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Abstract. A theory of the dynamics of polymerized membranes in the flat phase is presented. The

dynamics of dilute membrane solutions is strongly influenced by long-ran ged hydrodynamic interac-

tions among the monomers, mediated by the intervening solvent. We discuss the renormalization of

the kinetic coefficients for the undulation and phonon modes due to hydrodynamic "backflow" (2imm
behavior). The dynamics is also studied for flee draining membranes (Rouse dynamics) correspond-
ing to the Brownian dynamics method used in Monte Carlo simulations. The long time behavior of

the dynamic structure factor is given by stretched exponentials with stretching exponents determined

by the exponents of the elastic coefficients and the wave vector dependence of the Oseen tensor. We

also study the dynamics of the thickness fluctuations in red blood cells (flicker phenomenon) taking
into account the underlying polymerized spectrin skeleton. Qualitatively different dynamical behavior

is predicted for spectrin skeletons isolated from their natural lipid environment.

t. Introduction.

There b now considerable theoretical and experimental interest in the statistical mechanics of

membranes [I]. In contrast to linear polymers, surfafies fall into several universality classes [2],
depending on rigidity, surface tension, and various microscopic constraints. One class of mem-

branes that is being studied thoroughly is that of polymerized (or tethered) membranes [3]. These

are two-dimensional analogs of linear polymer chains, and their study b a natural extension of

polymer science. But, unlike polymers, which are always coiled up in three dimensions, tethered

membranes are expected to exhlit a flat phase with long range order in the surface normals at

low temperatures or high rigidity [4,5].
Thb flat phase has several unusual properties. First, the vely existence of a flat D

=
2 di-

mensional phase b surprbing, since the theorem of Hohenberg and of Mermin and Waguer [6]
forbids spontaneous symmetry breaking for two dimensional systems with a continuous symme-

try. However, the coupling between the in-plane elastic degrees of freedom and the out-of-plane
undulations introduces an effective long-ranged phonon-mediated interaction among the undula-

tions [4]. The system therefore does not fall in the regime of validity of the Hohenberg-Mermin-
Wagner theorem. Actually, the lower critical dimension found to leading order in a I Id-expansion
is Die

=
2 2 Id < 2 [7,8], where d is the embedding dimension. Second, the classical theory of
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elasticity is believed to break down due to the thermal out-of-plane fluctuations. The critical ex-

ponents, describing the nonclassical behavior of two-point correlation functions in the flat phase
can be evaluated in approximation schemes such as the e- or I/d-expansion [7-10]. The elastic

constants are singular at long wave lengths, implying for example that the classical Hooke law is

invalid in the flat phase.
The fluctuations in polymerized membranes were also studied numerically by Monte Carlo

simulations [11-13] and molecular dynamics methods [14,15]. The results of these simulations

suggest that simple triangulated tethered membranes with self-avoidance are always flat, due to

the large entropically-induced bending rigidity. A high temperature crumpled phase has so far

been observed only in the case of non self-avoiding "phantom" membranes ill].
From the experimental side there are several approaches to obtain tethered membranes. Poly-

merized networks appear naturally in a biological context [16,17]. An example of a biological
tethered surface is the spectrin protein skeleton of erythrocytes, separated from its natural envi-

ronment [18]. Polymerization of Langmuir films [19] and lipid bilayers [20] is another possibility,
provided that the films can be made sufficiently flexible and placed in an appropriate solvent. A

partial polymerization of phospholipid vesicles has been reported recently [21]. Recently thin

membranes of graphite oxide have been synthesized by exfoiliating graphite [22]. Probing the

conformation of these membranes using quasi-static light scattering shows that these graphitic
membranes are folded into bactal objects with a fractal dimension df m 2.5 indicating that they

may be in the crumpled phase.
Whereas the statics of polymerized membranes has been studied quite extensively, the dynam-

ics of polymerized membranes have been studied only in the crumpled phase [3,23]. These inves-

tigations follow closely the concepts known from polymer dynamics [24]. The dynamics of linear

polymers in a good solvent are fairly well understood. The simplest approach to polymer dynam-
ics is to neglect the hydrodynamic interaction between different segments, which is known as the

Rouse model [25]. It is known, however, that the long-ranged hydrodynamic interaction between

different monomers, mediated by the intervening solvent, strongly influences the dynamics (2imm
dynamics) [26,27]. The dynamics of thickness fluctuations of red blood cells has been studied by

Brochard and Lennon [28] using concepts known from the dynamics of surface waves [29].
In this paper we extend the equilibrium statistical mechanics of polymerized membranes in

the flat phase to time-dependent quantities and study the dynamics of membranes in a solvenL

Our purpose is to calculate transport coefficients like the diffusion constant of the center of mass

motion (molecular weight dependence), correlation functions of the in-plane and out-of-plane
modes and the dynamic scattering factor. The results are parametrized by the amplitudes and

exponents of the (singular) equilibrium elastic constants and by transport coefficients.

We consider polymerized flat membranes, I.e., a system of atoms or monomers that are con-

nected to form a regular two-dimensional array embedded in d-dimensional space (see Fig.I).
What distinguishes the static universality class of tethered membranes from liquid membranes is

their fixed connectivity. The statics of the flat phase of polymerized membranes is characterized

by a non local wave vector dependent bending rigidity, and in-plane elastic constants [1,4,7,9]

n(k)
-J

k~'-~+2'
,

(1.1)

1(k)
-J

p(k)
-v

k~ (1.2)

In dynamics, additionally, the permeability ofthe membrane to solvent molecules plays a crucial

role. Consider a simple model of beads of radius
a

connected by permeable tethers as shown in

figure I. We neglect for now intemal elastic forces within the membranes. For very large mesh

size the velocity of a particle is determined only by the local hydrodynamic forces acting on it.
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Rg. I. Simplified model of a polymerized membrane vdth beads connected by tethers. In fishnet-like

polymers such as spectrin, these tethers are themselves linear polymer chains. A force F acting on a particle
generates motion of the solvent indicated ty the lines vith arrows.

The bare vhcous drag coefficients (u,1~ relating the force on the particle to its in-plane (u) and out-

of-plane (h) velocity is then sitnply
(u,1~ =

6~qa, where q is the dynamic vhcosity of the solvenL

In general however, the velocity of a particle depends in a complicated way on the forces acting
on all other particles, becallse of the long range solvent velocity field generated by a localized

force. The importance of this fluid backflow (hydrodynamic interaction) increases as the mesh

size of the polymerhed network decreases. If the membrane b completely itnpermeable to the

fluid, the out-of-plane modes become slaved to the fluid motion perpendicular to the plane of the

membrane. In this case the dynamics b very similar to that of surface waves [29]. The in-plane
motion, however, should still show some slip relative to the liquid.

The above argument shows that the dynamics of polymerized networks are sensitive to the

permeability of the membrane for solvent molecules. We can think of highly permeable and itn-

permeable membranes as constituting two different dynamic universality classes of polymerized
membranes. As an example of highly permeable polymerized membranes one may think of iso-

lated spectrin networks, whereas red blood cells themselves (I.e., a lipid bilayer with a spectrin
skeleton attached) represent impermeable Membranes.

The bare friction of the membrane vith the solvent is determined by the structure (perme-
ability) of the membrane. We will show in section 2 that the hydrodynamic interaction between

different monomers causes the renormalized mobility (p
-v

I IQ to become inversely proportional
to the wave vector k.

One explanation of this effect is that in the limit of [on g wavelength the motion of the membrane

becomes slaved to the dynamics of the solvent. In this limit the dynamics becomes equivalent
to a classical hydrodynamic problem with the boundary condition that the vhcous stress of the

solvent equals the elastic
forc~s

of the membrane. Upon neglecting all nonlinear effects one has

for example 2q(~ p =

KS and
j~

= ~z for the out-of-plane fluctuations h, where it the
z z

velocity field of the solvent and p the hydrostatic pressure. The expression for the in-plane motion

are similar. A simple scaling analysis of these equations gives ~~l'~~ -v

nk~h(k, t), I.e., the

kinetic coefficient is inversely proportional to the wave vector k. One has to note, however, that the

above consideration is based on the assumption that one can neglect nonlinear effects. In order

to study those one has to use more sophisticated methods adapted from dynamic renormalization

theory, which will be the subject of section 3.
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The crossover %om a wave vector independent friction ( ~ltouse dynamics, highly permeable
membranes) to (

-v
k (Zhnm dynamics, impermeable membranes) is determined by the ratio of

the ~bare) friction coefficients (u and
(1~

for the h-plane and out-of-plane motion and the dynamic
vhcosity q of the solvent. The crossover vector for the out-of-plane undulation mode is found to

be

kh
=

),
(13)

and for the transverse and longitudinal phonon modes one obtains

ki
=

),
and kjj =

)
(1.4)

Q

Fbr large vhcosity q and%r for low friction ( (high permeability) the crossover wave vectors

become very small or even less than the smallest accessible wave vector km~
= «

IL. In this case

the dynamics b Rouse-like in the entire wave vector reghne. In the opposite regime of very small

vhcosity and/or small permeability the crossover to Zitnm dynamics sets in already for very large

wave vectors. The location of the crossover point can thus be tuned by the vhcosity of the solvent

and%r the permeability of the membrane.

In section 3 we study the Rouse and 2imm dynamics by dynamic renormalization theory and

find that the critical dynamic exponents characterizing the wave vector dependences of the char-

acteristic frequencies ru,1~ for the (overdamped) undulation and the phonon modes are

rl~
-~

k~'
,

(1.5)

ru
-v

k~.
,

(1.6)

where the dynamic critical exponents are determined by the wave vector dependences of the mo-

bilities and the static exponents ( and w,

~~' l~ ~~ $~n~~y~~nl~cs
~~'~~

and

12
+ w

for Rouse dynamics
, ~~~~ l + w

for Zhnm dynamics

Here and in the remainder of the Introduction we specialize to a D
=

2 dimensional membrane

embedded in d
=

3 dimensions. The corresponding expressions for general d and D can be found

in the main text. Estimates of ( from simulations are in the range (
=

0.5 0.67 [11,12,15], while

w is now believed to be rather small [30].
A quantity which can be directly measured in experiments b the dynamic structure factor. In

the regitne where the wave length is much larger than the linear dimension L of the membrane

only the overall translational motion of the membrane can be seen. Then the dynamic structure

factor shows an exponenthl decay

S(k,t)
-v

exp [-Dk2t]
,

(1.9)

where the diffusion constant is
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~ II /L2 for Rouse dynamics,
~~ ~~'~' l IL for Zimm dynamics.

This result should be compared with D
-v

L-~/5, obtained for Zitnm dynamics in the crumpled
phase [23].

In the opposite regime, where the wave length is much smaller than the linear ditnension of the

membrane, one is probing the internal motion of the membrane. The long time behavior of the

dynamic structure factor is given by s~elched eqonen4Alv

S(k,t)
-J

expj-Ck~t"j
,

(I.ll)

if the scattering vector lies in or orthogonal to the membrane plane. For out-of-plane scattering
vector the stretching exponent is given by «Rowe =

2(/(2 + 2() in the regime of Rouse dynamics
and azinm =

2(/(1 + 2() in the 2imm regime, where ( is the roughness exponent. For in-plane
scattering vector we let a -

fl, where flRowe
= w

/(2 + w) and flzimm
=

WI (I + w). Since the ex-

ponent w, descrling the renormalization of the phonon modes, is supposed to be a small number,

the latter decay represents an enormous stretching which approximates an algebraic decay. For

the special case w =
0 the static structure factor has power law singularities with a temperature

dependent exponent analogous to the behavior of two dimensional solids. The time dependence
is characterized by an algebraic decay, which is half as fast as the spatial decay for Rouse dynamics
and equally fast for Zitnm dynamics.

