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Abstract The diffusion of a polymer chain in a random environment is studied by means of

the RG method. Below the critical dimension of the disorder considered (dc
=

2) the anomalous

diffusion takes place and the results for the polymer chain follows from that of the Brownian

particle by an appropriate resealing of the strength of the disorder and the bare diffusion coeffi-

cient. The results of the RG study of the anomalous diffusion below the critical dimension
are

used to compute the renormalized diffusion coefficient above the critical dimension.

The diffusion of polymers in melts and in concentrated solutions is of current interest in

the literature (see [Ii and the Refs. therein). One expects that the reptation of polymers in

melts and in concentrated polymer solutions is caused by the restriction of the conformations

of the polymer due to the surrounding polymers. A simple model to study the effect of

the surrounding polymers is the polymer in a disordered medium. Such
a model has been

investigated in recent years by Muthukumar and Baumgirtner mainly by using the Monte

Carlo simulations. So far there are only few analytical works on this subject [3-5]. In recent

years there is an interest in the behavior of Brownian particles in random environments [6-12].
It was

established [8, 9] that there exists
a critical dimension, which depends on the disorder,

below of which an anomalous dimension appears. In this connection one appears the question
how these results change in case of polymer chains.

In this article we consider the diffusion of
a polymer chain in random environment. We

use the formalism, which is an extension of the formalism developed recently for Brownian

particles [15]. In order to describe the dynamics of a polymer chain in an external field it is

convenient instead of the position r(s) (s E [0, L]
,

L is the contour length of the polymer) to

introduce its Fourier transform
as

follows

co

~(S)
=

£ Qskfk

k=0
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'~~~~~

Q~~
=

~-i12, Q~~
= ())1/2cos(«l~)

The Smoluchowski equation in terms of fk is given by [13]

3P(lfk ))/3f
=

(D0vl + vkD0>jk)fk)P + D0vk(vkfex)P (i)

The Einstein sum convention is assumed in (I). The transition probability P(f,t;f°,t°)
(f

=
(fk)

can
be represented

as a
path integral in the configurational space as

follows

~' (f, it f~, f~) "

/
~f(f) ~XP (~

( /~ df' fk (1')~ + Do /~ i7~~(k)f~ (f') +
/

f(Q)£~(Q)) (~)
q

where f(q) is the Fourier transform of the force Fex(r) and

t L

a(q)
=

Do
/

dt' T7t~(t')
/

ds Q~k exp(iqo~kfk(t'))
o o

The path integral (2) can be derived in the following way. By using the propagator method

(I)
can be rewritten as an

integral equation. Iterating the latter with respect to the external

force Fex we obtain the perturbation expansion of the transition probability in powers of the

external force. After synunetrysing the ordered time integrations we can represent this series

as a
path integral (2).

Now we
consider f(q) to be

a
random force with the correlation function

< f~(«)f"(«') > =
b(« + «')c»"(q)

The average of the transition probability over the random force yields

l~
t

P (f> t; t°, t°)
=

f
Dt(t) exp j

f
dt' t~ (t')~

o o

(3)

+1~0
/

df' i7k~(k)~k (f') +
/

~~(Q)a"(~Q)~i~" (Q)
o q

The transition probability P describes the displacement of the polymer chain and
on that

account it does not tend to the equilibrium distribution in the limit t - ocj
(or t°

-
-ocj).

The situation changes if
we

integrate over the zero modes fo(t). The latter is proportional to

the centre of mass of the polymer. The transition probability of the internal modes tends to

the equilibrium distribution for large time. In order to study the diffusion of the polymer chain

it is convenient instead of (3) to consider the correlation function

G(pl,P2) "< (< eXP (~~Pl~0(1) lP2~0(0) >) ~

(4)

= « f Df(t) f Df(0)exp (-ipifo(t) ip2fo(0)) P (f,t;f°, 0) P' (f(0), 0;f°, -ocj) >

where < > and « » denote respectively the conformational average and the average

over the disorder. The prime at P in (4) means that the 2ero modes is excluded from it.

P'(f(0),0;f°,-ocj) is the normal12ed steady-state probability for the internal modes (fk(0),
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k
=

1, 2,.. in the external field. The perturbation expansion of (4) in powers of the disorder

can
be represented by means of diagrams. The rules for computing the diagrams are as

follows.

I) The diagrams consist ofcontinuous and wavy lines. The wavy lines are associated with the

correlation function C~"(q). A momentum q is associated with each wavy line. The integration

over the momenta have to be carried out. The continuous lines represent the polymer chains.

