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Abstract. We study the equilibrium positions of a long prismatic particle of convex cross-

section at a liquidfiiquid interface in the gravity-free situation. We show in particular that : I) in a

stable equilibrium position the contact angles at both three-phase lines obey the Young equation,
it) for any convex cross-section there are at least four positions for which contact angles obey the

Young equation. Moreover, the stability of these positions is investigated.

1. Equilibrium position.

In the gravity-free situation, a spherical particle 3 will be embedded in a planar [Ii interface

between a liquid I and a liquid 2 provided that the following condition is fulfilled [2] :

~~~ ~~~
<

l (1)
1'12

(where the y~j's are the interracial tensions characterizing the system). The position of the

particle at the interface then is such that the contact angle between the tangents of surfaces 1-2

and 2-3 at the three-phase line is the Young angle 9~ defined by the Young equation (Fig, I) :

CDS 9~ =

~'~~ °'23

~'~~
(2)

Our aim is to understand how these specific properties of spherical particles may be

generalized to particles of arbitrary shape. For sake of simplicity, we consider long prismatic
particles of convex cross-section (Fig. 2). The problem then amounts to a purely 2-

(*) URA 792 du CNRS.
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Fig. 1. A spherical panicle at a liquid-liquid ulterface.

~v

Fig. 2. A prismatic panicle with a convex cross-section 8. We study the equilibrium of this particle at

a liquid-liquid interface, the generating lines being parallel to the interface.

dimensional problem whose geometry is pictured in figure 3. The cross-section of the solid is a

plane region bounded by a simple, closed, convex curve 8 ; we shall assume henceforth, in

addition, that 8 is smooth of class at least C~ and has strictly positive curvature (I,e. finite

radius of curvature) everywhere. Since we assume that there are no gravity effects, the liquid-
fluid interface is flat and represented by a straight line y =

ax + b in the plane of the figure ; it

intercepts 8 at two points (xi, yi) and (x~, y~).
The energy W of the system is given by :

~
" Y13 ~13 + l'23 ~23 Y12 ~12 (3)

where fi~ and f~~ are the length of contact between the solid and the liquids and

fi~ is the length of the intercept of the liquid-liquid interface by the solid. W is a function of

both variables a and b. The solid particle is in a stable equilibrium at the interface when W is

minimum, which implies :

f=f=0.
(4)
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Fig. 3. Convex prismatic particle trapped at a liquid-liquid interface. We rotate the interface (Eq.

y = ax + b) while keeping the solid fixed.

Note that condition (4) is necessary but not sufficient to ensure a stable equilibrium position :

we come back to this point in section 3. From (3) and (4) one easily obtains :

Ti u
=

T~ u
=

"~~ "~~
(5)

Y12

where Ti and T~ are the unitary vectors tangent to the solid 8 at the triple points
(xi, yi) and (x~, y~) (Fig. 3) U is the unitary vector carried by the liquidfiiquid interface.

Equation (5) is meaningful only when condition (I) is satisfied ; we finally have (using (2))

TiU=T~.U=cos 9~. (6)

We therefore conclude that if a convex prismatic particle is trapped in a stable equilibrium
position at a liquidfliquid interface, then the Young relation is fulfilled at both triple points, as

expected from a local force balance.

2. Existence of Young positions.

We now address the following problem : for a given Young angle 9~ and a given convex curve

8, is it always possible to find a position which satisfies conditions (6) ? (Such a position will

hereafter be called a « Young position ».) The answer may be obtained by studying the

construction of figure 4. We consider a 2-dimensional cone with an angle
ar

2 9~ (at the

2

Fig. 4. Geometrical construction used to derive the existence of Young positions.