An important application of the dynamics of flat membranes are the thermal thickness fluctu-

ations of red blood cells. The membrane of an erythrocyte essentially consists of a lipid bilayer
~believed to be in a liquid phase) with a spectrin polymer network attached to the inner layer
through proteins. The presence of the spectra implies that unlike the phospholipid component
of a biological membrane, the composite red blood cell membrane exhlits a shear modulus.

Under normal physiological conditions the red blood cells show a remarkable flicker phe-
nomenon, which can be seen by phase contrast microscopy [28]. This flicker due to thermal fluc-

tuations of the cell thickness.

Recently the spectrin skeleton of erythrocytes has been separated from their natural environ-

ment [18]. These isolated spectrin networks differ from the composite red blood cell not only in

the magnitude of their elastic constants but also -and more importantly- in their permeability for

solvent molecules. Whereas the permeability of the red blood cell is mainly determined by the

flow through small protein channels, the isolated spectrin network is highly permeable for sol-

vent molecules. As argued above the permeability of the membrane determines the location of

the crossover from Rouse to Zitnm dynamics. Hence we expect qualitatively different behavior

for isolated spektrin networks as opposed to red blood cells as a consequence of their different

permeability and elastic properties.
In section 5 we consider a simplified model of two membranes, separated by an average dis-

tance d and neglecting edge effects. We find the following crossover scenario for the thermal

thickness flucmalions: For high~y penneablk membranes, like the isolated spectrin network there

is a crossover from Rouse to 2imm behavior at a wave vector kl~ =
(1~/4q. As a consequence of

hydrodynamic screening effects this is followed by a reentrant crossover to Rouse dynamics when

kd < I. The 2imm behavior isrestricted to a wave vector regime (h/4q > k > I/d. For highly
permeable membranes this becomes a very narrow regime or even vanishes if kl~ < I Id.

A completely different crossover scenario is obtained for bnpemeabld membranes, like the

composite red blood celL There one has to distinguish between large and small ratio of stretching
to bending energy y. For y » I, which is the case for red blood cells, one obtains a crossover from

2imm dynamics with a kinetic coefficient proportional to Ilk to a kinetic coefficient proportional
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to k2 when kd < I. In the regime y < < I the linewidth shows a crossover from Zimm dynamics to

a kinetic coefficient proportional to k. the results for the case of a very large ratio y of stretching
to bending energy reduce to the results of Brochard and Lennon [28] for fluid like membranes

provided we assume a liquid-like roughness exponent (
=

I. But, in addition to the lipid bilayer
there is also a spectrin network attached to the bilayer leading to a solid-like structure of the

composite objecL This implies that there is a crossover bom fluid- to solid-like behavior which

has observable static [30] as well as dynamical consequencies.
The crossover scenario of the fluctuations of the difference of the ih-plane modes is similar to

that of the thickness fluctuations in the case of highly permeable membranes, whereas for imper-
meable membranes the crossover is from 2imm to Rouse dynamics. The in-plane modes have

up to now not been studied experimentally. It would be interesting to design experiments which

measure the in-plane dynamics of membranes.

Whereas the crossover of the relative modes is characterhed by a change in the wave vector

dependence, the center of mass modes for phonons and undulations show an enhancement of the

amplitude by a factor of two in passing from kd » I to kd « I.

We thus conclude that the crossover scenario, upon passing from kd < < I to kd > > I, depends
sensitively on two factors, the permeability of the membrane and the ratio of stretching to bending
energy. Thb becomes evident ifone considers the two extreme cases (I) an itnpermeable fluid ((

=

I) lipid bilayer (with y » 1) [28] and (it) polymerized (( m 0.5) holated spectrin networks with

high permeability. The line width for the flicker modes are
r)°

-v

k6 and r)"~
-v

k3, respectively,
I.e., they differ by three powers in the wave vectorl

The remainder of the paper is organized as follows: In section 2 we introduce the Langevin
equations of motion describing the coupled dynamics of the membrane-solvent system. Using the

functional integral formulation of Janssen [31] and de Dominicis [32] we define a generating func-

tional for the dynamic correlation and response functions. By integrating out the solvent velocity
fields we find an effective fluid-mediated long ranged hydrodynamic interaction between different

segments of the surface. In a preaveraging approximation (similar to that used for linear polymer
chains), the hydrodynamic interaction leads to a renormalimtion of the kinetic coefficients. The

renormalization of the resulting effective model is studied in section 3. It is found that the dy-
namic exponents can be expressed entirely in terms of the static exponents and the exponent of

the kinetic coefficients. The scaling properties and the wave vector and time dependence of the

dynamic structure factor h dhcussed in section 4. In section 5 we discuss the hydrodynamic modes

of two flat membranes. This can be considered as a model system for red blood cells. In the Ap-
pendix we show how to obtain the scaling functions from a self consistent dynamical theory which

is similar to mode coupling theory.

2. Model.

In thb section we introduce equations of motion for the dynamics of a membrane in its flat phase
suspended in a fluid solvent. We shall describe the dynamics of a membrane-solvent system by a

set of coupled Langevin equations.
Apart bom the nonlinear coupling between the bending and stretching modes, which determine

the static properties of flat membranes, the dynamics of dilute membrane solutions are strongly
influenced by long-ranged hydrodynamic interactions, medhted by the intervening solvent. We

assume that the dynamics is purely dissipative since the contributions of the inertial terms for

membranes in a solvent can be neglected for sufficiently large times. The Langevin dynamics
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for the membrane conformation #(s, t) ( s is an intemal coordinate parametrizing monomer po-

sitions) states that the friction force (( fit R; (s, t) goq [ji(s, t), t]j is balanced by the intemal

elastic forces of the membrane and the random forces proportional to e;(s, t)

°~'f> ~~
=

-L); ((~l~)) + go~;jfi(s, i), ij + e;(s, i)
,

(2.i)

where the matrix of the bare friction coefficients (( per unit area is the inverse matrix of the bare

Onsager kinetic coefficients L);. The values of these friction coefficients depend on the perme-
ability of the membrane to solvent molecules. As discussed in the Introduction, the permeability

should depend on the mesh size. If the membrane is completely impermeable to the fluid the On-

sager coefficients for the out-of-plane motion are zero and these modes become slaved to the fluid

motion perpendicular to the reference plane of the membrane. The in-plane motion, however,
should stiff show some slip relative to the liquid.

7i((ji)) is the bee energy functional (made dimensionless by dividing by kBT) for the mem-

brane conformation field ji(s, t). In the flat phase the excitations can be decomposed into trans-

verse undulations, h, and intemal phonon modes, u

#(s, i)
= m is + (u(s, i), h(s, i))j (2.2)

The quantity m is the order parameter and characterizes the extension factor, I.e., the ratio

between the actual linear size of the fluctuating membrane and its size at T
=

0. The internal

space of the membrane is characterized by a D-dimensional vector s. Note that vectors s
in the

intemal space are written in boldface, while vectors
ji in the d-dimensional external space are

denoted with an arrow.

The free energy functional is given by [4,5]

7i
=

/ d~'s I)lou(; + pou(; + (° (ii~h~)~ (2.3)

with the straiJ~ tensor

vii =
ia;u; + a; vi + a; ha a; h«1 (2.4)

The coefficient no b the bare bendiJ~g'rigidity, and lo and PO are the bare Lam6 coefficients. The

parameter go is the bare strength of the hydrodynamic interaction, I.e., the coupling to the solvent

velocity field ~; [£, ii. This coefficient is arbitrary, and may be taken to be unity as is required for a

Galilean invariant model. One should also note that mode-coupling coefficients of the streaming
type (here go) are not renormalized in general [33,34]. If one sets go equal to zero, equation (2.I)
describes the free draining ~ltouse) model for the membrane dynamics.

The dynamics of the solvent velocity field is descried by fluctuating hydrodynamics. The rel-

evant hydrodynamic equations of motion for the fluid velocity are those of low Reynolds number

hydrodynamics. The solvent dynamics is thus described by linearized Navier-Stokes equations,
which incorporate friction forces due to the membrane and the random thermal velocity fluctua-

tions in the fluid

~'l'~~
=

voo~~;(£, t) h f d~s ~jjjfij b(£ ji(s, t))
I)

+ (;(£, t). (2.5a)
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Here vo is the kinematic solvent vhcosity, p h the hydrostatic pressure, PO is the fluid mass

density and 0(£, t) are random thermal forces driving the system to equilibrium as t
- c~J. It is

assumed that the fluid is incompresslle, I.e.,

it I
=

0, (2.5b)

which is an adequate assumption for descn~ing low frequency dynamics ofthe membrane. Inertial

terms are also unimportant at low frequencies. The random forces 6(s, t) and 0(£, t), necessary
for producing the correct equilibrium dhtrlution function for both the membrane and the solvent

in the long time limit, are Gaussian white noise sources with zero means and variances

< 8~(S, t)e; (S', t') > =
2Lib(S S')b(t t'), (2.6a)

< (;(I,i)(;(r,1') > =

-2noo2J(I- t)J(i i')J;;
,

(2.6b)

where no = vopo is the dynamic vhcosity and we have set kBT
=

I. It can be shown that cor-

relations calculated from the above Langevin equations satisfy the usual fluctuation-dissipation
relations.

The equations of motion for the fluid (2.5) can be formally solved by first transforming into

k-space

_

~~ ~
b7i -;tR(s,t)

+
~p(I, t) + ("(~> t) ~~'~~~

i~"j~'~~
+ vok~~;(~>t)

" ~p
/~

~blo(S>t)~ ~°

it I(I, t)
=

0, (2.7b)

and then eliminating the pressure in equation (2.7a) using the incompressibility condition (2.7b).
One finds

where

P((I)
= b;;

(~J
(2.9)

is the transverse projection operator. The formal solution of equation (2.8) is

~i(~> t)
=
£~ dt~e-~°~'~~-~'>Pi(k) (>(~> t) i f d~S j~ll, ,~e"~~~~'>l

(2.i°)

This shows that, whenever a force (2nd term in the square brackets on the right hand side of

Eq. (~10)) acts on a surface element of the membrane, the result is a distorted velocity field in the

whole fluid. This "backflow" decreases only slowly (inversely proportional to the distance) and

drives other elements of the membrane into motion. As we will see, this hydrodynamic interaction

leads to a drastic renormalization of the kinetic coefficient. Note also that only the transverse noise

(f (I, t)
=

P((j (I, t) enters since the fluid is incompressible.
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As in discussions of polymer chain dynamics [24], we assume that the typical solvent relaxation

times are much shorter than those of the membrane conformation and make the replacement [35]

e-"°~'l~~~')
-

~

~
b(t t') (2.I I)

lAok

In this Markovian approximation the formal solution of the fluid equation simpli%es to

~;(i,t)
= (~ l§((i) (; (I, t) ~° / d"s ~/)

~~
exp

(-it #(s, t))j (2.12)
"o PO ; S>

Therefore the hydrodynamic interaction term
gall#(s, t), ii in the Langevin equation for the

membrane becomes

90~i ljl(~> f) fl
" 90

/ ~~d ~ 41') (j (I, f) ~~P (~ii jl(~, f))
~

~[
/

d~s'jR)),, i~
exP

I-i'-
I#(S>t) #(s'>t)) II

~~ ~~~

One way to proceed would be to insert these expression into the Langevin equation for the

membrane and study the dynamics directly in terms of the equations of motion as in the renor-

malization group approach to dynamic critical phenomena [36~7]. Here we formulate instead

a path integral description for the membrane-solvent dynamics, a method which has also been

successfully used to study critical dynamics.
Before analyzing the effects of the nonlinearity in the static Hamiltonian and the hydrodynamic

interaction let us consider a simple case first. If the membrane is completely itnpermeable for the

fluid and there is no slip for the in-plane motion of the membrane, the dynamics of the membrane

becomes completely slaved to the dynamics of the solvent, I.e.

