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Abstract. A multi-class perceptron can learn from examples to solve problems whose answer

may take several different values. Starting from a
general formalism, we consider the learning

of rules by
a

Hebbian algorithm and by
a

Monte-Carlo algorithm at high temperature. In

the benchmark "prototype-problem" we show that a
simple rule may be more than

an
order

of magnitude more efficient than the well-known solution, and in the conventional limit is in

fact optimal. A multi-class perceptron is significantly more efficient than
a more complicated

architecture of binary perceptrons.

1. Multi-class perceptrons for multi-class problems.

One recent success in the rapidly expanding field of neural networks has been the learning of

a "rule" from examples (correct associations of "questions and answers") [1-7]. Analysis so

far, however, has been restricted to small classes of possible rules and in particular to those in

which there are only two answers, unlike the generality of real engineering problems [8-10]. In

this paper we seek to relax this restriction in
a way which preserves the natural symmetries of

the problem.
Historically

a
formal neuron has been allowed two Ising-like states, +I, by analogy with the

on/off nature of
a

biological neuron
[II, 12]. A binary perceptron, for example, consists of

N Ising inputs which determine one Ising output and may learn a set of random N-vector

questions, with Ising components, and Ising answers associated according to some rule. In this

way algorithms have been devised [1, 2] to teach a perceptron "linearly-separable" rules.

Clearly it is
a matter of considerable engineering importance to discover how the success

of learning schemes changes if the restrictions in this formulation are relaxed. In [5, fi] for

example, successive questions are chosen not at random but
on

the basis of what has already
been learnt, and recently a study has been made of how well perceptrons learn problems which

are not linearly separable [fi]. Here
we

consider another important generalisation to problems
in which each digit of

a
question may take Q values and in which the answer to a

problem is

one of Q' possibilities.
Many scientific applications exist. Bohr and his collaborators [8], for example, have trained

a
network to predict with 70$l accuracy the "secondary structure" of proteins from their local

sequence of amino acids. In our notation the Q input states are the amino acids and the Q'
=

4
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output states correspond to the local sterec-chemical form of the amino acid chain: «-helix,
p-turn, p-sheet

or
random coil. Another technically relevant issue is fault detection, where

a network is expected to distinguish classes of technical defects [9]. There is also the classic

neural network problem of classifying phonemes from frequency analysis of human speech [10].
May not many outputs be represented by the output combinations of several binary percep-

trons? Previous studies have assumed that this is how multi-class classification would proceed,
but there are two disadvantages. Firstly, a binary perceptron divides the input space in two

and so must separate the possible outputs into two classes, which violates the symmetry of the

problem: without
a

plioli knowledge to the contrary we should assume that all answers are

equivalent. Secondly, if a greater number of neurons is used more connections are required at

some
engineering cost; we

would rather a single neuron performed
a more

complicated function

of its inputs.
Such a neuron already exists in the literature and has been extensively studied in the very

different problem of storing patterns [13-15]. Instead of two states in the output there are
Q',

each of which has the same relationship to each of the others, like the Q' vertices of a
Q'- I

dimensional tetrahedron. Similarly there are Q equivalent states for each input. At every

time step the
neuron

calculates a local "field" for each output state using a different, constant

function of its inputs and enters the state with the highest field. We shall refer to such a neuron

as a
"multi-class perceptron". (In engineering a similar network is called

a
"linear machine",

although it does not perform
a

linear function of its inputs,
or a

"winner-take-all" machine and

is attributed to Nilsson [lfi]. Physicists have prefered the term "Potts-perceptron" [15].) This

multi-class perceptron is not to be confused with a multi-level or graded-response neuron, which

only possesses levels of activity between on and off; these states have
a

completely different

symmetry (like a
ladder) from that of the multiclass perceptron.

In this paper we
will review the theory of learning from examples, explain the formalism of

the multi-class perceptron and briefly describe the ways in which the two may be combined.