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vertex C). The convex curve 8 is then positioned inside the cone as indicated. Let A and B be

the points where the cone and 8 are tangent and Jt the area delimited by the triangle (A, B, C)
and the curve 8 (shaded area). Since after a complete rotation of 8 inside the cone the area A

recovers its initial value, it has at least two extrema. We will now show that when A is

extremal, the triangle (A, B, C) is isosceles (the angles in A and B being equal). Let us

consider a position where A is extremum and rotate the curve 8 (or equivalently the cone) by

an infinitesimally small angle a
(Fig. 5). Since Jt is extremal the hatched areas must be equal,

which yields (to the first order in a) :

«die
=

«d(c (?)

3

Fig. 5. A small rotation (by an angle a) of the cone starting from a position correspondblg to an

extremum of A.

or

dAC
"

dBC (8)

(where dAc is the distance between A and C, etc.).
The triangle (A, B, C) is thus isosceles. Since by construction the angle opposite side AB is

ar
2 9~, conditions (6) are satisfied at points A and B. We therefore conclude that positions

for which the area A is extremal are Young positions (and vice versa). Since the area A has at

least two extrema, there are at least two Young positions.
We will now refine the counting of the Young positions and show that in fact there are at

least four such positions. We represent each point of the Euclidean plane by complex numbers

z = x + iy, where (x, y) are the Cartesian rectangular coordinates accordingly, we orient

the plane by specifying that positive angles run counterclockwise. It is convenient to

parametrize 8 by the direction angle 9 of the outward, unit normal vector, so that the unit

tangent vector to 8 with a positive orientation is represented by the complex variable

I e~°, and -e~° is the unit inward nornlal. We introduce the support function u(9)
=

Re (e~ ~° z(9 ) ), whose value for each 9 expresses the oriented distance of the origin from the

tangent line to 8 at the point represented by 9. Since the unit tangent vector to 8 in the
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counterclockwise direction at z(9 ) is represented by I e'~, the tangent line itself, denoted by

To is described by the implicit equation :

0
=

Re (e~ ~°(z
z (9 )))

=

Re (z e~ ~° ) u (9 ) (9)

thus 8 is uniquely deternlined by the support function u ( 9 ), since it is the envelope of the one-

parameter family of lines To defined by (9). Conversely, given any smooth, real valued

function u (9 ) of 9, periodic with period 2 ar, the envelope of the family of lines defined by (9)
is the curve represented parametrically by z(9), where

z(9)
=

e'°(u(9)
+ iu'(9)) (10)

the latter is a regular, smooth, convex curve, oriented counterclockwise with respect to

increasing 9, if and only if u(9) satisfies everywhere the inequality

)
=

u"(o) + u(o) ~o. (ii)

The function u"(9 ) + u(9 represents at the same time the radius of curvature R (9 ) of the

resulting curve.

Given the Young angle 9~, we shall associate to each value of 9 the two points
z(9 + 9~) and z(9 9~) of 8. From these two points, we draw half-lines, respectively
L~ and L_, outward from 8, and parallel to the tangent line at z(9) : the half-lines,

parametrized by a real s m 0, are given respectively by (Fig. 6) :

L~ z = z (9 + 9~) + is e'°
; L_ z = z (9 9~) is e'° (12)

1

L+ &0+o~) ~~~

2

1l~0-0j
3 z18-0~)

L-

Fig. 6. Definition of L~, L_ and A~(@ ) (@~ =
45°).

The distance between the parallel lines containing L~ and L is represented by the function :

A~(9)
=

Re (e~'° z(9 + 9~) e~~° z(9 9~))

= cos 9~(u(9 + 9~) u(9 9~)) sin 9~(u'(9 + 9~) + u'(9 9~)). (13)

It is clear from figure 6 that any 9 for which A~(9)
=

0 corresponds to a Young position.
For any given Young angle 9~ and any convex curve 8, we now associate a convex curve

(
=

lo defined by a corresponding support function k
=

ko (9), obtained from u(9 ) by the
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following convolution :

@~ (CDS CDS 9~) U (9 d@

@~~~~
@~