(
= ~z (t), and

=
~;(t), (i

= z, y).

Neglecting effects from the roughness of the membrane surface and the nonlinearities in the

static Hamiltonian (see SeCL 2.2) the dynamic problem is equivalent to a classical hydrodynamic
problem vith the boundary conditions that the vhcous stress of the fluid equals the elastic forces

of the membrane

where for we are the case ~y = 0. these boundary

efficients
A and B

the solution of the linear
_ ik~-iwt (~

p =
-iu~pAe~~e'~~~'~'

Without even solving these equations explicitely one can recognize bom a pure scaling analysis
that the equations of motion for the undulation and phonon modes are of the form

~~~~~
'~

~°~~~~~'~~'

JOURNAL DE PHYSIQUE r T i, Pr 12, DtCEMBRE iwi 68
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~~~~~
~~

'~
~~° ~ ~~°~~~~~~'~~'

Compared to a Rouse model with wave vector independent kinetic coefficient the above anal-

ysis shows that in the regime where the membrane dynamics is slaved by the solvent motion the

kinetic coellients become inversely proportional to k. Here this is a consequence of the solution

of a classical hydrodynamic problem with boundary conditions similar to the well known problem
of capillary waves. The physical reason is the long ranged nature of the hydrodynamic backflow

as explained above.

In the next section we formulate a path integral description of the dynamics, which allows us to

study the effects of static and dynamic nonlinearities and to scrutinize the approximations made

in the above hydrodynamic analysis. Furthermore, this formalism allows us to study the general

case of a D-dimensional membrane embedded in d dimensions.

2. I PATH INTEGRAL FORMULATION AND DYNAMIC FUNCTIONAI- In Order to implement dy-
namic renormalization theory in a way analogous to static critical phenomena we need a func-

tional which generates the perturbation expansion for the frequency dependent correlation and

response functions, which follows from the equations of motion. We shall use a functional inte-

gral formulation [31,32~38~39] which converts the I-angevin equations into a dynamic functional

with one additional field [39]. The idea is that instead of solving the I-angevin equations (2.I) and

(2.8) for the membrane field ji(s, t) and solvent velodty field I(jl, t) in terms of the random forces

6(s, t) and [ (jl, t) and then averaging over the Gaussian weight

'°(181> Iii I)
'* ~XP l~(

/
dt

/
d~SeS(S> t)(L~~ )iJeJ (Si

)j

x exp j- j
dt

j ddzii (£, t) (no (I?)2)- IL (£, t)j ,

~~'~ ~~

one can eliminate the random forces in favour of the conformation variables for the membrane

and the velocity fields of the solvent by introdudng a path probability density W((R)j (v)) via

W(lRl, lvl)DiRlDivl
=

W(let, I(il)DielDi(il (2.15)

Furthermore, it b convenient to perform a Gausshn transformation in order to "linearize" the

dynamic functional. TMs is accomplished by introducing response fields fi and [31,32,38,39]

w(lRl> l~l)
"

/ Dlikl ID lib] ~~P (J(lRl> IRI l~l> 161)j (2'16)

For more details on the general formalism we refer the reader to references [31,32,38,39]. The

dynamical functional h given by

J(iRi> iii> i~i> iii)
"

Jflu,d(iRi> iii> i~i> iii) + Jmembrane(iRii ikii i~i> i~i) (2.17)

where

Jfluw
=

/
/dt16; (I,t)qok~P((I)@;(-I,t) @;(I, t) l§((I) [fi, vok~] v;(-I,t)

~

i@;(~>
t)iii(i) f d~S ~~ll

i~
exP li~

(S>t)11
~~~~~~
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and

Jm~m~nn~ = fdDs f
di (i(s, i)Lj;jl;(s, i) i(s,i) a,R~(s,i)

+ Lj;
~~)j~

~j
,

+ golli(S,t)411')v>ijl(S,t),
lj ~~ ~~~~

We have used the notation f~
=

f d~k/(2x)~ and f~
=

fdw/2x. Since the dynamical func-

tional is quadratic in the solvent velodty fields, they can be integrated out exactly. One finds

~XP (~efl(lRl> lkl)j
" /I'll@I /l'lvl ~XP (~(lRl> lkl> lvl> I@I)j

~

" C°"t. X eXP (JRou«(lRl>
lhl) + JHydm(lRl> lhl)j

~~

The first term,

Jx~u«(jRj, j&j)
=

f dDs f
di (i(s, i)Lj,j(s,i)

-i(s,i) (a,R;(s,i) + Lj ~~~j
~)j

,

~~'~~~~

corresponds to the dynamics of a bee draining membrane. In analogy to the polymer case we call

it the Rouse part [25] of the dynamical functional. The second term is more conveniently written

in Fourier space

JHydro(lRl, I RI)
=

=

) ( / (Q;(I, W),
-Q;(I, W))(A~ ~(l, W));> (Q; (-I, -W), -Q; (-I, -W))~,

~~'~°~~

and describes the hydrodynamic interaction benveen different parts of the membrane. Here

~-l([ ~))_,
l 0 lW + V0k~ lpT([) (~ ~~)

' 'J ~2 + (~~~2)2 -jw + v~k2 ~~~ ~2 ij

and we have defined the "generalized" Fourier transforrm

Q;(I, t)
=

/ d~s
~

/)
~~

exp I-it ji(s, t)j
,

(2.22a)

and

t~;(I, t)
=

d~slii(s, t) exp
I-it ji(s, t)j (2.22b)

Explidtely one finds in the Markovian approxhnation (see Eq. (2. II))

JHyd»((R), (li))
=

j $ / d~s / d~s' /
dt

li~(s, t)P((I)fi;(s', t)
~ ~~

)(s, t) pf~j) 6~l ~-;i.(#(s,q-#(s',q)
' bR;(s',t)j
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This can also be written as

JHydm(lRl, till)
=

/
dt
/ f(q,t)K;;(-q) (hi (-q,t) ~~~)

~j
(2.24)

where

K;;(q)
=

/ / d~s / d~s'P((I) [~e~'~'(~~~') exp
I-it (ji(s, t) ji(s', t))j (2.25)

k no

2.2 PREAVERAGING API'ROXiMATION. One way to analyze the hydrodynamic interaction is

to replace the operator K;;(q) by its averaged value < It;; (q) >, the so called Oseen tensor.

This preaveraging approximation is frequently used in polymer physics and is due to Kirkwood

and Riseman [27] and Zimm [26]. As in reference [15], we assume that the static fluctuations

discussed in reference [4,7,9] have been incorporated into renormalized, wave vector dependent
elasticconstants. Accordingly, we make the replacements <o -

KR(q)
~

q~~~+~',
~o -

~R(q)
~

q~, and lo
-

AR(q)
~

q~ in equation (2.3). Upon averagingwith respect to this fully renormalized

static Hamiltonian one finds

< K;;(q) >=
L~ / /d~(s s') l~((I) ~e~~(~+~~l'(~~~'l

~

x exp (-2ki km

x~"'(p)
sin~(p (s s')

2)j
,

~~ ~~~

p

where the static susceptAility matrix x~"'(p) reads

xh(P)
=

x~~(P) =< h(p)h(-p) >m ~~/~~, (2.27a)

fop the undulation modes with the roughness exponent ( and

~
l

(2-27b)~j(p)
> P;[(P)~~ ~

))p2+W
~ ~'~~~~P~~~

for the phonon modes with the exponent w. As shown by Aronovitz and Lubensky [9], the expo-
nents ( and w are not independent, but obey instead the important scaling relation

(
=

(4 D + w). (2.28)

The coellidents K, and p are wave vector independent renormalized amplitude factors. By a

stra1glltforward scaling analysis of equation (2.26) one finds

< K» (q) >=q~<°-~L~ !~ i,,
f d~ ~Pi(I) ~~zj~+

~j~
e->~?~+"~~.~

x exp (- Ah(da)<x<~'~(q~~~lj (2.29)
~

x exP I- Ii /
~~At~(es) + lAt~

es)) x<~+~~-~i~i~?i~-~l
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where dco
=

d D is the co-dimension and the amplitude factors

Ah (?s)
=

f d~vv~~~~'(I C°S(Y is)) (2.30)

and

Ai,T(?»)
"

f
d~V V~~~~(I C°S(Y ?»))PtT(Y) (2.31)

depend on is
=

(s s') /<s s'<. ki and k,, denote the in-plane and out-of-plane components of

the wave vector I respectively. This scaling analysis is valid for 0 < ( < and 0 < w + 2 D < 2.

Otherwise the p-integration in equation (2.26) depends explicitly on the lower or upper bounds

of the integraL With these restrictions the leading wave vector dependence of the Oseen tensor

in the flat phase is given by

< 1<fla,(q) >~- q~«~~ (2.32)

Currently accepted values of ( for d
=

3, D
=

2 are in the range 0.5 < ( < 0.67 [4,15,30,40]
while it is believed that w > 0 [9,15,40]. The long wave length behavior of the Oseen tensor

is thus independent of the precise values of the static critical exponents ( and
w.

Furthermore,
it does not depend on the internal and external dimension separately, but instead solely on the

co-dimension. From this analysis the hydrodynamic interaction can be regarded as relevant for

d« < 2, marginal for dco
=

2 and irrelevant for dco > 2. The marginal case corresponds to rod

like polymers (D
=

I) in d
=

3 dimensions with bending rigidity.
The above result for the Oseen tensor is equivalent to replacing the term ji(s, t) ji(s', t) in

the hydrodynamic interaction, equation (123), by its average value s
s', which h non zero due to

the fact that the membrane is flat on average. This approximation corresponds to neglecting some

correlation effects in the hydrodynamic interaction. The I /q-behavior of the Oseen tensor reflects

the broken symmetry of the flat phase. In the crumpled phase the average value of ji(s, t) ji(s', t)
is zero, but there are non trivial renormalizations due to self-avoidance (see below).