We then apply multi-class perceptrons to the benchmark problems of learning
a

rule and of

classifying prototyes. For the prototype problem we shall show that a simple learning rule

(even with a binary perceptron) is better than the well-known previous solution, and in the

conventional limits is actually optimal. One lesson will be that geometrical arguments may let

us
avoid the extremely difficult algebra of an

algebraic statistical mechanics formulation. We

shall generally find that in multi-class problems
a multi-class perceptron is significantly

more

efficient than
a more

complicated architecture of binary perceptrons, but will finally discuss

problems in which an even better choice of neuron may be appropriate.

2. The theory of multi-class learning.

2. I BINARY PERCEPTRON LEARNING. A conventional binary perceptron has N Ising inputs
(S;

=
+I), I

=
I,.

,

N and
one

Ising output So given by

So
=

UIS)
=

SgnlJ S)> Ii)

where we have defined the scalar product of two N-vectors x and y as x y =
I/N ~~ ziy;.

The N-vector J of weights defines the perceptron. If we choose Jj E lZ it is a
spherical binary

perceptron, or if Jj E (+I)
an Ising binary perceptron. J is normalised to J J

=
I, so

that it

lies on the surface of the unit sphere.
The perceptron learns from p pairs of N-vector questions (("),

p =
I,. ,p and

answers

(ff), associated according to a
rule V, defined as if

=
V((~). Each f) is chosen independently

and randomly from the set (+I) and p =
aN, where a remains constant as N

- oc. A
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linearly-separable Boolean function is of the form

V(t~)
=

Sgn(B f"), (2)

where B is
a

'~teacher" vector of unit magnitude. An Ising J is typically used to learn an Ising
B, and a

spherical J to learn a
spherical B (assumed to be randomly chosen). If this is not

the case and e-g- an Ising perceptron has to learn
a

spherical perceptron, the problem becomes

unlearnable and has recently been analysed by [7]. From the examples
we

wish to construct

a J which finds the ff+~ for a random new question (~+~, and it is clear that J
=

B fulfills

this. The chance that J generates the right
answer is the generalisation ability G (clearly

a

randomly chosen J will give G
=

1/2 if ff+~ has equal chance of being +I), and thus the

goal of the training process is to minimize the generalisation error Eg =
I G, This, as has

been recently pointed out [20, 23], is not necessarily equivalent to minimizing the number of

examples which the perceptron gets wrong, the "training error"

E(J)
=

L e (-ffJ t~) (31

The simplest learning algorithm [II sets J according to a Variant of the Hebb rule

J
=

fi Lftt~, (4)

»

where 7 is just
a

factor chosen to normalise J to I. We will
now present a

simple geometric
argument to analyse how the rule works. Figure I shows a projection of the N-dimensional

space containing J and B. Randomly chosen ((~) have
a component, y, in any direction y

(I.e. y =

@( y) which is Gaussian distributed with mean zero and standard deviation

I. The components of (ff(~) in the B direction add to J constructively, while those in any
perpendicular direction do so

randomly. Thus after presenting p examples the component of

J in the B direction is (a/7)([ ya II "

(a/7)fi (in the large N limit), while that in each of

the perpendicular directions is fi@/7 the
sum of a random walk of aN steps of length

I IN. However, there are N I directions perpendicular to B and to each other, and
so

the

sum of all the components not in the B direction, the component of J perpendicular to B, is

8

J

&/j

R

Fig-I. Plane containing B and J, which lie at angle ~fi.
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found from Pythagoras to be @/7. Thus, by Pythagoras, 7 = a + a22/x. A well-known

