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Résumé . — Nous considérons un pavage du plan engendré par une substitution dont la plus
grande valeur propre n’est pas un nombre de Pisot. Cette propriété est responsable de I’existence
de fluctuations de densité non bornées dans I’espace perpendiculaire, et de ’absence de pics de
Bragg dans le spectre de diffraction de la structure. Ce spectre est calculé numériquement a
I’aide de relations de récurrence entre amplitudes de Fourier, et comparé A celui du pavage de

Penrose.

Abstract . — We consider a tiling of the plane generated by a substitution, the largest eigen-
value of which is not a Pisot number. This property leads to unbounded fluctuations of the
density in perpendicular space and to the absence of Bragg peaks in the diffraction spectrum
of the structure. This spectrum is computed by means of recursion relations between Fourier
amplitudes and compared to that of the Penrose tiling.

1. Introduction.

This paper is the result of two independent lines of research. On one hand, in order to study
the stability of quasicrystals, the authors of reference [1, 2] have introduced a two-dimensional
model with large and small particles that can be set on the vertices of the Penrose rhombs as
shown in figure la. In units of 7 /5, the Penrose rhombs have corner angles equal to 2 or 3 for the
large rhomb and to 1 or 4 for the sharp rhomb. The large particles are set on odd corners and
the small particles on even corners. However, it is not possible to decorate the Penrose tiling in
such a way because odd and even corners meet at some of its vertices. Therefore other tilings,
called binary tilings [3], have been introduced such that at any vertex the corner angles are
either all odd or all even. These binary tilings may be crystalline, quasicrystalline or random.
With certain pairwise interactions between large and small particles it has been shown that
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the binary tiling structures have the lowest potential energy [3]. Firstly, this demonstrates
that some quasicrystalline structures can be ground states and not only metastable states.
Secondly, and since the binary tilings form a large ensemble, this leads to a model of an
entropic quasicrystal [4-6].

a) b)

Fig. 1. — a) Penrose rthombs decorated with particles of two types. b) Decoration of the Penrose
rhombs (dashed lines) with smaller ones (solid lines); this produces binary tilings which can be iterated
ad libitum.

One possible way to get a binary tiling is to apply the tile decoration shown in figure 1b
to any initial tiling built with the two Penrose tiles: Penrose tilings, periodic tilings, random
tilings, ..., and also binary tilings [3]. As a consequence, we can iterate this decoration in the
same way that Penrose had iterated his inflation rule to get his quasiperiodic tiling [7, 8]. We
will show that the tiling we obtain has a different nature [9].

On the other hand, the following line of thought has been pursued. One of the remarkable
properties of the Penrose tiling is its diffraction spectrum (or Fourier spectrum) made only of
Bragg peaks. In other terms, the tiling is a quasiperiodic structure. It is therefore natural to ask
whether there could exist structures, the type of order of which would be intermediate between
quasiperiodicity and randomness, with possible more complex Fourier spectra. Reference [10]
presents an example of such a structure, in one dimension. This model —-named the Circle
Structure since it is generated by a circle map-leads to a singular continuous Fourier spectrum.
No Bragg peaks exist in the spectrum, nor an absolutely continuous component. This means
that its spectral function (or integrated intensity) is a curve analogous to a Devil’s staircase,
with a zero derivative almost everywhere; hence the spectral density is singular. More generally,
structures generated by substitutions (inflation rules) are a good laboratory for the study of
these questions. Restricting ourselves, to begin with, to one dimension, it is easy to compute
the diffraction spectrum of a structure by writing recursion relations between the Fourier
amplitudes. A simple criterion, due to Bombieri and Taylor, gives a necessary and sufficient
condition under which the Fourier spectrum of a structure has Bragg peaks [11]. This criterion
relies upon the spectral properties of the matrix describing the substitution. If the matrix
possesses the Pisot property (stating that apart from the leading eigenvalue, all eigenvalues
have moduli less than 1), then the Fourier spectrum contains a discrete component. Conversely,
if this not the case, no Bragg peaks appear in the spectrum,; therefore, a priori, the spectrum
may be a superposition of an absolutely continuous component and a singular continuous one.
The case where the substitution matrix does not possess the Pisot property has been called a
non-Pisot case and the corresponding structures (tilings) non-Pisot structures (tilings) [12, 13].
The Circle Structure mentioned above is in this respect marginal since it corresponds to the
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case where the subleading eigenvalue lies on the unit circle. The generic case where at least two
eigenvalues lie outside the unit circle leads to very intricate Fourier spectra [14]. Relying on
multifractal analysis of the Fourier spectrum it was claimed in reference [15] that any generic
non-Pisot structure (tiling) has a singular continuous Fourier spectrum.