The dynamic properties of a solution of self-avoiding crumpled membranes has recently been

studied by Mutukumar [23] using a preaveraged Oseen tensor approach. He finds for the Oseen

tensor

< Kcrumpied >'~ q~~ ~~~ ~~ (~"~~)

where

D + 2
(2.34)

" " @

is the exponent of the mean square dbtance benveen two points of the manifold,

< ijl(°) jl(L)l~ >= lLl~"
,

(2.35)

found in a self consistent approach for the excluded volume eflecL This result for the exponent

v agrees with a Flory type argument [3], and with the value found by numerical simulations [3],

v =
0.80 + 0.05. A first order e-expansion gives v =

0.556 [11,41]. If the Flory value for
v

(v
=

4 IS, for d
=

3, D
=

2) is used the wave vector dependence of the Oseen tensor is given by

< Kcrumpjed >~- q~~'~, which is close to what we found for the flat phase. But, the physical basis

is completely diflerenL
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In the crumpled phase the wave vector dependence of the Oseen tensor depends cruchlly on

the renormalization of the "elastic" coellicients due to self-avoidance or equivalently on the fractal

dimension df
=

2 Iv m 2.5 of the crumpled objecL One should note that without self avoidance

(I.e., for "phantom" membranes) the radius of gyration scales as Rg
~

41implying that the

Oseen tensor would scale as < K~mmpled >~ q~2, which is completely different from the above

result with self-avoidance.

In the flat phase the wave vector dependence is dominated by the fact that the membrane is

a flat objecL Actually, summarwing both results, equations (132) and (2.33) the wave vector

dependence can be written in terrm of the bactal dimension as

< Kcmmpled >'* i~~~~~~~~i'" (2.36)

In the flat phase, the leading wave vector dependence of the Oseen tensor can be obtained by
making the replacement

exp
(-it (ji(s, t) ji(s', t))j - exp

(-it (ji(s, t) ji(s', t))j (2.37)

in the hydrodynamic interaction, equation (124). With thb approximation, the resulting dynam-
ical functional corresponds to the following set of effective Langevin equations for the phonon
modes

and the undulation modes

~~~~
~~ ~~~~ 6h/~i, t) ~ ~~~~'~~

'

~~'~~~~

where the hydrodynamically renormalized kinetic coefficients are given by

Dii(k)
"

~°~" ~
~~

k

~'~ ~~~
'

~~ ~~~~

~2L(k)
=

Lo + ) (2.39b)

The covariance of the nobe terms are

<
b;(k,q0;(k',1')

>= 2D;;(k)6(k + k')6(i 11)
,

(2.40a)

<
b~ (k, i)b~(k',1')

>= 2L(k)b(k + k')b(i 11 (2.40b)

The hydrodynamic interaction leads to kinetic coefficients proportional to I /k in the long wave

length limi~ reflecting the long-ranged nature of the fluid-medhted interaction.

At the harmonic level one can already discuss the crossover from Rouse to Zimm behavior (for
sufficiently permeable membranes), I.e., a crossover in the kinetic coefficients from a wave vector

independent constant to the singular I /k-behavior. As can be inferred from equations (2.39), the

crossover wave vector for the out-of- plane undulations b given by

~2
kh

=

~ (2Al)
4qoLo
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For the phonon modes we find

~2
~~ qo~$o

'

(2A2a)

and

~2
k« "

$ (2A2b)

Note that the crossover bom Rouse to Zimm behavior for the longitudinal phononsis shined by

a factor of 2 with respect to tie
crossover for the transverse phonons, I.e., ki /k,,

=
2. The physical

reason for thin shift b that the fluid h incompressible. Therefore the coupling of the longitudinal
membrane phonons to the fluid motion is weaker than for the transverse ones. The crossover from

Rouse to Zimm dynamics is determined by the ratio of the friction coellicients of the membrane

and the viscosity of the solvent. Hence for membranes with a high biction coellicien~ or in other

terms low permeability for solvent molecules, andlor a solvent with a small viscosity the crossover

to Zimm dynamics already starts at large wave vectors. This implies that a membrane with a small

permeability can be descried by Zimm dynamics throughout the entire wave vector regime.
On the other hand, if the membrane b highly permeable for solvent molecules (small friction

coefficient) and%r the solvent has a large viscosity the crossover bom Rouse-like to Zimm-like

dynamics is shifted to very small wave vectors. the crossover wave vector may even become less

than the smallest accessible wave vector km~
=

«IL, where L is the linear dimension of the

membrane. Then the dynamics h Rouse-like over the entire wave vector regime.

3. Renormalization of the effective model and self consistent theory.

In thin section we study the renormalization of the effective model introduced in the preceding
section. lb cover both cases, Rouse and Zimm dynamics, we take the kinetic coefficients to be of

the form

Lo(P)
=

LOP°
,

(3.10t)

and

Di (P)
=

(DIP;§(P) + DT41(P))P° (3. lb)

The exponent a =
0 corresponds to Rouse and a =

dco- 2 (a
=

-I for D
=

2 and d
=

3) to Zimm

dynamics. WMle the Zimm dynamics is the realistic model for a single membranes with a small

permeability for solvent molecules, the Rouse model h important for the following reasons. (I) As

discussed in the preceding section there is a crossover from Rouse to Zimm behavior by passing
from smaller to larger wave vectors. This crossover may even be absent for membranes with

a large permeability and/or a solvent with a large vhcosity. (ii) The Brownhn dynamics method

used in Monte Carlo simulations actually corresponds to Rouse dynamics. (iii) The hydrodynamic
interaction is relevant only if the co-dimension dco

=
d D < 2, it is marginal for dco

=
2, and

irrelevant for d~ > 2 (see Sect. 2.2).
Now we study the consequences of the vertex structure and fluctuation-dissipation relations on

the renormalization of the kinetic coellicients. The dynamic functional for the effective Langevin
equations reads

J(lRl, lkl)
=

Jo(lRl, lkl) + J~<(lRl, lkl), (3.2)



1730 JOURNAL DE PHYSIQUE I N°12

where the harmonic part of the dynamical functional is given by

Jo(lRl, lkl)
=

/ /
[J(lhl, Ill) + J(lUl, lfil)j

,

(3.3)

with

J(lhl,ill)
= -)(I"(P,W),h°(P,W))At~(P,W)(l~(-P,-W),h~(-P,-W))~ (3.4)

for the bending modes and

J(lUl, Ill)
= -)(fi'(P,W), U'(P,W))Ai(P,W)(ii~(-P, -W), U'(-P, -W))~ (3.5)

for the phonon modes. The tensors Ah and Au are

1_~ ~ ~a i~~ ~ ~ ~a~~4 ~ ~ ~2~Ai~(p>W)
"

b~~
_i~ ~ ~~~a(~4 ~ ~~~2~

~

o
~ (3.6)

and

~~~~'"~ l-iw6~~$~(p)
~~~'~

~~'~~~~
'

~~'~~

with

A" (P)
=

DIP~P;j(P) + DIP°Pi(P)
,

(3.8a)

and

B~'(p)
=

Dlp"(Ao + 2~o)p~P;((p) + Dlp"~op~li((p). (3.8b)

The transverse and longitudinal projection operators in the D-dimensional internal space are

defined by

fl((p)
=

6'3 ~~'
,

(3.9a)
P

and

J§§(p)
=

~l' (3.9b)
P

Note that the Onsager coefficients for the undulation modes Lo and the phonon modes Do are

in general differenL

the interaction part of the dynamical functional consists of three pans, two 3-point vertices

~#
"

i~~~ fl / ~(£ P")~(£Wi )~0P~
~0

((P3 PI )P~ ~ (P3 P2)P~j
~l

Pi>W.

~l ~l

(3,io)

~~0(Pl
2)P~)

~° (Pi Wl)~~(P2> W21'~~(P3> W3)
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~#
)~~~

fl / ~(~
Pi

)~(£
Wi) ~~0 ((P3 Pi )P~ ~ (P3 P2)P~ ~ ~0 (Pi P2)P~)

~l

P'>~'

~l ~l

X
ii'i~(P3) + Dl~~S~(P3)iP~~~(Pl >Wl)h~(P2> W2)11"'(P3> W3)

(3.ll
and one 4-point vertex

~~~ "

i

,,w,~~

i

P>~~~

i

">~~°Pt ~°~"~~~~
+

t "~~~~i
~Pi P2~~P3 P4~

~~.i~~

~

X

~Pl> ~~(P2>W2)h~(p3>

W3)h~(p4> W4).

Note that all legs of the vertices have a momentum factor. The diagramatic representation of

the vertices is shown in figure 2.

q P~
/ /

.:.,
(a) 'j-fi ~l')

Pi ~ (, i
~

~
~3 ~3

Pi
~ If

"'.:, (C)
~~

i:.~

Pg. I Interaction vertices in the dynanfic functional. A wavy line corresponds to a phonon correlation

field and a sfraight line to a undulation correlation field. The response fields are indicated by broken lines

((~)~ ~#, (b)~ J©,
(C)~ J~t ).

Since fluctuation-dissipation theorems play an important role in relating static and dynamic
critical exponents, we study them next. Adding to the Hamfltonian "external" fields Bh and Bu
which couple linearly to the undulation and phonon modes, the susceptibilities for the undulation

modes,

x(~
=

~ ~ ~ ~ <B,-o, (3.13)
68~

and the phonon modes

xi
=

~ ~ [B.-o, (3.14)
6Bu

can be written as [38]
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xt~(i)
=

-e(i)(
< h«(i)hfl(o) >, (3.15)

and

xi'(t)
=

-e(t)(
< U'(t)U'(0) > (3.16)

On the other hand one finds directly from the dynamical functional (3.2-3.12) that

Xl~(P>~) "< h~(P>~)L0P~l~(~P>0) > (3.17)

xi'(P,t)
=< U'(P,t)DS(Pifi~(-P,0) > (3.181

This implies the following relations,

~~W~~000(P>W)
"

~0P~ (~~100(P>W) ~~100(~P> ~W)) (~.l~)

~~~°~~~~(P>~°) ~~~~~P~ (~~~~~(P>W) ~~~~~(~P> ~W)) (~.~0)

connecting different vertex functions. Here r ~i,~, ~,~ denotes a vertex function with fi undu-

lation response fields I, M undulation correlation fields h, fl phonon response fields fi, and N

phonon correlation fields u. We shall now study the dynamic functional (3.2-3.12) using field-

theoretic renormalization theory [38]. lb remove the divergences, we introduce renormalization

factors, which we choose to parameterize as follows:

(I) wave-function renormalization

vi
=

Z~~u", hi
=

Z~~/~h", fi(
=

2~~fi", 1(
=

2~Q~1°, (3.21)

(it) kinetid coefficient renormalization

LR
=

22[~Lo, D(~'~~ =
2~Zi~D(~'~~, (3.22)

(iii) and vertex renormalization

~R =
M~~Z~ZQ~~O, AR

=
M~~Z~Zj~AO, (3.23)

where M h a reference wave number.

Due to the lAbrd identities [10] associated with the linearized rotational symmetry of the free

energy functional 2l, it h not necessary to introduce additional renormalization factors for the

vertices, equations (3.10-3.12). Since the dynamics obeys detailed balance the renormalization

factors Z, Z>, and Z~ are the same as in statics [10]. The only renormalization factors left are

those for the Onsager coellidents Lo and D(~'~~. Using the structure of the vertices and the

above fluctuation dhspation theorems we will show next that these are not renormalized.

Since due to the wave vector dependence of the vertices all two point functions vanish in the

limit q -
0, one finds for the renormalized vertex functions

fiwriioo(q
=

o)
=

;(z2)1'2 (3.24)

and
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awrooii(q
=

o)
=

I(z2). (3.25)

Thb implies the relation

22 =1 (3.26)

between the Z-factors for the field renormalization of the response and correlation fields, which

h exact to all orders in perturbation theory.
Inserting in the fluctuation-dissipation theorem (3.19) the definitions (3.21-3.23) one finds for

the renormalized vertex functions of the undulation modes

-iw2~~r2000(P, w)
=

2~ ~ZLLR(22)~~'~p~ (riioo(P, w) nice(-P, -w)) (3.27)

Therefore there h the following exact identity

2~~
=

ZL2~~(22)~~/~, (3.28)

relating the renormalization factors of the fields and the kinetic coefficient of the undulation

mode. With equation (3.26) we find

ZL
=

,

(3.29)

I.e., there is no renormalization of the kinetic coellicient of the undulation modes. For the phonon
modes one finds analogously

2~~
=

ZD2~~(22)~~, (3.30)

and with (3.26)

ZD
=

1. (3.31)

This implies that there is no dynamic renormalization of the Onsa ger coefficients for the undu-

lation and phonon modes. All exponents including the dynamic critical exponents are therefore

solely determined by the static renormalization factors and fixed points. Therefore the typical
linewidth for the phonon modes ru and for the undulation modes rh have the following wave

vector dependences

ru
~-

pa+2+W
,

(3.32j

rh
~

P°~~~~'
,

(3.33)

implying that the dynamic critical exponents are ~h = a + D + 2( and ~u = a + 2 + w, as quoted
in the Introduction for D

=
2 and d

=
3.

Knowing the critical exponents there are two possAle ways of calculating the scaling functions.

One b to calculate the non divergent pans of the vertex functions in an e-expansion. Here we

use a second approach, which is analogous to mode coupling theory, namely to sum up the most

divergent diagrams in the perturbation series and take into account the statics by using the fully
renormalized static susceptibilities [42].

The resulting set of self consistent equations (see the Appendix) lead to the following scaling
behavior of the correlation C(p, WI and response functions R(p,

w
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c~(p,wi
= ~~ ~)]((+~,j~©~(ai (3.34ai

