 033 6 1/5 0 II? I 1/3

T 6 1/5 1/6 1/3 7/9 0

Using the interactions measured for the compounds themselves, this simple analysis
predicts the DO~~ compounds N13Cr, N13V and Pd3V to be stable, in agreement with the

known phase diagrams, whereas Ni~cr and Ni~V are not found stable, in contradiction with

the experimental evidence. Taking into account the concentration variation of the interac-

tions, by interpolation or extrapolation [38] does not change these conclusions : with the four

interactions extracted from our data, the instability of the Pt2Mo compounds remains to be

explained.

6.3.2 Transition temperatures. We have compared the experimental transition tempera-

tures with the theoretical estimates obtained from our sets of interactions : by a Monte Carlo

method, we obtain 600 °C for Pd3V instead of 815 °C experimentally for Ni~V, we obtain

985 °C instead of 045 °C and, for N13Cr, the transition temperature is lower than 150 °C : all

these results are consistent with the experimental situation. But, for the Pt2Mo compounds,

we find again strong discrepancies between the four-interaction model and the experiment :

after a slight modification of the interactions in order to stabilize the ordered structures, the

Monte Carlo simulation yields 350 K for the ordering temperature of Ni~cr instead of the

experimental value of 850 K for N12V, we find 340 K instead of 193 K. These results are

still more puzzling than the instability of the compounds, which could be explained by strong

concentration dependences of the interactions.

6.3.3 Limitations of the four-interaction model. The transition temperatures of the Pt~mo
compounds and their stabilities are not correctly predicted by the four-interaction model,
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although Monte Carlo estimates of the diffuse intensity are in good agreement with the

experimental maps. We must conclude that this limited range model describes the disordered

state correctly, but fails to account for the energy of the long-range order state and,

consequently, for its stability and its transition temperature. This can happen if we have

neglected some interactions which are important for the Pt~mo structure, but not for the

short-range order state. A look at table VII convinces us that this is indeed the case for the

ninth neighbour (330), the coordination function of which is unity. This situation occurs for

other shells of other structures, but what is specific to Pt~mo is that the multiplicity for the

ninth shell is larger, and that the ninth neighbours can be reached by three collinear nearest

neighbour jumps, which is important from the electronic structure viewpoint. However, to

account for the whole discrepancy between the four-interaction model and the experiment,
the ninth shell interaction should amount to some 4 mev, for Ni~cr, and 6 for Ni~V
which seems unrealistic, compared to the I mev order of magnitude found by Schweika et

al. [ll] for Nio_~~cro.ii and by Sch6nfeld et al. [12] for Nio_socro_~o. We suspect another

interaction to be important, namely the one which corresponds to the linear triplet along the

ii IO) direction. This triplet should also be favoured by tight binding arguments, as it can be

described by first collinear neighbour jumps [39].

7. Conclusions.

We have presented a rather complete experimental panel of effective pair interactions for

several transition metal alloys. For a given system, we have estimated the concentration

dependence of the interactions and, at constant concentration, the effect of the nature of the

alloy components has been evaluated. A wealth of experimental data now exists, which

enables us to test theoretical work.

The trends predicted by the tight binding-based calculations fit reasonably with the

experimental results, except for the comparison between N13Cr and N12Cr. The concentration

trends obtained by the KKR-based calculations are in agreement with the experiment for the

Ni-Cr system, but in conflict for the Pd-V system. However, to obtain a more detailed

comparison, the existing theories must be adapted to the very cases we have studied : for

instance, band width and size effect variations must be taken into account to follow the effects

on the Ni-V and Ni-Cr systems. Some steps are presently made in this direction.

Predictions have been deduced from our results. For the DO~~ structure, the phase
stability and the transition temperatures are in agreement with the experimental situation. On

the other hand, the role of the ninth neighbour interaction (330) has been shown to be crucial

for the specific case of the Pt~mo structure. Simple tight binding arguments suggest that this

interaction can be sizeable. We also suspect other interactions, such as the triplet in the

ill 0) direction, to be important for this structure. The diffuse scattering is not very sensitive

to these interactions, but we are currently trying to extract them from our data by an inverse

Monte Carlo method.
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