This analysis may be extended to 2D, restricting ourselves to tilings generated by a sub-
stitution. In general no section or cut and project method is at our disposal in this case.
Nevertheless the spirit of the computation of Fourier amplitudes by recursion relations derived
from the substitution is still valid, though in addition geometrical operations on the tiles must
be taken into account [16, 17]. As a result the same kind of conclusions on the Fourier spectrum
may be derived according to the nature of the substitution, up to additional considerations on
the geometry. The first example of a non-Pisot tiling we have been aware of may be found in
reference [18]. It is a rather complicated 7-fold symmetric tiling. We then found simple cases
of non-Pisot tilings (5-fold or 7-fold symmetric) made of triangles [12].

Fig. 2. — The non-Pisot tiling studied in this article.

This paper analyses a very simple non-Pisot 5-fold tiling made of the Penrose rhombs,
alluded to in the beginning of this Introduction and shown in figure 2. The convergence of the
two independent lines of thought outlined above encouraged us to study such a tiling and to
believe in its relevance to physics.

In section 2 we give the definition of the tiling in terms of simple substitution rules. Section
3 is devoted to the study of its main geometrical properties in hyperspace. In section 4, the
arguments which show that no Bragg peaks may exist in its diffraction spectrum are exposed;
finally a numerical computation of the spectrum is given and compared to that of the Penrose
tiling.

JOURNAL DE PHYSIQUE I. — T. 2, N* 2, FEBRUARY 1992
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2. Substitution rules.

From a decoration to a substitution. In this section we will first emphasize two important
properties of the decoration introduced in [3] and shown in figure 1b, namely, that it can be
applied to any tiling made of the two Penrose rhombs, and that it produces a new tiling made of
the same rhombs at a smaller scale (). Therefore this decoration can be iterated ad infinitum.
In other words, it leads to a substitution acting on the two Penrose tiles.

Let us consider five unit vectors of the plane in pentagonal directions e, (k = 0,...,4),
i.e., the coordinates of e; are (cos (2wk/5),sin (27k/5)). The large Penrose rhomb, L, is built
on two vectors ey and e;, or those obtained by rotations of angle 27/5. The sharp rhomb,
S, is built on vectors eg and ez, up to the same rotations. The decoration of those two tiles
produces new smaller tiles with the same shapes. The five vectors which describe the new
tiles are obtained by applying, on the initial unit vectors ey, a rotation of angle 7/10 and a
rescaling by a factor §=1, where § = 2sin (2r/5) = /7 + 2. We denote by fx, (k = 0,...,4)
these new vectors. They are related to the vectors e, by the relations e = fi — fi .

Let us now show that this decoration may be applied to any tiling made of the two Pen-
rose rthombs, producing a new tiling. Consider the network formed by the tile edges. If the
common edge of two adjacent rhombs corresponds to ey, it transforms into two smaller edges
corresponding to f and fi42 for both rhombs. Thus this ensures a perfect match between new
rhombs coming from adjacent tiles such that no hole is produced. On the other hand, the two
small edges form a boundary line between the new tiles, which are either on one side or the
other of the boundary, depending on which of the two initial tiles they come from. Hence there
is no overlap between the tiles after a decoration. (This property is not trivial and is no longer
true in perpendicular space as will be seen in Fig. 7). Thus starting from any tiling made of
Penrose rhombs, a new tiling made of the same tiles at a smaller scale, is produced.