result is that
Eg =

)
=

) cos~~(B J), since, as may be seen from Figure I, this is the &action

of the space whose overlap with B and J has different sign. It follows that

~~ ~"
~

li~
lx

~" ~

~'
~~~

a result derived at some length in [ii. It implies that as a - oc, the asymptotic behaviour

of
Eg

is Eg +~

I/@. An alternative approach ("zerc-temperature" learning) is to search the

N-dimensional J-space to find the volume which stores every pattern with
a

stability larger
than ~c,

that is, for spherical J,

Volume
=

/
dJ b (J J I) fl e(ff@J (" ~c). (fi)

»

As
~c

is increased to a critical value the volume shrinks continuously to zero, centered on
the

J-vector with "maximum stability", and algorithms exist which will construct this J, notably
the Minover algorithm jig]. Reference [2] has shown that as a - oc, Eg

tends to zero as

I la. For Ising J, however, for which the J-space integral is replaced by a trace over all J

configurations,
a

first-order transition (the thermodynamic transition) to perfect generalisation
has been predicted within the framework of the "replica symmetric approximation" to occur

at ac =
1.245. However the "one-step replica symmetry broken solution" raises the spinodal

line for the vanishing of the metastable spin glass phase to aRsB "
1.fi28 [17].

Analysis of the zerc-temperature algorithm is complicated, however, and may be treated

under the "annealed approximation", which approximates the training error by p times the

generalisation error.
If

a
Monte-Carlo algorithm is used to minimize the "training error" at a

temperature T (with inverse p), (I.e. we use the error as an energy and generate states with

Boltzmann probability exp(-pE(J))), then in the high temperature limit "high-temperature
learning" the annealed approximation is exact and the algorithm is equivalent to minimizing

a free energy given by [3]
pi

= &Eg s, (7)

where + «IT and
s is the entropy (to find the appropriate entropy see, for example [7]).

Since we are working at a high temperature a number of examples scaling with T is required,
but otherwise the same qualitative behaviour has been observed as at low temperatures [3]
(gradual learning for spherical perceptrons and first order transitions to perfect generalisation
for Ising ones). Theoretical predictions made with the high-T formulation are found to agree
with simulations for temperatures as low as T ss 5. It has been noted [7] that in problems
which are not linearly separable, and so may not be learnt exactly by a perceptron, high

temperature learning may be the best way to avoid "overfitting~' giving undue significance
to unrepresentative examples.

A fundamentally different sort of rule was studied in [20], the "prototype-problem". Instead

of
a

teacher B, we
begin with po random, uncorrelated Ising N-vector prototypes (q"), p =

I,.
,

po> where po "
UN, each of which has a random Ising output (qf). The correct answer

for any input S is now the correct output of the prototype closest in Hamming distance to S.

The rule is learnt from examples of each prototype ((~~), l
=

I,.
.,

p, chosen at random but

with the constraint that q" ("'
= m, For an extensive number of examples this problem is

clearly unlearnable, since no plane can divide the input space to correctly answer every possible
input. Instead [20] searched the J-space to find the J minimizing the number of incorrectly
answered examples, the training error, and considered only the limit of

m
small, which implies
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large p, since p should be rescaled
as #

=
m~p/(1- m2), which remains of order I. For #

less than a critical value, #c, a J may be found which makes the training energy zero; in this

range the consequent generalisation error
falls from 1/2

as # rises, but then climbs slightly

as #
-

#c, since the only J which correctly learns all examples has overfitting. For # > #c
the training error rises smoothly and the generalisation error falls and both tend to the same

value E(m) as #
- oc.

Training with
a

finite training error
(equivalent to a finite temperature)

eliminates the problem of overfitting and the asymptotic behaviour of the generalisation error

is Eg E(m)
+~

§~~

2.2 THE MULTI-cLAss PERCEPTRON. Only when the concept of
a binary perceptron was

generalised to many states did it become clear how many assumptions lie hidden in the +I

notation. We shall work within the formalism recently derived in [15] to define
a

multi-class

perceptron with N Q-state inputs (aj ); j
=

I,
,

N and each aj E ( I,
,

Q) and one
Q'-state

output a' E (I,.
,

Q'). The local field for output state s' is given by

hs,
#

£ Jj" m,,a, (8)
j,>

where ma,b + Q6a,b I is the Q-fold multi-class operator, so that the synaptic matrix JJ"
is the weight of

a
signal coming from the input j which is in state s on the state s' of the

processing unit. a' is set equal to the state with the highest local field, I-e-

a'
=

(s[(hsj > hs, Vs' # s[). (9)

Clearly the operations of this perceptron are invariant under the transformation

JJ'~
-

JJ'~ + VI VS' (lo)

for any uj, since it alters all the fields by the same amount and thus there exists
a gauge

freedom which
we

shall usually fix by enforcing

LJI'~
"

0, V s, j
,

(Ii)

~,

although all choices of fixing the gauge are
of course equivalent. We shall also choose

L~~'~
"

0, V S', j
,

(12)

s

since any other choice is equivalent to adding a threshold to the field at state s'. Thus in the

case of binary inputs, Q
"

2, JJ'~
=

-JJ'~ for all s', j, so
that taking aj =

+I we may rewrite

the field simply as

hs,
=

£ Jj'aj. (13)
I

If the output is binary as well (s'
=

+I) then, renaming J~
as J gives

h>,
=

S' L Jj «j (14)

and the s' maximising this expression is sgn(J «).
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A sphelical multi-class perceptron has the (JJ'~) chosen to be real numbers such that each

vector (J~'~) is normalised to I, but what is the natural multiclass analogue of
an Ising binary

perceptron? Should we allow the (Jj'~) to take many integer values? This point is considered

further in the conclusion. In our present work, however, in which we shall only briefly use

quantised interactions, we will choose each JJ'~ to just be +I, which, for Q
or

Q' odd, meals

we must relinquish (it) and (12). We shall call the result an Ising multi-class pelceptron.
The generalisation of

a
multi-class perceptron to N' outputs or to a

fully connected network,
for which N'

=
N and Q'

=
Q, as in [13, 14], is straightforward.

2.3 MULTI-cLAss PROBLEMS. A multi-class problem is one in which the answer may take

several values. It is straightforward to extend the well-known proof for binary perceptrons [21]
to show that a twc-layer network of multi-class perceptrons may perform any logical function

of its inputs. Here we
will be concerned only with problems in which questions ((") strings,

N digits long with f) E (I,.
,

Q)
are

associated with answers if, where if E (I,.
,

tj').
A single multi-class perceptron can

learn exactly problems which are the analogues of

"linearly-separable" problems, I-e- there exists a Bj'~ which associates the questions ((")

with the answers if via the dynamical rule (8,9), with (J~'~) replaced by (B~" ), and the B"'

obeying the same gauge fixings (II,12). We will use a
spherical multi-class perceptron, when

the (B"')
are

spherical and
an Ising perceptron when the Bj"

=
+I.

Generally multi-class problems are not linearly-separable, of course. A good example is the

proximity-problem, in which prototypes may be associated with more than two outputs (this is

discussed in more detail in section 4), and multi-class analogues also exist of all the unlearnable

problems discussed in [fi].
As the multi-class analogue of (4), following [13], we

introduce:

where m[
~

is the Q'-fold multi-class operator and 7"' is introduced to normalise each J"' to

I. For thi
case

of Q
=

2 this reduces to

~~' "~R~~'~~"~~~~
~~~~

