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Abstract. Angular magnetoresistance oscillations have been studied systematically for fl-
(ET)2
IBr2 in the magnetic field rotating in

a
series of planes perpendicular to the conducting (a, b)-

plane. The oscillations have been found in all studied planes. The shape of the Fermi surface

transverse cross-section has been reconstructed using the obtained data. Angular dependence
of the slow Shubnikov-de Haas oscillations frequency and some fine features of angular magne-

toresistance oscillations permit to discuss also the structure of the Fermi surface longitudinal
cross-section. The Fermi surface consists most likely of main cylinders with inclined warping

planes and small pockets or necks between them.

1. Introduction.

Recently, strong angular magnetoresistance oscillations, occurring upon rotating the magnetic
field in

a
plane perpendicular to the conducting layers, have been discovered [1 5] in a number

of layered organic metals. The magnetoresistance was found to reach its local maxima periodi-
cally in cot ~o, where

~o
is the angle between the field direction and the conducting (a, b)-plane.

The first explanation of the phenomenon [6] employed the fact that the distribution of the

cyclotron orbit areas for a Fermi surface in the form of a weakly corrugated cylinder degener-
ates periodically in cot ~o upon magnetic field rotation. It was supposed that the degeneration
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should result in increasing the magnetoresistance. Later, the angular magnetoresistance oscil-

lations were explicitly obtained in resistivity tensor calculations [7] (see also [8]) for a quasi
two-dimensional metal.

An alternative explanation of the magnetoresistance increase for some field directions
was

proposed in [2, 8] as resulting from the existence of self-crossing trajectories
on

the Fermi
sur-

face. In the case of a weakly corrugated cylindrical Fermi surface the self-crossing trajectories

may be associated, for example, with the existence of some necks connecting adjacent cylinders.
In this situation the oscillations should disappear for some planes of magnetic field rotation.

So, a
possible way to distinguish the different explanations might consist in a systematic in-

vestigation of angular magnetoresistance oscillations upon rotating magnetic field in
a series

of planes perpendicular to the conducting plane.
We have performed such measurements on a

number of high quality single crystals of fl-(ET)2
IBr~. Although the oscillations amplitude have been found to vary for different planes of

the field rotation, they do not disappear for any plane. Therefore, we
conclude that the

angular oscillations are caused mainly by the first of the two above mentioned mechanisms.

Considerable enhancement of the Shubnikov-de Baas (SdH) oscillations amplitude observed for

the field directions corresponding to local maxima of the magnetoresistance [1, 2] also supports
this conclusion [6]. Nevertheless, basing on our results the existence of a more complicated
Fermi surface than a simple warped cylinder cannot be completely excluded.

A substantial result of our investigations is the reconstruction of the Fermi surface cross-

section shape and dimensions in the (a,b). plane. The possibility of such a reconstruction on

the basis of numerical calculations has been pointed out in [9]. We have used, however, for

this purpose an explicit analytic expression derived in [9] which relates the magnetoresistance
maxima angles with the maximum projection of the Fermi momentum vector on the direction

of the magnetic field component parallel to the (a,b)-plane.
In section 2 we

discuss the physical reasons for the angular magnetoresistance oscillations

and refine some
theoretical ideas concerning their explanation. In section 3 experimental results

of the magnetoresistance measurements for different field rotation planes are presented and the

form of the Fermi surface is reconstructed.

2. Theoretical considerations.

Let us consider a
quasi-two-dimensional metal with the following electron dispersion law:

E(pr,py,pz)
=

e(p~,py) 2t cos(lpzd + p~u~ + pyuy]/h). (I)

Here (p~,py) + pjj and pz are the momentum components parallel and perpendicular to

the conducting planes; t and d are, respectively, the hopping integral and the spacing between

adjacent conducting planes; e(pr,py)
=

e(-p~, -py) is an in-plane dispersion law. Equation
(I) is written under the assumption that electrons hop between the conducting planes along

vectors h and -h in the (~, y, z) space, h
=

(ur, up, d), d > 0. We shall consider the case

~ * t/£F < (2)

(eF is the Fermi energy),
so

that the Fermi surface is a weakly corrugated cylinder with
a

closed

convex curve of an arbitrary form in a
cross-section. The cylinder axis is parallel to z-axis,

while the planes of warping are inclined with respect to the (~,y)-plane being perpendicular

to the hopping vector h.