We have therefore proved that this decoration leads to a substitution ¢ acting on the tiles
L and S, which may be summarized (leaving all geometrical considerations aside) as

L—LLLS
S —SSL

o

(1)

l.e., under one step of substitution a (large) rhomb L gives rise to three L rhombs and one
(sharp) rhomb S; an S rhomb gives rise to one L rhomb and two S rhombs. The substitution
matrix M relates the numbers of tiles of each type in a tiling before and after one step of

substitution:
M= 31 2
={1 o (2)

The eigenvalues of M are A\; = 7+2 =62 ~3.618 and A\, = 3—7 = u? ~ 1.382. Note that
since A is not a Pisot number (its conjugate is A2 > 1), 8 is not a Pisot number either (2). As
seen above, under o, lengths are rescaled by a factor #~!. We will see in section 3 that u is
also related to a scaling, but in an associated space: the perpendicular space. The frequencies
of large and sharp rhombs in the tilings obtained by successive application of the substitution
rules on any initial tiling, tend respectively to 7=! and =2, which are the components of the

(1) We will refer to a group of tiles matching perfectly, with no holes and no overlap as a patch of
tiles or a finite tiling. An infinite tiling is a patch of tiles which continues to infinity. Depending on
the context, a tiling will either mean a patch of tiles (finite tiling) or an infinite tiling.

(2) Let us recall that a Pisot number is an algebraic integer (i.e., a root of an algebraic equation,
the coefficient of the term of highest degree of which is equal to 1) whose conjugates have moduli < 1
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Fig. 3. — Tilings Ly (above) and Sn (below) at iterations n = 0, 1 and 2. The inflated tilings g(L,-1)
and g(Sp—1) are drawn with dotted lines. Circles and arrows represent the origin and the vectors which
characterize each tile. The black disc is set on the plane origin.

right eigenvector associated with the largest eigenvalue A; of M. Note that these frequencies
are equal to the frequencies of the L and S tiles in the Penrose tiling.

Geometrical description of the substitution. In the description given above, lengths of the
elementary tiles are driven to smaller scales by successive application of the substitution o on
an initial tiling. If one wishes to keep the sizes of the tiles constant one must rescale all lengths
by a factor 6, after each substitution. Or one can equivalently introduce another description of
the substitution rules where the sizes of the building blocks, namely the two Penrose rhombs,
stay constant but where one now sticks those tiles together to form a growing patch of tiles.

Let us give a precise meaning to the geometrical content of this new description of the
substitution o (see [16, 17] for the method used here; [13] contains a preliminary version of
the following computation with different geometrical conventions). We consider two sequences
of finite tilings (L,) and (S,) obtained by iterations of the substitution from the particular
initial finite tilings Lo and Sy made of one L tile and one S tile respectively. Let us call O the
origin in the plane; the vertices of Ly are located at O, O + eg, O +e; and O + ep + €;; those
of Sp are located at O, O + eg, O + e and O + eg + e2. At step n + 1, the finite tilings L,
and S, are duplicated and joined, with suitable rotations and translations, to create the new
tilings L,41 and Sp4:

Ln+1 = Ln + [’I‘, gn+l(eo)]Ln + [r2)9n+1(e0 + el)]Lﬂ + [r379ﬂ+1(e1)]sﬂ

Swer = Sn + [, g (en + €2)]Sn + [r*, 4" (e2)] L ®
where r is a rotation of angle 27 /5 around the origin O; g is a similarity i.e., a rotation of
angle —x/10 around O followed by a dilatation of scaling factor equal to § = /7 +2. The
condensed notation [r, t] denotes the product of first the rotation r followed by a translation
t applied to a tiling. The symbol + denotes the union operation acting on tilings. When a
density of matter is attached to Lo and Sp it corresponds to the usual addition of the density
functions L,(z) and Sn(z).
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Fig. 4. — Parts of the tilings By (left) and Dy (right). The tiles added at each iteration are indicated
by a new colour. Tilings at iteration m are invariant parts of tilings at iterations n > m. The black
disc is set on the plane origin.

Since the rotation r and the similarity g commute, relation (3) implies the following re-
currence properties: g(Ly) is included in Ln4; and g(Sp) in Snp4i if g(L1) is included in Ly
and ¢(S;) in S,. Figure 3 shows that these last conditions are fulfilled (yet they may be not
satisfied for decorated tiles, as for instance with atoms at the vertices (Fig. 1a) or with arrows

set on the edges). Therefore all the vertices at step n are transformed by g into vertices of
the tiling at step n + 1. This shows that, besides the growth of the tiling, there is an actual
inflation property.