~~~~'~~
hKp~+2+2<

l~h(~l) (3.34b)

Ci'~(P> w)
= fl(~j~[((j~~ nt'~(£i)

,

(3.35a)

R~'~(P, W) =

L,T~a)L,T
~~j

ll~'~(£l)
,

(3.35b)

where tl and k
are scaling functions and we have speciafi2ed to D

=
2 and d

=
3. Lb denotes the

renormalized kinetic coellicient for the undulation modes. The scaling variable for the frequency
h given by

£l
= $~~~~

,

(3.36)
LhKP°

I.e., it is characterized by the linewidth of the slowest mode, namely the undulation modes. With

this scaling Ansatz all dhgrams contributing to the vertex functions of the undulation modes have

the same wave vector dependence. The frequency dependence of the vertex function rii for

the phonon modes has a subleading frequency dependence. This can be explicitly seen from the

scaling form

r(7(p,wjj~~~~~~
=

DT~pa+2+W 1-ia~p2<-W +
im(a)j

(3.37)

where the first term in the square brackets is the subleading frequency dependence. The leading
frequency dependence comes from the mode coupling contribution D~"' representing the decay
of phonon modes into undulation modes (see Eq. (JL33)). Hence there are two time scales for

the decay of the phonon modes. There is an initial decay due to the internal phonon dynamics
and there h a much slower second decay due to the coupling to the out-of-plane modes.

One should further note that the anomalous scaling of the correlation function of the phonon
modes (the term D~>~p~+~~~l) h a consequence of the fact that the scaling of the frequency
variable is determined by the fine width of the undulation modes. This h not a renormalization of

the kinetic coefficients D~>~, as can be seen from the scaling of the response function (note that

there is a fluctuation-dissipation relation: iwr)j~(w)
=

D~>~[r)j~(w) r)j~(-w)]).
The structure of the correlation function for the undulation modes is mainly determined by

the first mode coupling contrAution, which h frequency independent. The phonon-mediated
mode coupling terms vanhh in the limit w -

0. Hence to a first approxhnation
,

the shape of

the correlation function h given by a Lorentzian, where the line width is given by the wave vector

dependence of the bending rigidity. For more information on the scaling function one has to solve

the equations dhcussed in the Appendix with a self consistent numerical procedure.
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4. Dynamic stmdure factor.

The structure factor S(I, t) observed in dynamic light scattering or neutron scattering experiments
is given by the Fourier transform of the density-density correlation function

where

G(I,t;
s,

s') =< exp (it (ji(s, t) ji(s', 0))j >= e~~>'(~~~')g(I, t; s, s'). (4.2)

Here ki is the in-plane part of land fit is determined by the normalization S(I
=

0,t
=

0)
=

1.

The behavior of the dynamic structure factor has nvo limiting regimes depending on whether

the wave length h much larger or much smaller than the linear dimension L of the membrane. In

the regime ki mL « I, where the wave length is much larger than the linear dimension of the

membrane, only the overall translational (and rotational) motion of the membrane can be seen

in the dynamic structure function. Hence the dynamic scattering function in the long time limit is

given by

S(I, t)
= exp (-Dk~t]

,

(4.3)

where the diffusion constant D for the center of mass motion can be calculated with the Xirkwood

formula [44,45], which is simply the Oseen tensor in the Markovian approximation at zero wave

vector. In the case of a disc geometry the diffusion constant is

D=
~~

(~)~
/ d~s /

d~s'(
- -

). (4A)
'Q ' 18<<Lj2 <»'<<L/2 (R(S, t) R(S', ill

Fbr a rigid dhc (Le., ji
=

(si, s2, 0)) this gives

2kBT
(4.5)~"i#d ~" " 3xqL '~ L

In a factorization («ode coupling) approximation due to Xirkwood and Riseman [27,45) (equiv-
alent to the preaveraging of the Oseen tensor with the linearized static functional with fully renor-

malized bending rigidity and I-am6 coefficients) equation (4.4) reduces to

D
= ~~~

/ d~ks(I)~
,

(4.6)
XV

where S(I) h the normalized static structure factor, discussed in reference [15]. Using an

effective, long wave length bee energy functional with the fully renormalized elastic constants

one finds

S(I)
=

S(ki, kz, L)
=

~~
~ / d~s / d~s' F(s s'), (4.7)

'L <8<<L/2 <s,<<L/2

where

F(s)
= exp

ik
i s k]Ah(ds)<s<~l k[k'( ~~~j~ +

~~~~~) s<~+~~~j (4.8)
K ~ ~
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with the amplitudes Ah(ds) and A/,~(ds) given by equations (2.30~3l). The wave vectors ki and

kz denote the in-plane and out-of plane components of the scattering vector
I, respectively. The

scaling analysh h completely analogous to the one we did for the preaveraged Oseen tensor in

section 2.2. One finds for the molecular weight dependence of the diffusion constant in the flat

phase

L-d«+2
l~flat

~ ~D
(4.~)

corresponding to Dflai
=

L-I in d
=

3 dimensions for a D
=

2 dimensional membrane. This

h exactly the same result as for a rigid dhc, equation (4.5). Note that for Rouse dynamics the

diffusion constant would be

kBT
(4 10)DRouse

" @
'

where ( is the friction coefficient of an individual bead and N h the number of monomers. This

corresponds to a molecular weight dependence DRouw
~

L-~. Except for logarithmic corrections,
equation (4.9), also contains the case of a rigid rod, where [24]

lnL
(4.ll)l'fi#d

md ~ f

The above result for the flat phase has to be compared with what h obtained for the crumpled
phase [23]

i~cmmpled ~
~ ~~~ ~~ ~~'~~~

In d
=

3 dimensions and taking the Flory value for the exponent v =
4 IS one obtains

D~mmpjed ~

L~~/~ (4.13)

If the wave length is much smaller than the linear dimension of the membrane kimL » I

one h probing the internal motion of the membrane. Thin limit is equivalent to considering a

membrane of infinite extenL Using again the Gaussian approximation for the dynamic free energy
functional with fully renormalized coellidents one finds

g(I, t; s, s')
= exp (-)k[ kf < (u'(s, t) u'(s', 0)) (ui (s, t) vi (s', 0))

j

x exp (-~k( < (h(s,t) h(s', 0))~
j ~~ ~~~

The correlation functions for the undulation modes and the phonon modes can be written as

Ch(s, s',t)
= < (h(s,t) h(s', 0))~ >

=

/
(2xh(Pl(I C°S(P (s s'))) + 2xh(P) CCS(P (s S')) Ii e~~'~P~')j

,

~ (4.isj
and
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C(I(S, S', t)
# < (tt'(S, t) tt~(S', 0)) (tt3(S, t) d (S', 0)) >

"

/
(2Xi (P)(1 C°S(P (S S'))) + 2Xf(P) C°S(P (S S'll 61j ~~?~~'~~)

P (4.16)
where Xh(P) and xi (p) are the fully renormalized static susceptAilties. The line widths are given

by

r~(pj
=

@
(4.17j

and

rt'(P)
=

Dt(P)(xi~)~'(Pi (4.18)

with the kinetic coefficients given by equations (3.I.a,b) with the bare quantities Lo and Dl'~
replaced by the full renormalized ones, Lb and DL,T. For t

=
0 the above expressions reduce to

the static structure factor, dhcussed in reference [15].
Now we turn to a scaling analysis of the dynamic structure factor. By substituting V~+~~+~

=

LhKp~+~'+~t and analogous expressions for the phonon modes, where the exponent a =
0 cor-

responds to Rouse behavior and
a =

dco 2 to Zimm dynamics, the correlation function can be

written as

Ch(S,S',t)
= (Ah(?»)lS S'<~~ + l]~fh((S S')/lh)) (4.19)

and

ere
we

have defined

lL
=

(DL(A + 2~)t)~'(~+~+°)
,

(4.22)

IT
=

(DT~t)Q(~+~+~) (4.23)

The scaling functions fh and fu are gNen by

fh(x)
=

/ d~vcos(x y)y~~~~l (I e~Y~~~'~" (4.24)

and

fl'~(x)
=

d~ycos(x y)y~~~~ (I e~Y~~"~") Pl'~(y). (4.25)
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The general case b rather complex. But, to extract the characterhtic features of the dynamic
behavior it is enlightening to study the two limits, where the scattering vector lies parallel and

perpendicular to the membrane plane.
(I) For ki

=
0 the dynamic structure factor simplifies to the scaling form

S(ki
=

0, k,,,t)
~

ki~" /d~zexp (-Ah(d~)z~l k((LhKt)~l'(~+~'+~) fh(x/p)j
,

K

(4.26)
where the scaling variable p h defined by

p = (k((LhKt)~"(~+~'+~))
~~~'

(4.27)

In the long time limt p » I the scaling function reduces to a constant

f(0)
=

d~y (I e~Y"~"~") y~~~~l (4.28)

independent of
z.