N°1 ANGLULAR MAGNETORESISTANCE AND FERMISURFACE SHAPE 91

Magnetic field direction is determined by two angles,
~o

and b, according to the formula

H
=

H cos cos ~o, H sin b cos ~o, H sin ~o). Let us
consider the case of strong magnetic field

:

7 e I/war « I, where wc is the cyclotron frequency, r the relaxation time. Electrons move

along the orbits in the planes perpendicular to H; each orbit may be labeled by a coordinate,
Pz, of the point where its plane intersects the pz-axis. For generic values of

~o
# 0 and Pz the

mean velocity component parallel to the field direction, @H(Pz), is non-zero, whereas the mean

perpendicular components are zero. The bar over v means the averaging over
the electron

classical motion along the orbit.

In the system of coordinates, related to the field direction, the diagonal component of the

conductivity tensor along the magnetic field, aHH, may be written as [10]

aHH =

a(~
+ O(7~), (3)

and the ngular brackets mean the veraging

ver Pz. All
other omponents of the conductivity

tensor go to zero as 7 or 7~ [10].
lYansformation

to the

°(7~) °(7) °(~~7)

a;; =
-O(7) ai$~ cot~

~o + O(7~) aj$~ cot ~o + O(~~7)
,

I, j
= ~, y, z, (5)

-°(~~7) ?~~~ Cot i~ O(~~7) ?~$~ + O(~~7~

Inversion of

Pzz "
I/?zz> Prr '- PVY " Po + [°(~~) + °(~~7~)]?zz~> (7)

where po is of the order of the in-plane resistivity without magnetic field and

«zz =

«f~ + °(~~7~). (8)

The origin of the angular oscillations may be explained now as follows. When magnetic field

has
a

generic direction, @z(Pz)
=

@H(Pz) sin
§~

is non-2ero. So, with increasing magnetic field

the resistivity grows and reaches the saturation value given by equation (7) with azz =
aj$~,

where aj$~ is determined by equation (6). But, as it will be shown below, there exist special
field directions at which

@z
(Pz nearly vanishes for all values of Pz. For these special directions

the second term in equation (8) plays the main role and resistivity (7) grows as
H~ to saturate

at very high field beyond experimental capabilities. Thus, when the constant magnetic field is

rotated, the resistivity exhibits strong maxima at these particular directions. This result was

firstly obtained in [7], basing
on numerical and analytical calculations, and then was discussed

also in [8].
It follows from equation (7) that all diagonal components of the resistivity tensor contain

azz in denominator and thus should exhibit the angular oscillations, although pm and pyy
contain azl with

a
small coefficient. This is result of a general Boltzmann equation approach.

However, in the r-approximation for the parabolic dispersion law e(p~, py) it was found both
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numerically [7] and analytically [8] that the nominator exactly cancels the denominator in

equation (7),
so that pr~ and pyy do not exhibit angular oscillations. Experimentally, all the

components of the resistivity tensor exhibit strong oscillations ii 3].
The values of the critical angles were found analytically [6] for a model dispersion law

and numerically [9] for the dispersion law calculated in ill]. Below we describe the general
analytical results of [8]. According to (I) the

mean
velocity

@z can be written as

@z =
0E/0pz

=

~~~ j
d( sin [pz(f)d+ (pjj(()u)j /h

,

(9)
Th

~

where ( represents the time variable, T is the period of rotation, the time dependence p(()
has to be determined from classical equations of motion with Lorentz force. When

an
electron

moves in the plane tilted at the angle
~o

with respect to the (~, y) plane, the following relation

holds:

Pz (f)
" l~z PH (f) C°~ §'> (1°)

Pi

-
(maxi

PV
_ii,

Fig. I. Schematic look at the transverse cross-section of a Fermi surface. Hjj is the magnetic field

component parallel to the (x,y)-plane,
p)j~~~~ is the in-plane component of the Fermi momentum

whose projection on the direction of Hjj attains the maximal value pj/~~~, u is the in-plane part of

the hopping vector.

where Pz labels the position of the plane and pH is the projection of the pjj vector on

the direction of the iii-plane component of the magnetic field (see Fig-I). Following [8] let

us
consider relatively small ~o, where cot ~o » I and the integrand in (9) oscillates rapidly

due to relation (10). The integral can be taken in the vicinity of the two points, p(~~~~ =

-p)j~~~~, where pH(() takes the maximum, pj/~~ > 0, and the minimum, -pj/~~~ < 0, values,

respectively, (see Fig, I):

fiz(Pz) « sin ~~) cos