Relation (3) also shows that L, is included in L,4; and S, is included in S, 4. Therefore,
at any step, these tilings contain all their parent tilings at their original positions and with
their original orientations. Thus, there is a growing invariant region around the origin O, i.e.,
a region where the tiles have definitive positions once they have been set. Therefore, if we
combine the tilings L, and S, around their common origin in such a way that they match
perfectly, we also get an invariant tiling centered on O which is no longer at the corner of a
finite tiling but now completely surrounded by an invariant region. We consider for instance
two new sequences of tilings (B,) and (D,) shown in figure 4 and defined by the following
equations:

Bn+1 = Ln + [7') O]Ln + [;"2: O]Ln + [r3, O]Sﬂ (4)
Dn+1 =S, + [7'2; O]Sn + [1'4, O]Ln
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Fig. 5. — Regions covered by B (Bear) and Dy (Dog) at iterations n up to 8.
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Fig. 6. — Atomic model built with a tiling Bn. Large atoms are set on the vertices where corner
angles are equal to 7/5 or 3x/5; small atoms are set on the other vertices (angles equal to 27/5 or
47/5).

where O is the null vector. Note that B; and D; only differ from L; and S;, respectively, by
the choice of the origins. Therefore the way L, and S, are joined to build B, ; and D, is
similar to the construction of L,4+; and Sp41 except for the translations of the origins of the
tilings. Up to a rotation, the tilings B, and D,, are parts of the tilings L,, or S,, for m > n

Figure 5 shows the invariant regions, called Bear and Dog, tiled by B, and D,, respectively,
fromn =1 ton =8.

As a last remark let us point out that the border of the finite tiling L, is fractal (the same
is true for Sy,, Bn,D,). Consider for example figure 3. At the scale 8™ 4 vertices may be
distinguished which form a rhomb ’containing’ L,,. 2 consecutive such vertices are separated
by a distance 6", with 2" edges of unit length between them. Hence the fractal dimension of
the border is D =In2/Ind = 1.078.

Binary tilings. A third property of the decoration shown in figure 1a is that it produces binary
tilings [3] , i.e., atoms of two types, say A and B, can be set at the vertices of the tilings B,, or
D,, to build a dense atomic model. Figure 6 shows a model obtained by this method. When
n tends to infinity, the frequency ratio of A to B atoms tends to 7/2. The potential energy
of this atomic model has the lowest possible value for a binary two-dimensional alloy if the
atomic interactions are pair potentials limited to first Voronoi nelghbours and if we have the
conditions [3] :

Taa/TaB = 2sin (7r/5) reB/rap = 2sin (7/10) ; €aB > €aa =€BB

where r,5 are the potential minimum positions and —eqg are the potential minimum values,
a and B € {A, B}. However other structures with the same frequency ratio of A to B atoms
have this minimum energy, namely those derived from other binary tilings and for instance
quasicrystalline structures.

3. 5D-Hyperspace description.

The tiling under study shares some resemblance with the Penrose tiling. They are both
made of the same two rhombs and generated by inflation rules; moreover the infinite tilings
have both the same frequencies of tiles. However these two structures appear very different
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when described in a five-dimensional space: the vertices of the Penrose tiling are the projections
of the vertices of a 5D-cubic lattice contained in a strip of finite width; as shown bélow this is
not true in our case. This implies that the tiling obtained from the substitution rules equation
(3) is not quasicrystalline in the usual sense. This assertion will be made more precise below
and strengthened in section 4 via consideration of the Fourier spectrum of this tiling.

Each vertex of a tiling made of tiles L and S can be indexed naturally with five integers jj
such that its position in the plane corresponds to E::O Jjeek. The integers jir can be viewed
as vertex coordinates of a 5D cubic lattice spanned by the orthogonal vectors i (k= 0,...,4).

Let R denote the rotation in 5D-space which performs a circular permutation on the vectors
ir. As for the Penrose quasicrystal, we consider the 2D-spaces Ell and E+ and the 1D-space
A, which are the three sub-spaces globally invariant by the rotation R [19] . Let p be the
orthogonal projector onto Ell along EL + A. We identify the 2D physical space with Ell so
that p(ix) = ex (since ||ex|| = 1, ||ik]| = 1/5/2).