2) The external momentum is directed from the left to the right.
3) The intersections of the wavy fines with the continuous lines (vertices) are numbered from

the right to the left. The fouowing integrations are associated with the vertex k

ftk
L

dtk dsk £
0

~

The summation occurs over all modes.

4) The parts of the continuous lines between the vertices m and m I and the first part
from the left are associated with the propagator

lp~ajk)(lm lm-I)Qsmke P~f(~)~~~ ~~~~~

with aj~)(t)
=

e~~°~~~~~,

i a~~~(1)2fik)(t)
=

~i~~~,

and

~
~

~(X~ )2l~~ I L

5) The first part of the continuous line on the right is associated with the propagator

~0(Pk)
" ~XP(~P~f(k)(~l lo) + iPka(k)(fl ~10)fk(f0)).

6) The momentum conservation. The momentum of the propagator between the vertices

m I and m is defined
as

follows

Pk "
P~ak(lm+1 lm + Qmosmk

where p[ is the momentum of the propagator that is posed on the left from the considered

propagator. qm is the momentum associated with the wavy line which enter into the vertex m.

7) The 2ero mode begins at time t and ends at time 0. We note that the formalism described

is a generalization of the formalism for
a

Brownian particles [15] to the system (polymer)
with internal degrees of freedom. This formalism is equivalent to the Siggia-Martin-ltose
formalism. However the present formalism enables one to represent the perturbation expansion

in a
diagram form that is familiar with the diagram technique of the #~-theory.

In the following we will consider two models of the disorder:

AD ~~(~ ~°~~l
(5)C~"(q)

"

A~&PU model II

The mean-squaje displacement of the polymer chain up to the first order in the disorder

strength is computed as

r((t)
= ~~)°~ + (ADD( /~ dsi /~ ds2 /~ r((d 2)t + (4 d)r) x

x (~ (s2 si) + £Qsikos~k (i -D0>(k>~)j
~~~ ~~~

ik)
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where d in braces in (6) has to be put to one for the model II. In case
of a Brownian particle,

(6) reduces to the corresponding result for the Brownian particle [8, 9]. It can
be

see
from (5)

that for large times the zero mode dominates and the intema1modes can be droped. The only
difference to the case of a

Brownian particle consists in the following change of the parameter
ho and Do

~~ ~ ~~~~
~~~

On that account we can obtain the mean-square displacement for the polymer chain using the

results for the Brownian particle [8, 9]. Below we win outline the proceeding in a brief form. To

carry out the renormalization of the mean-square displacement we need the renormalization

prescription of the strength of the disorder ho- The latter can be derived from the two-chain

correlation function, which is defined analogously to (4). The computation of two particle
(chain) diagrams occurs on

the basis of the diagram rules 1),...,7). As a result we obtain

A
=

ho (8)

A
=

Ao(I ~Ao(Dot)~'~ II (9)

The I If terms in the perturbation expansion of r((t) with respect to the strength of the disorder

renormal12es Do- The result up to the first order in ho is

D
=

Do(1- Ao(Dot)Q~ +.. (10)

D
=

Do(1 A((Dot)~ +.. II (II)

In order to obtain the differential equations of the renormalization group we
introduce the

cutoff I by demanding that (7) (10) remain finite in d
=

2. Then the equations for D and

the dimensionless interaction constant g =
Al' Q~

are obtained as

l'~~~ f
= g (12)

>')
=

)g (13)

for the model I and l'~)f
=

-g~ (14)

1')
"

)g )g~ (15)

for the model II.

Below we give the result for the mean-square displacement for the polymer chain in case of

model II
~

~~~~~ ~~
l-~?+4e

~~°~~~ ~~ ~~) ~

~~~ ~~~~

where the fixed point value of g, g*
= e, e is assumed to be positive. From (15) it follows that

the diffusion of the polymer chain is slow down by the factor L~~~~+~~ in comparison to the

Brownian particle. The solution of (13) (14) gives in d
=

2

r((t)
=

4~/texp(-A( ~~~'~~~ (17)

+ jAoln(I'/1)
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For large values of the logarithm (16) yields r](t)
=

4Dt where the diffusion constant D is

obtained
as

D
=

(Do/L)exp(-AOL~) (18)

To avoid the misunderstanding we note that the measuring unit of the strength of the disorder

ho is different for polymer chain and for Brownian particle. The argument of the exponent in

(17) is dimensionless. Equation (17) is the result of summing up the main logarithms of the

perturbation series, which are leading in the limit I'
- ocj. In this limit we conclude that (17)

is exact.