Hence in this regime the dynamic structure factor h given by a stretched expo-
nential

S(ki
=

0, k,,, t)
=

S(ki
=

0, k,,, 0) exp (-Chk(t°j
,

(4.29)

where Ch is a constant given by (note kBT is set equal to I)

Ch
= ((LhK)~~'~~+~~+~~f(°). (4.3°)

The stretching exponent

D

(~~

a

~~'~~~

is listed in table I for a set of values for the roughness exponent ( (for D
=

2 and d
=

3).

lhble I. Stretching e~ponen~s a and fl for a set oftheoretical and numerical vain es ofthe e~ponen~s
wand ( for Rouse (a

=
0) and Zimm (a

=
-I) dynamics (D

=
z d

=
3). 7he case (w,()

=

(0, 1) corresponds to a fluid membrane. (w, ()
=

(2 /3, 2/3) is the remk J%om a I /d-e~pansion to

leading order [7, 8, 10]. (w, ()
=

(0, 1/2) [39] and (w, ()
=

(0.2, 0.55) [40] are remks J%om numerical

simulations ofte~hered membranes.

a(a=0) p(a=0) a(a=-I) p(a=-I)

w =
0, (

=
1 0 ("In ")

~
0 ("in ")

2 3

w =
0, (

=
0 ("in ") 0 ( "in ")

2 2 2 4 2
"~

3'~~3
5 4 7 5

II I II
" ~'~' ~'~~

31 II 21 6
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(it) Fbr k,, =
0 the dynamic structure factor is

S(ki, k,, =
0,t)

~

k [~ / d~ze~~'?>
x

x exp i-Al (ds)kf~~z~+~~~ k((DL(A + 2~)t)(~+~~~)/(~+~+~) fl'(x/pL)j x
~ + 2~

x exp (-A((ds)kf~~z~+~~~ k ((lJT~t)(~+~~~)/(~+~+~) f?(x/pT)j
,P

(4.32)
where ii

=
ki /<ki and the scaling variables are

pL "
k i(DL(A + 2~)t)~/(~+~+~)

,

(4.33a)

PT "
ki(DTpt)~'(~+~+~) (4.33b)

For p » I the scaling function reduces to a constant independent of z. Hence the dynamic
structure factor h given by a stretched exponential

S(ki, k,, =
0, t)

~ exp (-Cuk(t~] (4.34)

where Cu h a constant and the stretching exponent

fl
=

" ~ ~ ~
(4.35)

h listed in table I for a set of values for the exponent w
(for D

=
2 and d

=
3). The case

(w, ()
=

(0,1) corresponds to a fluid membrane. (wj ()
=

(2/3, 2/3) h the result from a I Id-
expansion to leading order [7,8,10]. (w, ()

=
(0, 1/2) [30] and (w, ()

=
(0.2, 0.55 [40] are results

from numerical simulations of tethered membranes. Since the exponent w
found in numerical

simulations of tethered membranes b very small [30,40] this h an enormous stretching or equiva-
lently, close to an algebraic decay.

For the crumpled phase one finds, using the results of reference [23], that the long time behavior

of the dynamic structure factor is also given by an stretched exponential

S(k, t)~mmpjed ~
exp (-C~k~t~] (4.36a)

with the stretching exponent

2v
(4.36b)7

2 + 2v ID + v(2 d))

Here v h the exponent of the radius of gyration (Rg
~

L") and D + v(2 d) is the exponent

of the preaveraged Oseen tensor. lbking the Flory value for the exponent v =

~/,
one finds

+
2

~ 3
Now we consider (for (D, d)

=
(2, 3)) the special case that the phonon modes are not renor-

malized by the coupling to the undulation modes, I.e., w =
0. This case is interesting first because

there h a static crossover bom ((, w)
=

(1, 0) to the asymptotic values and second because it is not
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yet clear bom numerical simulations whether the exponent w h close to or identically zero. Fur-

thermore, it may be difficult to distingubh benveen these two cases experimentally. For in-plane
scattering vectors the density-density correlation function is

G(ki, kz
=

0,t; s, s') =< exp (it (ji(s, t) ji(s', 0)) >

,

(4.37)

=
e~~>'(~~~ )g(ki, kz

=
0, t; s, s')

The angular average of g h of the form

gay(ki, kz
=

0, t; s, s')
= exp lk ( ~$

~

/
~~

/
)~(l Jo(P(s s'<)e~~L~P)~)

+
/ ~~(l Jo(P~s '<)e~~T(Pl')j

,

~~ ~~~

~ P

where Jo b a Bessel function of the first kind. The line width for the phonon modes are

r~(p)
=

(> + 2~)DLp~+~
,

(4.39a)

~T(P)
=

~DTP~~~
,

(4.39b)

where the exponent a =
0 for Rouse and a =

I for Zimm dynamics. Note here kBT is not set

equal to I as elsewhere in this paper.
One should note that equation (4.38) is exactly the expression for the dynamic density-density

correlation function of a two dimensional solid. For the static case (t
=

0) one finds an algebraic
decay [46]

gay(ki, kz
=

0, t
=

0; s, s')
= <s

s'<~~(~) (4.40)

with a temperature dependent exponent

This power law
decay

eads
to a

S(ki)
~

(4.42)
<ki G<2-n(T)

The time dependence of the dynamic density-density correlation function is also given by an

algebraic decay. The value of the exponent depends on the exponent of the kinetic coeflicien~
I.e., on a. One finds for large times

~~~~~~'~~
" °>~"~> ~')

=

t-~~~~/~ (4.43)

where

A
=

/~
dy V~~~e~Y~~"

=

~°~ ~°~~~ ~Y~~"~~~ (~
"

°l' (4.44)
o I for Zimm dynamics (a

=
-1).
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Hence the time decay h half as fast as the spatial decay for Rouse dynamics, but equally fast for

Zimm dynamics. More generally, the density-density correlation function for the phonon modes

has the scaling form

gay(ki, kz
=

0, t; s,
s')

= <s s'i~~~~~#(<S S'</t~) (4.45)

5. Flicker phenomenon in red blood cells.

The membrane of a erythrocyte or red blood cell h a thin material, only about 5 nm tliick~ and

essentially lameflar in structure. It conshts of a lipid bilayer ~believed to be in a liquid phase)
in which macromolecules are incorporated. In addition there h also a spectrin polymer nenvork

attached to the inner layer through proteins. The presence of the spectrin implies that unlike

the phospholipid component of a biological membrane, the composite red blood cell membrane

exhAits a shear modulus [47,48].
The shape of the cell h biconcave-discoid (of dimension

~
8~ x 2~) under normal physiolog-

ical conditions. In thin state the membrane surface tension is very small and the red blood cells

show a remarkable flicker phenomenon, which can be seen by phase contrast microscopy [28].
This flicker is a purely physical effect and due to thermal fluctuations of the cell thickness. It

was first observed by Browicz [49] using ordinary light microscopy. More recently Brochard and

Lennon [28] have measured the frequency spectrum for the flicker intensity (flicker spectrum).
They interpret the spectrum in terms of a linear theory considering an essentially incompressible
fluid membrane with bending rigidity but no shear modulus, which b completely impermeable for

solvent molecules.

Recently the spectrin skeleton of erythrocytes has been separated from their natural environ-

ment [18]. These holated spectrin nenvorks differ bom the composite red blood cell both in

the magnitude of their in-plane bulk modulus and in their permeability for solvent molecules.

Whereas the permeability of the red blood cell is mainly determined by the flow through small

protein channels [16-18], the holated spectrin network has a mesh size ranging from 20 nm to 21XJ

nm [18] which makes it highly permeable for solvent molecules. As discussed in the Introduction

and in Section 2, the permeability of the membrane determines the location of the crossover from

Rouse to Zimm dynamics. Hence, we expect qualitatively different behavior for spektrin skele-

tons as opposed to red blood cells as a consequence of their different permeability and elastic

properties.
We simflily to a model of two membranes, whose conformations are described by surfaces

ji(° and R(~), separated at a fixed average dhtance d
=

[< ji(° #(~)
> [28], as shown in figure

3. We assume that the membranes are infinite in extent and are therefore neglecting boundary
effects. Wis restricts our analysh to wave lengths smaller than the cell dhmeter (ce 7.5 ~m). For

larger wave lengths the closed geometry of the cell has to be taken into account. The free energy
functional of each membrane h taken to be that of a flat membrane with bending rigidity and

intemal shear elasticity due to the spectrin network

This model of two dynamically interacting membranes is also a starting point for investigating
tile dynamics of semidflute membrane solutions, where the inter-membrane interaction becomes

of importance. From the two-membrane model considered below one may infer how the interplay
between inter- and intra-membrane interaction leads to a screening of the long range hydrody-
namic interaction in semidilute solutions. One direction for further study would be the dynamics

of lamellar phases of tethered membranes [50~52], which should have some similarity with the

dynamics of smectics [53].
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>i>
alh

U

~
<2> jz,h u

Rg. 3. Model of two flat membranes separated at a distance d. The fluctuations of each membrane are

characterized by bending h(~>~l and phonon modes u(I>~l

In our model we neglect the static steric repulsion between the two membranes. Hence the

interaction between the membranes b of purely dynamic origin and due to the backflow of the

solvent fluid. The equations of motion for each membrane are then a straightforward generaliza-
tion of equation (2.1),

~~
~~~~'~~

=
-L;; ~~()

(~'~~~~
+ gv;[#(~S~)(s, t), t] + fl)~'~~(s, t) (5.1)

~

6R;

~

(s, t)

For notational convenience we omit au subscripts " 0" indicating bare quantities in thin section.

The coupling between the membrane h mediated by the intervening solvent, whose velodty field

obeys the following Langevin equation similar to equation (2.8),

~~'l'~~ + vk~v;(I, t)
=

l§((I)
(; (I, t)

/ ~s~~~~~~

~~

exp (-11 #(~)(s, t))

I / d~s

~(
exp (-11 #(~)(s, t))j

~~ ~~

P bR; (s, t)

Upon inserting the formal solution of the latter equation into the Langevin equation for the

conformation fields of the membranes one finds, in the Markovian approximation for the solvent,
the following coupled I-angevin equations

~' ~~'~~
=

-L;;~~((( ~~ +4j~'~l(s,t)
~~~~~

bR;

~ ~~)

~~~
i $~~~~ /

~~~'6R~lis', t) ~~ (~~'
~~~'~~~~'~~

~~~'~~~~"
~~j ~~ ~~

~~~
/ ~2 ~~~~ / ~~'6Jll2~~s',

t) ~~ (~~'
~~~'~~~~'~~

~~~'~~~~"
~~j

for the membrane conformations, where bj~'~l(s, t) are noise terms modified s1milar as in section

2. Note that the equation of motion for each membrane contains two hydrodynamic interactions,
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one h due to a intra-membrane and the other to a inter-membrane backflow. The interplay be-

tween these two effects will be of cruchl importance for the dynamics of the thickness fluctuations

(see below). In the preaveraging approximation, I.e., upon replacing I (#(°(s) ji(~l(s')) by its

average value <
I (ji(°(s) ji(°(s'))

>= k (s s') and I (ji(°(s) ji(~)(s')) by its average

value <
I (ji(~)(s) ji(~)(s')) >= k (s s') + ik,,d (the in-plane wave vector is denoted by k),

the equations of motion for the undulation and phonon modes of each membrane reduce to

~~~~~~~ ~~ ~~~ ~~
"j~~~'~~

~~~~~~~~
"~~~~'~~

(5.4a)

~~ ~~ ~
~~

bh(2i~k, t) ~ ~'~~'~~
'

'~~~ll~~~
=

Dt~~k)~ui~l~~,i~ ii~~~~k)~uiil~~,i~

~~~~~

~~ ~~ ~ ~~bh(ii~k, t)
~ ~'~~'~~

'

fit ~~~~~~6h(1)(-k,t) ~"'~~~~~6h(2)(-k,t)
~~~~~~~~~~

~ ~ ~;

~~

~~

~~

(5.4c)+I£ ~e~~~
~~j

+ 0(k, t)
,6u; (-k, t)

fih(21(k t) 6~i ~~

fit
~"'~~~~

6h(21(-k, t) ~"'~~~~~ 6h(1)(_k, t)
,g~dki

_~~
67l

(5.4d)