The large and the sharp rhombs are, respectively, the projection onto Ell of 2D-facets defined
by 19,1; and ip,1; up to circular permutations of the indices. Thus we define, in 5D space, the
2D tiles £ and S corresponding to the real tiles L and S. Rough 2D surfaces £, and S, are
built in 5D by iteration of a recursion relation similar to (2) and such that p(£,) = L, and

p(Sn) = Sn:

Lnt1 = Ly + [R, G (1)L, + [R2, G (g +11)]Ln + [R3,G™H1(1))]Sn (5)
S,—.+1 =S, + [R2, G"+1(i0 -+ ig)]S,, -+ [R4,G"+1(i2)]£n

G is equal to 1 — R?, where, as mentioned above, R is the circular permutation: iy = R¥(io).
As for the tilings in the physical plane, all the vertices of G(L,) and G(S,) are included in
Lp+1 and S, 41 respectively. The operator G has the same global invariant spaces as R, namely
Ell. E+ and A, and can be represented, in these spaces, by the matrix:

6 cos (—7/10) —Bsin (—m/10) 0 0 0
@sin (—7/10) 6 cos (—m/10) 0 0 0
Mg = 0 0 pcos (37/10) —psin (37/10) 0 (6)
0 0 psin (37/10)  pcos (37/10) O
0 0 0 0 0

The first block corresponds to Ell and represents g, the similarity described in the previous
section (a rotation of angle —x /10 followed by a rescaling by a factor § = /7 + 2). The second
block corresponds to E4 and represents a similarity of angle 37/10 with a scaling factor
p = /3 — 7. Figure 7 shows the action of the substitution rules in E+. The last diagonal term
" is null and corresponds to A (the space generated by the vector ig + i + iz + i3 + i4). Thus
all vertices at step n are transformed by G into vertices with a null coordinate along A. The
other vertices at step n + 1 have coordinates equal to 1 /\/5 or 2/\/§ Therefore the vertex
coordinates along A can only have three values, a property satisfied by binary tilings but not
by Penrose tilings, where four or five values are possible.

Since the inflation factor in perpendicular space, p =~ 1.176, is greater than 1, the vertices are
not included in a strip of finite width parallel to a 2D-plane when the number n of substitution
steps goes to infinity. Again this property differs from that of Penrose tilings. Figure 8 shows
the position density of the vertex projections onto E+. This curve spreads out more and more
on the z axis when n increases, in contradistinction with the usual Penrose case, where it is a
fixed window.



216 JOURNAL DE PHYSIQUE I N2

J

Fig. 7. — Projection onto the perpendicular space EL of the surfaces Ln (above) and Sp (below) at
iterations n = 0, 1 and 2. The projection of the inflated surfaces G(Ln—1) and G(Sp—1) are drawn
with dotted lines. Note that the L rhomb corresponds to the S rhomb in perpendicular space E+ and
vice versa. Circles and arrows represent the origin and the vectors which characterize each tile. The
black disc is set on the plane origin.
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Fig. 8. — Contour plot (a) and side view (b) of the density of the perpendicular component of the
vertices belonging to Ln at iteration n = 11 (5890625 tiles). The box size in (a) and the abscissa range
in (b) are equal to 42.2e where e is the length of the tile edges.

4. Fourier spectrum.

One spectacular property of non-Pisot tilings is the absence of Bragg peaks in their diffrac-
tion spectra. This may be shown as follows. Let us denote by L,(q) and S,(q) the Fourier
amplitudes associated to the groups of tiles L, and Sy, i.e. the Fourier transform of L,(x)
and S,(x). Since there is no cut-and-project method to generate the tiling under study, the
only tool at our disposal to compute its Fourier spectrum relies on recursion relations between
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Fourier amplitudes [16, 17], which may be deduced from equations (3). These read

Lny1(a) = Ln(q) + exp(—iq - g™+ (e0)) Ln(r @)+

exp(—iq - "+ (eo + €1))Ln(r~2q) + exp(—iq - "+ (e1))Sa (r3q)
Sni1(q) = S’,,(q) + exp(—iq - g"*!(eo + e2))5n(r2q)+

exp(—iq - g"*!(e2))La(r*q)