In case
of the model I the effective coupling constant remains unchanged under the RG

transformation [9]. The mean-square displacement is obtained for the model I as

r)(t)
=

4 ~/ t exp(-2AoL~ ~~°~~~~~~~ ~~~~
(19)

For the model I the anomalous diffusion takes place in d
=

2

r](t)
= 4(~exp(-2AoL~ln( ~))) (20)

We now turn to the consideration of the effect of the disorder
on the diffusion of the polymer

chain above the critical dimension dc
=

2. In case of a Brownian particle the disorder leads

to the anomalous diffusion below the critical dimension dc
=

2. Above the critical dimension

the disorder is irrelevant and the diffusion with the bare diffusion coefficient takes place. How-

ever, above the critical dimension there appear the ultraviolet singularities in the perturbation
expansions of the quantities under consideration. In order to regularise the perturbation

ex-

pansions a
microscopic cutoff, which is used as parameter of the renormalization group, has to

be introduced. It is weu known that this cutoff
can be used as parameter of the renormalization

group. This cutoff is of the order of magnitude of the dimension of the Brownian particle. The

situation changes if
we

consider
a

polymer chain. Above dc the disorder is also irrelevant for

large times. But in contrast to the Brownian particle the ultraviolet behavior is now controlled

by a microscopic length that is of the order of magnitude of the dimension of the polymer
chain. To the first order in the disorder this ultraviolet cutoff is given by

lmR~mLl (21)

But the disorder influences the coil dimension too. To obtain the renormalized coil dimension

the high-order calculations are necessary At first we will ignore the influence of the disorder

and the self-avoidance of the polymer
on

the gyration radius and accept (21). Later we will

discuss the effect of the self-avoidance and the effect of the disorder
on

the coil dimension. The

model I and the model II will be considered below in
a separate way. The solution of the RG

equations (14, 15) gives for the mean square displacement of the center of mass of the polymer
chain for the model II

r((t)
=

~~/° exp(-2Aol~~~'~)l~~~~(Aole')~~~ (22)

where e'
=

d 2 > 0 is introduced. By using (14), (15) and (21) the diffusion coefficient is

obtained as

D
=

(Do/L) exp(-2 ho l~~~/~L~~~'~)L~ ~'~~" l~~"
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In case
of model I the renormalized diffusion coefficient is obtained as

D
= ~lexp(-Aol~~~'~/(d 2)L~~~'~) (23)

Equation (23) corresponds to the disorder character12ed by the correlation function (5). By
studying the behavior of the gyration radius of a polymer in disordered media one considers

the disorder characterized by the delta-correlated potent1al [16]. The critical dimension in this

case
is dc

=
0. The diffusion constant for this disorder

can
be obtained from (23) by identifying

e' with d. Then, instead of (23) we obtain

D
= ~lexp(-Ao/dL~~~/~) (24)

The latter coincides with the result obtained by Machta for Gaussian chains. We now turn to

consider how (23),(24) will be changed by taking into account the effect of the disorder and

the self-avoidance on the gyration radius. The interplay between the disorder and the self-

avoidance is only studied for Gaussian disorder [20,16 19]. Therefore we start the discussion

with (24). Because of the Harris argument [20], there is no influence of the disorder on the coil

dimension and the cutoff in equation (21) is proportional to the dimension of the swollen coil.

Then instead of (24) we obtain

D
= ~lexp(-Ao/dL~~"~) (25)

The latter coincides with the result obtained by Machta in
a

different way [5]. The polymer
chain without self-avoidance collapses in the disordered medium [16] and the coil dimension

does not depend on L. In this case we obtain from (21)

D
= ~lexp(-Ao/dL~) (26)

We obtain the surprising result that the diffusion constant for the collapsed polymer is smaller

in comparison to that of the coil.

In conclusion we considered the diffusion of
a

polymer chain in a
random environment. The

analysis of the perturbation expansion showed that the result for the polymer chain
can

be

obtained from that for the Brownian particle by only rescaling the strength of the disorder

and the bare diffusion constant of the particle (Eqs.(7)). Below the critical dimension (dc
=

2

for the disorder considered) the behavior of the chain does not differ qualitatively from that

of the particle. The situation changes for d > 2. The infrared behavior (t
- ocj) is the same

in both cases. In case of a Brownian particle the normal diffusion with the bare diffusion

constant takes place when the disorder is weak. The diRusion, which takes place above the

critical dimension of the disorder, is studied by using the results of the RG investigation of the

anomalous diffusion of Brownian particles below the critical dimension. Our results show that

the random environment affects the diffusion in a much stronger way than predicted by the

reptation theory of de Gennes [14].
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