~~~~~~
~~~ ~~~~~~~~~~ i) II

4
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It follows from (II) that the critical angles, where @z(Pz)
=

0, obey the relation

where N is an integer, the signs + correspond to positive and negative values of ~oc, respectively.
Relation (12) permits to determine experimentally the form of the Fermi surface cross-section

by rotating magnetic field in different planes perpendicular to the (~, y)-plane. For every value

of b one can deduce pjf"~(b) from the slope of the cot ~oc[ vs. N linear dependence (12). Then

it is necessary to put a point at the distance pjf"~ from the origin in the direction given by the

cqrresponding angle and draw a line through this point in the perpendicular direction (see
Fig, I). The envelope of the lines drawn for all angles gives the Fermi surface cross-section.

It follows from (12) that for a given N the values of cot ~oc[ for positive and negative

~oc differ by 2(p(~~~u)/pj/"~d. Upon variation off this difference vanishes changing its sign

when pf~~ becomes perpendicular to u which is the in-plane component of the electron inter-

plane hopping vector. Due to this effect an experimental study of the difference dependence

vs.
angle permits to determine the hopping vector h and thus the orientation of the Fermi

surface cylinder warping.
To establish a relation with the results of reference [6] one can use an easily proven identity:

~ ~ ~ ~
os(p~)/op~ os(p~)/op~

~z
z

= Pz = os/oE = 2xm '

~~~

where S is the area enclosed by electron orbit,
m the cyclotron mass. According to equation

(3),
@z may vanish if the nominator vanishes

or the denominator goes to infinity. The latter

case, considered in details in [8], takes place in the presence of self-crossing trajectories. We

shall not consider it here. Due to smallness of ~, approximately m =
mo/cos~o, where mo is

the cyclotron mass at ~o =
x/2, so, the denominator does not have §ingularities. On the other

hand, it was shown in [6] that there exist critical angles ~oc where the maximum and minimum

values of S as function of Pz nearly coincide, so that S(Pz) practically does not vary with Pz.
It follows from equation (3) that @z(Pz) nearly vanishes for these angles. Of course, they are

exactly the angles given by equation (12).
For more accurate formulation let us expand the periodic dependence S(Pz) in

a
Fourier

series. At a generic angle
~9

the first garmonic dominates and further garmonics are minor

corrections due to condition (2). At the critical angles
~oc

the amplitude of the first garmonic
exactly vanishes (see (11)) and

@z
is determined by the second garmonic of the S(Pz) function

which is ~ times smaller than the first one. Beside, the hopping between the next nearest

planes with the amplitude t' may also contribute to the second harmonic a term of the relative

magnitude tilt [8]. Hence, due to equation (6) the ratio of the saturation values of pzz (7) at

generic and critical angles is very small, being of the order of (Citlef + C2tllt)~, where Cl
and C2 are some coefficients.

As the amplitude of SdH oscillations is proportional to (0~S/0Pf)~~/~ [10], it should have

maxima exactly at the same angles, where the resistivity does [6]. This statement is confirmed

experimentally [1, 2].

3. Experinlental results and discussion.

For the experiment, four fl-(ET)2IBr2 single crystals were taken with the residual resistance

ratio R(300)/R(4.2)
=

2000 to 3000. Measurements of the resistance, R, perpendicular to the

JOURNAL DE PHYSI~LI -1 2 ' J'NVIFR ltJ<J2 4
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highly conducting (a,b)-plane
were carried out by means of

a
standard

ac
four-probe method

with pasted contacts in magnetic field up to 16 T at the temperature T
=

IA K.

The samples were mounted into a cell which could be rotated in two planes with respect to the

external magnetic field direction. This arrangement provided measurements of the resistance

angular dependences for the field rotating in any plane perpendicular to the crystal (a,b)-
plane. Thus, after cooling the sample, one could perform the whole set of magnetoresistance

measurements avoiding repeated thermocycling harmful for the crystal quality.
The error in determination of the crystal orientation with respect to the field direction was

less than 1° for the
~o

and did not exceed 5° for the S, where
~o

and
are the angles shown in

the inset in figure 2.

In figure 2 four dependences of the magnetoresistance
on the angle

~o are exemplified for

different angles S. Strong angular oscillations
are observed for every plane of field rotation,

being the most pronounced when is close to 90°. This fact forces us to attribute them to the

mechanism discussed in section 2 rather than to the appearance of self-crossing orbits
on

the

Fermi surface.