~'$je
~i~

+ e(k, t)
~ 6'~; (-k> t)

The kinetic coefficients for the inter- and intra-membrane interaction are given by

~2
,,

k;k;
(5.5a)D~"~(~)

"
~~~'~ ~

2qk

~
~

2 k~ '

D(~~~(k) =

£
(b'l j(I + kd) ~$') e~~~, (5.5b)

for the phonon modes (for simplicity we have assumed DL
=

Dr
=

Du), and by

L~'"(k)
=

Lb +
~~ (5.6a)

4Q k'

L~~~~(k) =

£(I
+ kd)e~~~

,

(5.6b)
Q

for the undulation modes. The above equations show that there ban inter-membrane coupling be-

tween the longitudinal phonon modes and the undulation modes, whereas the transverse phonon
modes couple neither to the longitudinal phonon modes nor to the undulation modes. Thb de-

coupling results from the incompressAility of the intervening fluid. Although the shear modulus

of the spectrin skeleton does not directly modify the spectrum of the thickness fluctuations, the
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crosslinking inherent in the spectrin skeleton b responsible for the solid-like behavior of the cell

membrane and therefore for the very strongly renormalized bending rigidity [4]. The amplitude
of the shear modulus and the other elastic constants determine the static crossover wave length
from fluid- to solid-like behavior of the membrane [30] (see also the end of thin section). For

recent experiments which study how crosslinking the cytoskeleton affects membrane undulations

see reference [54].
For the further analysh of the I-angevin equations it is convenient to decompose the phonon

field into its transverse and longitudinal components

u; =
Pl'u; + Pl'u;

= uL + u;,T
,

(5.7)

and to introduce the center of mass and relative coordinates,

h(*)
=

h(1) ~ ~(2), (5.8a)

u[*)
= u[~) + u[~~

,

(5.8b)

")(~
=

"))i + "))I (5.8c)

of the fields. The equations of motion take the form

~jj~
= (D#~" + D#'~~) ~(k)k~")(~ (5.9)

for the transverse phonon fields, and

fi"f~
~hlra ~ ~~ter) jj~~~ ~ ~~~~~j~2~(+)

~d~-kd
~~ ~~ ~4 ~(-j

~~ ~~~~fit ~ ~ ~ 4q '

~jj
= (L~~~

~~~~) K(k)k~h(~) + i@e~~~[A(k) + 2~(k)]k~u[~~ (5.10b)

for the coupling between the sum of the longitudinal phonon fields and the difference of the

undulation modes, and

)~
=

(Dt~
Dt~~~) [A(k) + 2~(k)]k~u[ + i

~e~~~K(k)k~h(~)
(5.I la)

t

~~~
= (L~"~ +

~~~~) K(k)k~h(+) ifle~~~[A(k) + 2p(k)]k~u[ (5.llb)
t q

for the coupling between the difference of the longitudinal phonon modes and the sum of the

undulation modes. Here we have taken the free energy functional to be quadratic in the fields

and have taken into account some effects of the nonlinearities by using the fully renormalized

bending rigidity K(k) and Lam6 coellicients A(k) and p(k). This is justified by the fact that the

kinetic coefficients of the above model are not renormafimd (see Sect. 3).
The longitudinal and transverse kinetic coefficients for the phonon modes are given by

~ ~" ~
2qk '

(5.12a)
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Dt~~
=

Du +
~~

,

(5.12b)
4Qk

for the intra-membrane interaction, and

~hter g~
-kd

~ 2nk~ '

(5.13a)

D~~~~ =

£
(I kd) e~~~

,

(5.13b)

for the inter-membrane interaction. The coellidents Du and Lb are proportional to the perme-
ability of the membrane. For red blood cells the permeability b very low and hence these constants

can be set to zero. For isolated spectdn networks, however, these constants are much larger as a

consequence of their large mesh size.

The transverse phonon modes are completely decoupled from the rest of the modes. The

linewidths are given by

iw(~
=

Du~(k)k~ + ~(~~ (l + e~~~)
,

(5.14)

where here and in the remainder of thin section we have set g =
I.

There b, however, a coupling between the [on gitudinal phonon modes and the bending modes,
mediated by the intervening solvenL In dbcussing the two sets of coupled equations, equations

(5.10.a,b) and equations (5.ll.a,b) it is convenient to introduce a scaling variable for the frequency
by

4qw
~° K(k)k3 '

(5.15)

which measures the frequency in units of the line width of the undulation modes of a single mem-

brane (Zimm behavior). Furthermore we introduce two scaling variables for the wave vector

z =
kd, (5.16a)

~~ =

k/kh
=

4nLhk for
a =

h

k/ku
=

4qDuk for a = u

(5.16b)

and a quantity

y

~(k) +2~(k)

K(k)k2
(5.16c)

characterizing the ratio of stretching to bending energy. For red blood cells thin ratio h usually

very large, even for the smallest experimentally accessible wave vectors, due to the very low com-

pressAility of the bilayer [48]. In the case of an isolated spectrin network, however, thin ratio may
eventually become smaller or even be of the order of unity.

The equations (5.10.a,b) descrAe the coupling between the relative mode of the undulations

(thickness fluctuations) and the center of mass mode of the longitudinal phonon modes. The

linewidths are found to be

I£l1,2 =
(ay + b) + ~/(ay b)2 + 4z2ye-2~

,

(5.17)
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where we have defined the sum

a =
I + (I z)e~~ + ~u (5.18a)

and the difference

=
I (I + z)e~~ + ~h (5.18b)

of the intra- and inter-membrane kinetic coellidents of the longitudinal phonon modes and the

undulation modes, respectively, in terms of the scaling variables. The normalized eigenvectors
are

il,2
" (~'~~~>h~,~) ~~'~~~

with

"~~
~/(ze-~)2 ~/-i£li

2 + ay)2 '

~~'~~~~

~~,~ "

~~l,2 + ay

~~~~ ~~~ ~ ~~~>~ ~ ~V)~
(5.20b)

The wave vector dependence of the linewidths depends on two length scales, the distance be-

tween the membranes d and the crossover wave vectors ku,h. It also depends on the ratio y of

stretching to bending energy.
If the membrane shows no in-plane stillness for longitudinal phonons (y

=
0) there h only a

bending mode with the linewidth

I£l2
= = ~h + I (I + z)e~~ (5.21)

In the limit of wave lengths much smalljr than the dhtance d between the membranes (kd »

Ii equation (5.21) reduces to iw2
=

~~(~~ (l + k /kh). In thin limit the membranes are decoupled
q

and the dynamics correspond to those of a single isolated membrane with a crossover from Rouse

to Zimm dynamics at kh. For long wave lengths jr small distances between the two membranes,

kd « I, the line width is given by iw2
=

~(~~
(k /kh + (kd)~ /2). In this regime the dominant

q

wave vector dependence of the line width h the Rouse term LhK(k)k~ unless the permeability
of the membrane for solvent molecules h very small. Hence we have the following crossover

scenario for holated spectrin networks in the case of y =
0. For wave numbers k > kh

=
1/4qLh

the dynamics is governed by Rouse behavior. Then there h a crossover to Zimm behavior, which

would be the ultimate long wave length limit of the dynamics of a single membrane. But, in the

present case of nvo hydrodynamically coupled membranes, there is a reentrant crossover to Rouse

dynamics at kd
=

I. Thin is due to a screening of the hydrodynamic interaction (the I/k-singularity
of the inter- and intra-membrane interaction cancel). The width of the Zimm regime is given by
kh > k > I Id. If the membrane has a high permeability such that kh < I Id one has Rouse

dynamics over the entire wave vector regime. On the other hand, if the membranjh essenthUy

impermeable (like a lipid bilayer) the crossover is form Zimm dynamics iw2
=

~~(~~
for kd > >

~

n

to iw2
"

~~(~~ (kd)~ for kd « I corresponding to a kinetic coefficient proportional to k~.
q
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For membranes with a very high resistance to compressions (V » I ), as h usually the case for

red blood cells, the bending mode has the linewidth

~2~-2z
kJh

=
b (5.22)

a

and the linewidth for the phonon mode has the form

I£lL
= ay =

(k/ku + I + (I z)e~~)V (5.23)

For kd » I, where the nvo membranes fluctuate independently, one finds iwh
"

~~(~~ (l +
q

~

k/kh) for the undulation mode and iwL
=

~~~~ ~~~~~~~ (l + k/ku) for the longitudinal phonon
q

mode.

In the regime kd « I, where the nvo membranes are strongly coupled by the hydrody-
namic interaction, the resulting linewidths differ bom the above case. For essentially imper-
meable megbrane~, k/kh « I and k/ku « I, the line width of the thickness fluctuations is

iwh
=

Q ~(~
and the phonon modes show Zimm behavior iwL

"

~~~~~ ~~~~~~~,
which

q q
has an amplitude two times larger than for kd » I. The result for the thickness fluctuations

for impermeable membranes with a large ratio of stretching to bending energy corresponds to

the result found by Brochard and Lennon [28] provided one assumes a liquid-like roughness ex-

ponent (
=

I. However, for highly permeable membranes like the isolated spectrin nenvork

the dominating wave vector dependence for the undulation and the phonon modes are given by
iwh

=
LhK(k)k4 and iwL

"
Du[A(k) + 2~(k)]k2 corresponding to Rouse dynamics. Therefore

we have the same crossover scenario for highly permeable membranes independent of the mag-
nitude of y. One should note that the result for the kinetic coefficient of highly permeable and

impermeable membranes differ drastically, namely by nvo powers in the wave vector.

The coupling between the sum of the bending modes and the difference of the longitudinal
phonon modes is desert#~ed by equations (5.ll.a,b). The linewidths are found to be

i&i1,2 =
(av + b) + /(av b)2 + 4z2ye-2~

,

(5.24)

where now

a =
I (I z)e~~ + ~u, (5.25a)

and

b
=

I + (I + z)e~~ + ~h (5.25b)

The corresponding normalized eigenvectors are given equations (5.19-20) with
a and b given

by equations (5.25).
For y =

0 there is only a bending mode with linewidth

kJh
= =

k/kh + I + (I + z)e~~ (5.26)

By passing from wave vectors kd « I to kd » I the amplijude of the Zimm term merely

changes its amplitude by a factor of 2. One finds iwh
=

~~(~~ (l + k/kh) for kd » I and
q
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iwh
=

~~(~~~ (2 + k /kh) for kd < < I. In both regimes the sum of the undulation modes shows a
q

crossover from Rouse to Zimm behavior similar as for an isolated membrane. In particular, there

h no cancellation of the hydrodynamic Ilk-singularity in the kinetic coefficients. This has to be

contrasted with the behavior of the thickness fluctuations (difference of the undulation modes)
dhcussed above.

For y » I the linewidth of the bending mode reduces to

~2~-2z
I£lh

=
b (5.27)

a

and for the phonon mode we find

I£lL " ay =
(k/ku + I (I zje~~jy. (5.28j

In the limit kd » I one recovers the results of two independent membranes. For kd « I

there is no change in the wave vector dependence of sum of the
~he

bending mode but merely an

enhancement of the amplitude of the Zimm term, iwh
=

~~(~~
(2 + k/kh kkud/(2kud + 1ii.

q

The relative longitudinal phonon mode has the line width iwL
=

~~~~~ ~~~~~~~
(k/ku + 2kd)

q
corresponding to Rouse dynamics for both highly permeable and impermeable membranes.