These rules obey the gauge constraints (II) and (12), since they are true for every term of the

sum over p. However, since we
know that the output is unaffected by the gauge fixing we can

equivalently, for Q
=

2, analyse

J~'
=

~,,j Lb,,,<ri», (17)

»

which violates ill) but makes it clear that the (f") affect only the J" with s'
=

if. Thus

noise in the (J") is uncorrelated for different s'. Gauge constraint (11) can be enforced after

learninf by subtracting, from each J~'~, I/(Q'- I) times the
sum

of the other (J"), and the

set (J' should then be renormalised.

In the rest of this work
we

shall confine ourselves to Q
"

2 (binary inputs) and consider

varying Q'. This is for simplicity and in the belief that problems with many answers are

more interesting than those in which inputs take several values (many-valued inputs may be

represented anyway by combinations of binary inputs). However, it is straightforward to extend

the arguments of the next two sections to higher values of Q.
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3. Learning a learnable rule.

An algebraic evaluation of learning with rule (4) is rather difficult, but may be avoided by a

generalisation of the geometric argument proposed in the last section to derive (5) However,
there is a different distribution of overlaps between B" and those ((~) whose answer is s',

as

may be seen from figure 2 which, for Q'= 3, shows the plane containing the (B"): examples
must fall closer to B~' to be assigned to it. The average of this quantity is

~(Ql)-Ql jJS' ~p ~(jJ>' ~p jJi'
~@) (~~)fl >

j,#p

where (.) indicates the pattern average. This
can

be evaluated using the integral representation
of the Heavyside function to give

~~~'~
~~

~~~ ~~
~l ~~ ~~ ~'~ ~~'l~

~~' 11~
~)

~~ ~'~
~

, _,

l19)
where a % B' B~

=
ill I Q') Vi' # s'. The components of ((~) in perpendicular directions

remain the same, however, in the large N limit. It follows that J B
=

Au IQ' (since only one

example in Q' contributes to each B~'), where using Pythagoras the modulus is again given
by 7~

=
(Ao/Q')~ + «IQ'. The components of (J~') perpendicular to the teacher vectors are,

as
explained, not correlated and so are effectively perpendicular in

a
high dimensional space.

However, enforcing the gauge constraint, as explained at the end of section 2.3, correlates these