These recursion relations should be complemented by initial conditions which depend on the
choice of the density of matter on the tiles. We will give an example of particular initial
conditions below. Using these recursion relations, it is possible to determine whether there
exists a discrete component in the Fourier spectrum, i. e., Bragg peaks. Indeed, in such a case
there should exist values of the wavevector q for which the Fourier amplitudes grow as fast
as the size of the system, when the number n of substitution steps increases. In other terms
the amplitudes should be proportional to the number of tiles in the sample at generation n.
This maximal growth of the amplitudes is achieved generically if and only if all the phases in
equations (7) vanish asymptotically mod 2, for these particular values of q. These conditions
yield the following equations on q:

(7)

q-9"t'(eg) =0 mod 27
q-9"*(e1) =0 mod 27 (8)
q-g"*t!(e2) =0 mod 27

These equations may be recast in Cartesian coordinates, writing q = ¢-é-+¢yéy. Reminding
also that g involves a rescaling by a factor 8, solving equations (8) would mean finding solutions

to equations of the type
z6" -0 mod 1 when n— oo (9)

Unfortunately, a theorem due to Pisot [20] asserts that no solution to this equation exists if 6
is not a Pisot number. Here § = +/2 + 7, which is not a Pisot number. Hence this proves the
absence of Bragg peaks in the Fourier spectrum of the tiling under study [21].

Though the full description of such a spectrum is a difficult open mathematical question, it
was conjectured in reference [15] that any non-Pisot structure will have generically a singular
continuous spectrum, which, in general, will be rather intricate.

Therefore, we think it illuminating to present the Fourier spectrum of the tiling obtained by
iterating numerically the recursion relations (7). We need first to define the initial conditions,
or equivalently, the densities of matter on the tiles. We choose to put a delta function on each
vertex of a tile, with an amplitude proportional to the angle located at this particular vertex,
and such that the total mass on a tile be 1. Hence an atom of unit mass is located at each
vertex of the tiling. This choice leads to the following densities

2 3
Lo(x) = [8(x) + 8(x — (o0 + ex))] + 15160k — e0) + 6(x — e1)] w0
10
1 4
So(x) = E[&(x —eg)+ 6(x —e2)] + E[&(x) +6(x — eg — e2)]
In Fourier space this choice yields the following initial conditions on the amplitudes

Fo@) = {1 +exp(~ia - (eo -+ e1)] + lexp(~ia - €o) + exp(iq - e1)]

So(a) = Tglexp(~ia - eo) + exp(~ia - e2)]+ 7{1 +exp(~ia - (eo + e2)]
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Fig. 9. — Absolute value of the Fourier amplitude Lg(q) computed from equations (7). The plot is
done in logarithmic scale. To each pixel is attributed a color going from blue (low amplitude) to green
(high amplitude).

Fig. 10. — Same as figure 9, for the Penrose tiling, at generation n = 7.
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Figure 9 shows the Fourier spectrum of the tiling, at generation n = 6, with —27 < ¢, ¢y < 27.
The picture is made of 512 x 512 pixels. For comparison, Figure 10 shows the Fourier transform
of the Penrose tiling, at generation n = 7, using the same method of computation, i.e., using
recursion relations between Fourier amplitudes coming from the inflation properties of the
tiling [16]. More precisely the tiling used here is made of Robinson triangles, with a unit mass
at each vertex; or equivalently of dart and kites with a unit mass at each vertex. As expected,
in the case of the non-Pisot tiling under study the intensity is more ’distributed’ than in the
case of the Penrose tiling.

3. Conclusion.

In this paper we have given the main geometrical properties of a non-Pisot tiling, i.e., a tiling
generated by a substitution, the largest eigenvalue of which is not a Pisot number. As seen
in the previous sections, this leads to non bounded fluctuations in perpendicular space and
to the absence of Bragg peaks in the Fourier spectrum of the structure. Though the rule of
construction of this tiling is very simple, its Fourier spectrum is very intricate. More detailed
studies of the properties of the spectrum will be the subject of further works. As a final remark
let us point out that, in the same way that decagonal phases are related to the Penrose tiling,
one may imagine that structures corresponding to the tiling studied in this paper could well
be discovered in Nature.
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