The plots of N versus cot ~9c, where ~9c and N are, respectively, the angle and the number

of
a

local maximum in the R vs. ~9
dependence, clearly demonstrate the periodicity of the

oscillations in cot ~9c
(figure3): N

=
A~(S) + B~(S) cot ~9), where the signs + correspond to

positive and negative values of ~9c, respectively. We note that the experimental data are fitted

well by straight lines for every N, while the theory predicts the oscillations periodicity only
for big N and sufficiently small ~9c when cot ~9c » (12). For a

given the straight lines

corresponding to positive and negative values of ~9c intersect the N-axis, generally, at different

points, although their slopes coincide within +5$lo, I-e- AA(S) e A+(S) A~(S) # 0, B+(S)
m

-B~(S). The cut-oft difference, AA, changes its sign in the vicinity of S m 70° + 5° and at

angles far enough from this angle approaches to the value +0.3. According to the considerations

of section 2~ it means that electron hopping takes place along
a

direction tilted away from the

c*-axis in the plane forming the angle approximately 70° + 90°
=

160° with the a-axis. The

direction of the in-plane component u
of the hopping vector h is shown in figure 4 and is close

to the -a) direction, where aj is the coniponent of the inversed latice vector a* perpendicular

to the c*. Using the cited above value of AA and equation (12) one can
evaluate an angle

a

between the hopping vector h an(I the c" direction: a e arctan(u/d) m 6°
"

8°, u/d m 0.ll.

Using equation (12) one can determine the form of the Fermi surface transverse cross-section

as
described in Sec. 2. The results are shown in figure4. The Fermi surface cross-section area

turns out to amount to m 3.9 x 10~~ cm~~ that is close to the value, obtained from the SdH

oscillations frequency Scsc m 3.7 x
10'~ cm~~, which corresponds to 55% of the Brillouin

zone

area
SBz Ill. The form of the cross-section is in qualitative agreement with that calculated in

[I Ii.
It should be noted that the sharp peak at ~9 =

0° in the R vs. ~9
dependences diminishes

when the angle S approaches to
~-

60°, and becomes undetectable in the angle interval S
=

65°

to 75° (see Fig.2). As mentioned above, in the
same

angle interval the cut-OR difference in

N vs. cot ~9c dependencies is small and changes its sign. With further increasing the S the

peak sharply restores. Special efforts have been undertaken to prove that the effect is not a

consequence of
a

non-controlled misalignment of the sample.
At present, it is not clear why the peak disappears. Its existence seems to be associated

with the appearance of the open orbits along the Fermi surface cylinder at ~9 =
0. So, it is

natural to suppose that at S m 70° + 5° the contribution of the open orbits to the conductivity
suddenly decreases. This might happen, for example, if the cylinders are

connected by necks

in the plane perpendicular to the direction S m 70°, so that closed instead of open orbits
are

formed at ~9 =
0. The existence of such necks should not influence markedly the applicability
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and the (a, b).plane for different angles 8; the angles ~ and 8 are shown in the inset.
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Fig. 3. Dependences of the magnetoresistance local maximum number N on cot~ac, where ~c are

angles at which the local maxima are observed, for the field rotation planes presented in figure 2.

of the theoretical model considered in Section 2 provided the necks are sufficiently small and

do not influence very much the Fourier expansion coefficients of the S(Pz) function at ~9
# 0

(see equation (3)).
As it was noted in [12,2,1], the necks may be also responsible for slow SdH oscillations

observed in crystals studied. The area corresponding to these oscillations is small, S
~-

5 x

10~~cm~~
m 0.6%SBz. The dependence of the oscillations frequency vs. ~9 at

=
0° is shown in
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in-plane component of the hopping vector. The magnitude of u is arbitrary. Framing lines indicate

the Brillouin zone boundaries, the c*-axis is directed upward with respect to the figure plane.

figure S. It may be conjectured from this dependence that the
area of an electron orbit sharply

diminishes with tilting the magnetic field direction from the c*-axis toward the -a-axis. This

fact can be explained if the necks go along a direction tilted out of the (a, b)-plane. It is not

excluded also that
some

pockets, lying between the Fermi surface cylinders and separated from

them by a
small gap, exit instead of the continuous necks. In this case a

magnetic breakdown

might occur at the particular field directions giving rise to a closed electron orbits.

In conclusion, we have studied the angular magnetoresistance oscillations in fl~(ET)2IBr2
under the magnetic field rotation in different planes perpendicular to the crystal (a, b)-plane.
The existence of the oscillations for every rotation plane evidences that they are associated

with quasi-two-dimensional character of the el,I iron system, namely, with periodic vanishing
of the

mean electron velocity component along the magnetic field direction, vH> in the case of a

weakly corrugated cylindrical Fermi surface [6 9]. Using the obtained experimental data we

have reconstructed the Fermi surface transverse cross-section of fl-(ET)2IBr2. The analysis of

the oscillations has provided an information about the electron interplane hopping vector. A
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0°.

sharp decrease ofthe contribution from open orbits to the in-plane magnetoresistance has been

observed for the field direction perpendicular to the hopping vector. It might be associated

with necks
or

pockets lying between the main Fermi surface cylinders.
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