other directions and gives

js' ~i'
~

bS',I' + ~(' bS',I')
~~~~~

with
, _, , _,J~ J~

=
B~ B~

=
b,,,j, + a(I b,,,j,) (21)

by symmetry. We define R % J" B" for all s'.

How are we to work out the generalisation error? The geometrical argument in section 2

comparing areas on a plane, which it was possible to generalise in [7] to areas on the surface

of a
sphere, is hard to apply here since the sphere containing (B") and (J") is 2(Q'-1)

8~

' ,
'

,'
,

'
' '

' '

'

~3

Fig.2. The plane of the three teachers for Q'
=

3. The dashed lines show the barriers between

their regions.
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dimensional,
even

after enforcing ill). We resort to an algebraic treatment of the sort used to

derive jig), giving the generalisation error

Eg =
I £ lfl e (B~' S Bb' S) fl e (J~' S JC' S)

a' b'#a' C'#a'

~

cc d~ 2(Q'- I)
1-

,
~ jn ~

=
i

I lm)
(u2 v2) 2 exP1- ~~,ju~

~~1
122)

where T is a 2(Q'- I) x 2(Q'- I) matrix given by

IQ' I)u
-u

-(Q'- I)v
v

T
=

'~ ~' (23)
u -u

11
-(Q'~ I)11 -U

(Q'- I)U

ii-e- 4 IQ'- I) x IQ'- I) blocks), where
u e I a and

u e R(I a). The results of this

scheme
are

plotted in figure 3 for Q
"

2, 3,4. In all cases Eg +~

I/@
as a - oc.

Although the Q' outputs could be represented by combinations of only the next largest
integer to log~ IQ') binary outputs, it would require Q' binary perceptrons to learn the problem
exactly, since the input space must be divided by Q' planes, lying along the planes of the multi-

class perceptron. It should be noted that the Hebb rule is unable to generate a set of planes to

learn the problem perfectly, however, since,
as may be seen from figure I, it is not clear from

a given example which planes should be changed.
A better way to teach the multi-class perceptron would be with the multiclass maximum

stability rule, which can be generated by an algorithm given in [15], but analysis of the
con-

sequences is cumbersome for Q' > 2. We would expect qualitatively similar results to those

above, however, but with E +~
I la,

as in [2]. To verify this we analyse high temperature learn-

ing, as explained in section 2, which in learnable problems is believed to be of qualitatively
sbrilar form to the low temperature result [3]. For simplicity we will assume (21), so that

there is a
single order parameter R + B" J" (taken to be the same for all s'), the cosine

of the angle between the space containing (J") and that containing (B"). We will further

assume that the J" B~'
are the

same
for all s' # @'. We would not expect our

choice for

the overlaps between the (J"), which can easily be enforced by adding
a term to the train-

ing energy, to make a
diJference to the dynamics, since allowing different overlaps will surely

increase Eg, without making an
extensive contribution to the entropy. Equation (21) should

thus be obeyed naturally. In problems where the angle between the teacher vectors is not

known in advance, the multi-class perceptron should also naturally evolve to have the best

angle between its planes. The entropy required for the free energy (7) may be obtained by
considering the IQ'- I)-dimensional spaces in which the (J") and (B") lie; let

us say these

spaces are at an
angle #. If we choose any IQ'- I) orthogonal vectors in the B-space and for

each choose, independently,
a vector in the full N-dimensional space at an angle #, then these

new vectors ii the large N limit) will be effectively orthogonal and
so the space spanned by

these new vectors is at an angle # to that of the (B"), and thus could be that of the (J").
We know (from [7]) that the entropy associated with choosing

a new vector at an angle # to a

given vector is (to within
a

constant) ) log(I R~), where R
= cos #. Selection of the vectors
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Eg

LIn«3

Lina

Line I

Q-I

o

o 2 ~ 5 6 1 a 9

a

Fig.3. Learning with the Hebb rule. This shows the generalisation error using Q
=

2, 3 and 4, as

lines 1, 2 and 3 respectively.

within the B-space (I.e. the orientation of the J-space and the B-space) does not generate an