~~~~

(CDS CDS 9y) d@
-

@~

The transfornlation of periodic functions u(9) to other such functions R(9) has several

elementary properties which are listed in appendix. We readily verify from (13) by taking
partial derivatives with respect to the parameter 9~ that A~(9) has the following integral
representation :

@~dy(9 )
=

~
Sin ~ (U(9 + ~ ) U(9 ~ ) + U"(9 + ~ U"(9 ~ )) d~

@~

~~~~

=

(k~( 9 ) + k'(9 )) (CDS ~fi CDS 9y) d~fi

The last expression shows that 9 corresponds to a Young position for the solid deternlined by
the curve 8 (I,e. A~(9)

=

0), if and only if the derivative of the radius of curvature

#(9
=

k(9) + k"(9 for the transfornled curve 8 is zero, meaning that 9 corresponds to a

vertex of (. According to the four-vertex theorem [3], the curve
( has at least four vertices

and 8 has therefore at least four Young positions. In the case where 9~ ~
0+, the transformed

curve
(, whose support function k at each 9 is a weighted average of u in the interval

[9 9~, 9 + 9~] approaches uniformly u itself, explaining the similarity between the above

result and the classical four vertex theorem.

Figure 7 represents an ellipse and the four corresponding Young positions (9~
=

45°) and figure 8 does the same for a less symmetric curve.

2

~
2~

2

1

Fig. 7. The four Young positions of an ellipse (@~ =

45°).
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Fig. 8. A convex cross-section 8 with six Young positions (@~ =

45°).

3. Stability of Young positions.

From section I we know that the first derivatives of W are equal to zero for a Young position.
But this is of course not enough to ensure that the position is stable : it may correspond to a

maximum or to a saddle point of the energy. Let us imagine that, starting from a Young
position we rotate (clockwise) the tangent in A by an angle

a
and the tangent in B by an angle

p (a and p being infinitesimally small) ; the corresponding change 8W in the system energy is

then :

where R~ and R~ are the radii of curvature in A and B and d~~ the distance between A and B.

The determinant D associated to (16) is given by :
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When
a =

p (that is when one considers the construction of Fig. 5), it is possible to relate the

variation 8A of the area to both 8W and D. A straightforward but tedious calculation gives :

~ ~
O~~~~I

9y

~A~~ ~~~ ~ ~~ ~~ ~~

I-e-

8 ~
~

l d(B

2
Y12 cos 9~ sin~ 9~(R~ + R~)

~~'"
~

~~~~

~

l ~Z~d ~B

4 Y)2RA R~ cos 9~
sin~ 9

~

When 8A is negative both 8W~
p

and D are positive : maxima of Jt thus correspond to

stable solutions. Conversely, when 8Jt is positive, D is negative: minima of A thus

correspond to saddle points of the energy. We then conclude that if there are only finitely

many Young positions, generically the half of them which corresponds to maxima of A are

stable.

This result may also be derived by considering the function A~(9 defined in section 2 by
(13). Indeed, if A~(9 ) # 0, then the sign of A~(9 ) tells us which way the net surface tension

forces, pulling 8 along the directed half-lines L~ and L_ exert a torque [4]. Hence a Young
position where A~(9)

=

0, is stable or unstable according to whether locally the function

A~(9) is, respectively, increasing or decreasing.

4. Conclusion.

We have shown that for any smooth, strictly convex curve 8 (of at least class C~) there are at

least four positions satisfying the Young conditions. Among these positions we have precised
the half of them which corresponds to a stable equilibrium. Therefore, in the gravity-free
situation, a long prismatic particle of convex cross-section 8 can always be trapped at a liquid-

liquid interface (provided that (Eq. (I)) is satisfied). The validity of this result for a 3-

dimensional, non prismatic, convex solid is an open problem of practical importance.
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Appendix.

The transfornlation (14) has several elementary properties :

I) It is a linear map ; positive valued functions yield positive valued functions.

ii) It commutes with the translation operator u(9) ~u~(9)
=

u(9 a) for any real

constant a; consequently it commutes with any linear differential operator with constant

coefficients. In particular, if v 9 )
=

u 9 ) + u " ( 9 )
~

0 then also b 9 )
=

k 9 ) + k " 9 )
~

0.

iii) The value of k(9 for each 9 is a weighted average of values of the function u for the

variable distributed in the interval [9 9~, 9 + 9~] ; in particular if u(9) is continuous, the

unifornl limit of k(@) as 9~ ~
0+ is u(9).

iv) The inverse transform yielding u(9) from k(9), can be obtained by Fourier series

methods : this shows in particular that k(9) is continuously differentiable at least one time

more than u(9).
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