extensive entropy, so the total entropy for (7) is (Q'- 1)/2 log(I R~).
The numerical results (for Q'= 2,3 and 4), where the line for Q'

=
2 is the same as in [3],

show, as expected, that the spherical multi-class perceptron learns smoothly with asymptotic

Eg +~

I16. The multi-class Ising percep ton, at least for Q'
=

2, 3, has
a

first order transition to

perfect generalisation. The result for Q'
=

3 h similar to the one for Q'
=

2. The generalisation

error E(&) decreases with increasing & from 2/3 smoothly and jumps at & ce 2.24 discontinously

to zero. To derive this high temperature result we had to determine the Ising entropy, which is

the logarithm of the maximal number of states compatible with the constraints (20,21). Using

a
simple counting argument we

find for the entropy

s(Q'
=

3)
= a+ In a+ + a- In a- + b+ Inb+ + b- In b- + 4d In &, (24)

where a+ + ii + R) /8 d, b+ + 3(1+ R)/8 and d is given by the solution of d~ 10(1

R~)&~ /64 + 3(1 R~)&/64 [3(1 R~) /64]~
=

0, for (I R)/8 > d > 0.

It is possible to teach the same
problem to Q' binary neurons in the same way. In fact

enforcing their weight vectors to have the same overlaps with each other as the (J") makes

the learning equivalent to that above, but of course at the expense of more neurons and a more

complicated output representation.
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4. The proximity problem.

Section 2.I introduced
one

variety of unlearnable rule: the proximity problem of classifying
inputs according to their Hamming distance from pa =

ON prototypes (q~). We learn the

problem using noisy examples (~', such that q~ (~~
= m.

Reference [20] assumed that the

best learning algorithm would be to search the J-space for the weight vector with the smallest

training error; they were able to solve the model in the limit of small m, which implies that a

large number of examples of each prototype must be presented.
However, it is possible to deduce the optimal learning algorithm using the very original

approach of [18], which was developed for a different problem. They considered a highly diluted

neural network storing patterns (~ and minimised the output error of the stored patterns after

the first time step when the input patterns were ensembles of their noisy versions with overlap

m
with the clean patterns. From the work of [24] we know that the output error at the next

time step is given by (nelecting additive constants) H(mA/Wfi), where A
=

@for (,
H(z) e

f]~ Dz and Dz +
fi exp(-z~/2)dz. [18] showed that the J which minirnises this

expression for m small, is given by the Hebb rule (4). For m close to I the optimal J is

given by a maximum-stability rule (MSR). For intermediate m the optimal J has to be found

numerically using a Maxwell construction.

Reference [20] shows that the generalisation
error of the binary perceptron in the case of

the proximity problem is given by H(mA/WW), where A
=

@qoJ
q. Using the insight

outlined above
we see that only for high

m is the MSR (used in [20]) optimal; the J which

minimises the generalisation for small m (the
case [20] mainly considers) is given by the Hebb

rule.

This is because the MSR generates narrow, deep valleys in the energy surface around each

example presented, so that these examples
are

well stored. The Hebb rule, by contrast, gen-

erates wider, but shallower, valleys so
that each example may not be perfectly stored, but its

influence extends over a wider region. If the noise is high,
so

examples fall
a

long way from

prototypes, the second rule is to be prefered, to generate a valley around prototypes, so in

this limit, the
one

solved by [20], the Hebb rule is optiinal for binary perceptrons (as
we will

verify). We will assume the same result applies to multi-class perceptrons.
We shall again choose to analyse rule (17) (optionally enforcing (Ii) afterwards,

as in Sect.

2), which implies that each J" is affected only by examples (~~ such that's'
=

qt. If, after

learning, the alignment between J" and one such q~ is called A then, from [20], the overlap z

between J" and a new
example (~~ has a distribution

~~~~~ 2x(~- m2)
~~P ~l ~~)

~~~~

The distribution of overlaps between ("~ and every other J" is an independent Gaussian

with zero mean
and unit variance, independent for different s'. The chance that ("~ will be

incorrectly classified, Eg, is the chance that the correct field is higher than the Q'- I others,
and so

~, ~

Eg -
i

/ A
exP

I- Ii "'ill 1£~
YI

(26)

It should be noted that this formula, for the case of Q'
=

2 (for which one integral may be

performed), differs by a
factor of vi from that of [20]. This is because their A is defined as

overlap with J
=

fi(J~ J~), the normalised binary form. The normalisation factor is fi,
since J~ and J~

are, by (17), uncorrelated and thus, in a high dimensional space, effectively
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perpendicular. An expression of similar form to (26)
was

derived [13] for the very different

problem of storing many-valued patterns at 2erc-temperature in Hopfield-like networks.

To calculate the distribution of A, consider that as far
as a prototype (without loss of

generality prototype I, q~) is concerned
,

the J" with qj
=

s', is the sum of three components:

I) The correct prototype q~; it) noise from the examples of that prototype; iii) noise from

other prototypes whose correct output is also s'. Each example has
a component m in the

direction of its prototype, so (I) is pmq~/7", and Wfi in a
different random direction

(effectively perpendicular for different examples since p « N)
so

that term (it), by Pythagoras,
is p(1- m2)/7" The magnitude of the sum of these terms is (p2m~ + pi I m~))~/~ /7"
(iii) is the sum of po IQ'_independent vectors of this kind, and, since po oc N, we add them in

the same way as
the noise terms of the Hebb rule in section 3, to obtain 7"

=

fi@(P~m~ +

p(I m~))~/~, the factor by which J" must be normalised. Then A, the overlap between a

pattern and J", is the sum of term (I) and the random variable which is the component of (iii)
in the direction (, a Gaussian of width @,

~~~~~
l~~~'~ ~~ ~i~~~~

~~~~

which, rescaling with # % pm~ /(I m~) and oo % a(I m~) /m~, gives

Q,(1_~2)
~

~~~~~ ~~~~'~
~o~~

~~~~

As m -
0 and with ao =

O(I)
we obtain Pr(A)

=
b (A

@/(mfi)),
which

gives

Eg =
i

/
Dz HP-~

z
+ «~fl1/>~ (29)

For Q'
=

2 this reduces to Eg =
I H (I/ ao(I + I/#)).

Figure 4 shows a graph from [20] with ao =
1.6. Line I is their zero-temperature result (with

overfitting) and line 2 is their result allowing
a

training error. The results for Hebb learning
with

a binary perceptron are shown as line 3; they tend to the same minimum generalisation

error but the Hebb rule typically requires one and a half orders of magnitude fewer examples
than the algorithm of [20] to obtain the same generalisation error. Calling E(m) again the

minimum training error, we see
that as in [20], Eg Elm)

+~
I/#

as #
- oc, but clearly the

coefficient of I /# is very much lower for Hebb learning. The points show the results of a single
numerical simulation using N

=
5000 and m =

0.I.

Figure 5, which has a horizontal scale linear in log(I + #), compares several values of Q' using
the same ao =

1.6. The problem becomes harder for
a

larger number of output states because

inputs must be classified into a greater number of areas; however, the number of prototypes
in each class is smaller. It is found that

as
Q' rises the minimal generalisation error first rises

with it and then, at a
critical Q'(ao), falls back, tending to zero as

Q'
- oc.

We can compare how the four-output problem is learnt by two binary neurons, encoding the

four states as
the possible combinations of the two spins (state I is (I,1), 2 is (I, -I), etc.).

This representation is clearly not unique and breaks the symmetry, of the answers. Each of

the binary perceptrons learns to give one answer for patterns near two of the prototypes and



178 JOURNAL DE PHYSIQUE I N°2

o. 5

E
~ o_

O.

L>ne3

O
lO~~ 10° 10~ 10~

P

Fig. 4. Learning the proximity problem for txo "
1.6. Lines 1 and 2, from [20], show respectively,

the effects of learning by minimising the training error and by fixing it at a
finite value. Line 3 is the

Hebb result, with experimental points shown for comparison.
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Fig-b- Learing the proximity problem for ao =
1.6 using Q' equal to 2 (line I, as in figure 4), 3

(line 2), 4 (line 3) and 12 (line 4). Line 5 is Hebb learning of the Q'
=

4 problem using two binary

perceptrons.
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the other answer for patterns near the other two. The consequences of Hebb learning can be

calculated in a manner similar to the one
used above and are shown in figure $ as

line 5. Two

binary perceptrons are always less efficient and tend to a higher minimum generalisation error.

This is related to the fact that binary neurons havd only two planes with which to divide the

space, against the six of
a

Q'
=

4 multi-class perceptron. As Q' rises a combination of binary
perceptrons will do progressively worse, compared to the multi-class method. It might be

argued that a
Q'

"
4 multiclass perceptron should do better than a combination of two binary

perceptrons, since it has more degrees of freedom (3 independent J vectors, instead of 2), and

of course, we
could

use many more binary perceptrons, with enough planes to divide the space

as well as the multi-class perceptron (at some engineering cost). This would be unnatural,
however, and give many more unwelcome alternatives for the representation of answers as

combinations of binary digits.

5. Conclusion.

We have shown that in multi-class problems, which form a large proportion of the obvious

neural network applications,
a

multi-class perceptron h afar more natural choice than
a

combi-

nation of binary perceptrons, because without « plioli knowledge we would expect the possible

answers to a question to be equivalent, and also has advantages in efficiency. This seems to

be another instance of the rule suggested by [22], that the simplest network which can solve a

problem is also the most efficient. It remains to be seen how
more

complicated architectures

would perform. In many problems whose solutions are thought to require a complicated, many-
layer network of perceptrons it may be possible to make significant improvement in efficiency
by using more complicated neurons. Such a choice might be natural for such a

problem.
We have seen again, as was indicated in [7], how critical the choice of energy function is to

find the best solution to a, problem. The Hebb rule, which seemed such a poor choice for
some

problems, has been shown to be optimal for other, especially unlearnable, problems.
This study has mainly used spherical multi-class perceptrons, but, as with binary percep-

trons, this may not be the best if, for example, the values of the components of the teacher

vectors, (BJ'~) are discrete. It is not clear, however, what the analogue of the binary Ising

perceptron is. Should we allow each JJ'~ to take several real values? If so, these values will

of course be a ladder, not obeying the multi-class symmetry. We might conceivably overcome

this by allowing the interactions to take complex values, for example the three complex roots

of I, but this seems a
shade gratuitous and runs into difficulties for more than a few states.

However, if we allow the interactions to be just Ising (+I), then the gauge fixings (11,12)
cannot be enforced for Q

or
Q' odd. Ultimately our guide must be the values each BJ' may

take.

It is interesting, finally, to point out that there are multi-class problems for which a multi-

class perceptron is not the best choice: ones in which the possible answers have
a

different form

of symmetry. An example is the classification of levels of quality, which have a ladder symmetry
corresponding to different values of one parameter: "goodness". In this case a multi-level, or

graded response neuron, whose states have the
same symmetry, would presumably be better.

Alternative solutions using a multi-class perceptron or a combination of binary perceptrons are

possible, but only if we are allowed to introduce thesholds into the perceptrons; in both cases

the relative orientation of the many planes which divide the space is an unwanted freedom,
which presumably lowers the efficiency of learning. This type of problem will be the subject
of another paper.
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