In summary, we have found the following crossover scenario for the thermal thick ness fluctu-

ations (flickering). The crossover in the line width depends sensitively on the permeability of the

membrane.

For highly permeable membranes, like the isolated spectdn nenvork~ we find a crossover from

Rouse to Zimm behavior at a wave vector kh
=

1/4qLh. As a consequence of hydrodynamic
screening effects there is a reentrant crossover to Rouse dynamics at kd

=
I with Lea(k

-
0)

=

Lb. The Zhnm behavior h restricted to a wave vector regime 1/4qLh > k > I Id. For highly
permeable membranes this becomes a very narrow reghne or even vanishes if kh < I Id.

A completely different crossover scenario b obtained for impermeable membranes, like the

composite red blood cell. There one has to distinguish between large and small ratio of stretching
to bending energy y. For y » I, which is the case for red blood cells, one obtains a crossover

from Zimm dynamics with a kinetic coellident proportional to Le~
~

Ilk to a kinetic coefficient

Lea(k
-

0)
=

k2d3/24q. In the regime y « I the linewidth shows a crossover from Zimm

dynamics to iwh
=

K(k)k3(kd)2/8q corresponding to a kinetic coellicient proportional to Le~
~

k.

The crossover scenario of the fluctuations of the difference (u(~)(k, t) u(2)(k, t)] of the in-

plane modes h similar to the scenario of the thickness fluctuations in the case of highly permeable
membranes. The asymptotic behavior is Rouse-like with D$j~(k

-
0)

=
Du. Fbr impermeable

membranes the crossover is from 2imm to Rouse dynamics with D$j~(k
-

0)
=

d/2q.
The correlation function for the thickness fluctuations h given by

"~~~ ~~
~ "~ +

'~(I()~(efl(kii~
~~~~i

where for y » I the effective kinetic coellident h given by

~kdj2~-2kd
~~~~~~ 4nk

~~~~
~ ~~ ~ ~~~~ ~~

k/ku + I (I kd)e-kd ~~"~~~

One should note that there are two apes of crossovers, which determine the actual wave vector

dependence of the line width. Firs~ there is a dynamic crossover descn~bed above. But second,
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there h also a superimposed static crossover associated with the wave vector dependence of the

bending rigidity. For relatively large values of the amplitude of the bending rigidity or relatively
small shear modulus, the small wave length modes of the membrane are characterhed by fluid

like behavior with a roughness exponent (
=

I. It h only for larger wave length when the systems
shows a crossover to the true asymptotic behavior with ( close to 1/2. The crossover length scale

found bom numerical simulations [30] is given by

2xK

c(TT)1/2
(5.31)

with the Young modulus T
=

4~(A + ~)/(2~ + A) and c =
1.3. Hence depending on the

numerical values of the amplitudes of the elastic constants and the viscosities, these crossovers

will be mixed up.
Next we consider the flicker spectrum

G(W)
=

/
d~qcd(q, W) (5.32)

Scaling gives the following power law for this quantity

G(W)
+~

W~?
,

(5.33)

Mith

(2 + 4( + b) (5.34)'~ (2+ 2( + bl'

where b b the exponent of the effective kinetic coefficient Le~(k)
~

k~. The values of the exponent

a are summarwed in table II for different values of the roughness exponent, corresponding to fluid

like and solid like membranes.

lhble II. Exponent a of the J%equenqy dependence of~he flicker spec~rum for a kinetic coejficient
Le~

~
k~ fordiflerent values oflhe roughness e~ponent[7,8,10,39,40] (see also Tab. I) corresponding

to sohii-like and fluid-like membranes.

( b
=

2 b
=

-I [Zimm]
=

0 [Rouse]

I ~fluid)
~ 5 3

3 3 ~

(solid)
~ 3 4

2 5 2 ~

(solid)
~ II 7

4 7 ~

0.55 (solid)
~~ 3~ 42

52 21 31

A first indication of the dynamic crossover has recently been observed experimentally [55].
Since the resulting exponents for the frequency spectrum G(w) are not very sensitive to the actual

value of the roughness exponent, rather preche experiments are necessary to dhtinguhh benveen
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fluid and solid-like behavior. An easier experiment might be the measurement of the frequency
and wave vector dependent correlation function.

As we have shown above, the crossover scenario, upon passing from kd « I to kd » I,
depends sensitively on two factors, the permeability and the ratio of stretching to bending energy.
Uis becomes evident if one considers the nvo extremal cases (I) an impermeable fluid ((

=
I)

lipid bilayer (with V » 1) [28] and (it) polymerhed (( m 0.5) bolated spectrin nenvorks with

high permeability. The line width for the flicker modes are
rl'l

~

k6 and r)"~
~

k3, respectively,
I.e., they differ by three powers in the wave vector

Furthermore, the in-plane modes show interesting behavior. These modes have up to now not

been studied experimentally. It would therefore be interesting to to design experiments, which

allow to measure the in-plane dynamics of the membrane.
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Appendix

Self consistent theory and scaling functions.

In formulating a self consistent theory we start with integrating out the phonon modes. Thin can

be done since the in-plane degrees of freedom enter only quadratically in the dynamic functional.

The effect of integrating out the phonon modes will be to introduce new effective interactions

between the out-of-plane undulations mediated by the "exchange" of phonons.
Upon combining the harmonic part of the dynamic functional, equation (3.5), with the two 3-

point vertices, equations (3.10-11), containing the phonon fields one can write the phonon part of

the dynamic functional as

Jphonon =

/
/(it'(P, W), tt~(P, W))Al'(P, Wl(it'(-P, -WI, U'(-P, -Wl)~

+
/ j

(Q~(P, W)tt~(-P, -W) + Q~(Pi W)ii~(-P, -W)j

~~
~~

Here we have introduced the composite undulation operators

4~(P> WI "
~~°~ fl / /

~(Pl + P2 + P)~0P~~~(Pl> P2> P)~"(Pl> Wl)h~(P2> W2)> (~.~)

; p, w,

Q~(P, w) = )6«fl
~

£~b(pi + p~ + pi
D)pa n[(p)vm (pi, p~, p)

~~ ~~

+DiP~ Pi (P)V"'(Pi, P2,

)j
h"(Pi, Wi )h~ (P2, W2
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The vertex factors are defined by (see Eqs. (3.10-11))

V~(pl
>

P2> P3)
" ~0 ((P3 Pi )P~ + (P3 'P2)P~j ~ ~0(Pl P2)P~ (~.~)

Since the phonon fields enter only linearly in the dynamic functional they can be integrated out

by

J(tenon =
Dlifil D [VI Jphonon

,

(A.51
/ /

resulting in new effective 4-point vertices,

Jitonon "

/ /
(Q~(P> WI> 4~(P>Wi) (Ai~i~~(P>Wi (Q~(~P> ~Wi> 4~(~P> ~Wi)~ (A.61

describing the long-ranged phonon-mediated interaction between the undulation modes (for in-

tegrating out the phonon modes in statics see Refs. [1,4]). The "exchange" propagators are given
by

(Ai~i"(P, WI =

(Ai~i~(P, Wiii(Pi + (Ai~i~(P, WIP;j(Pi, (A.71

where

~~" ~~~~'~°~
w2 +

Dip°
poP~]~ -iw + ~)p~ poP~

~ ~~~~~
'

~~'~~

~~" ~~~~'~°~ ~w2 +

D)p°(~o
+ 2po)P~]~

~

0 iw + D)p~(Ao + 2po)P~
~~ ~~

-iw + D)p~(Ao + 2po)P~ 2D) pa

~ ~ /fl

(al

Pj~ If

,

:

"..
,J' ',~."~ ~"P,

~bi

Fig. 4. New effective phonon-mediated four-point vertices after integrating out the phonon modes ( (a):
Jli> (bl~ Jl# 1.
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More explidtly we find two new vertices, depicted in figure 4. The corresponding analytic ex-

pressions are

Jit
=

-1 £, £~ £, £~ LoPiva (Pi, P, P~, WI x
~~.ioj

xl" (pi, wi)h° (p pi, w wi)h~ (p~, w~)h~(-p p~, -w w~)
,

~~# " ~~
/ / / / / /

~0P~L0Pi~b(Pl>P>P2>W)
~~ ~~~P P, PJ w w, w2

X~~(Pl>Wl)h°(P~PI>W~WI)~~(P2>W2)h~(~P~P2>~W~W2)>

where the vertices are given by

T T

va(pi, p, p~, WI =

vi (pi, p pi, -pi ~°Pjj[j ~Pl
~

~~° ~ (~ ~°$' (A.12)

+
~w +

iiiiiilPl~~~~~ vm(P~, -P P~, P)
,

vb (Pi P P2 W) =
v~ (P

i P Pi -P) w~~lllT[11)i~

~w2
+

[~~~i~~'~o)P~]~ ~~~~~' ~ ~~'~~

(A.13)
The vertices are frequency dependent indicating that there are retardation effects in the phonon-

mediated interaction. The retardation time is proportional to the lifetime of the transverse and

longitudinal phonons. The vertex J($ can be combined with the original 4-point vertex J~, to gNe

~~~' £, £~
/ /~ /~ ~°~~~~~~~'~'~~'~°~

(A.14)
X~°(pl>Wl)h°(p pi> W

Wl)h~(p2>W2)h~(-p p2> ~W W2)>

where

Vl(Pl>P>P2> WI "v~(pl>P
Pi ~P) (P[(Pl

~

fl~
2 2)

~"
~~

~oP ~oP

~~~~~
iw +

)~~~~+
2~o)P~ (Ao +

~o)P~ ~~~~~' ~ ~~'~~
'

(A.15)
and

~~' £, £~
/ /, /~ ~°~~ ~ii~~~~~ ~~~~~ ~~~~~~~~~~~~~~~~

(A.16)
xi"(pi,

wi
)h°(p pi, w

wi)h~(p2,w2)h~(-p
p2, -w w2)
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P~q

p P

(a)

P~q

~",,

p
j p

q

~bi

P-q

_P
__~

P

q

(ci

Fig. 5. Diagramms contributing to the vertex function rii of the undulation modes to one loop order

((al: rll~, (bi: rll~, (cl: rll~ I

The resulting interaction part of the dynamic functional h then

J#
"

Jlfl'+ Jli'+ Jl# (A.171

Now we start the diagrammatic analysh of this effective theory. The diagramms contributing
to the vertex function rii for the undulation modes are shown in figure 5.

rii (p,w)
=

-iw + Lop~icop~ + ril~ + ri(~ + ril~ (A.181

The term r((~ reads

r[)(p, w)
=

Lopa
/ / ~()[j((°~ (p«p$(q)pfl)2c~(p q, w

v)
,

(A.ig)
q v

where Ch(P,
w is the bare corrlation function given by

2LoP~
(A.20)~~~~'"~

w2 + rh(P))~ '

with the bare line width

rh(P)
= LOP~KOP~ (A.21)

Thh contribution h frequency independent and leads to a renormalization of the bending rigid-
ity no If the bare quantities are replaced by the fully renormalized terms this term h the dynamic
generalization of the self conshtent theory in reference [4]. The next two terms in equation (A~18)
are frequency dependent and come from the phonon mediated effective 4-point vertices, equa-
tions (JLll,14),
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rll(P,
W) =

LIP~~
/ / 0t~(P, q)CT(q, v) + a~(P, q)Cl(q, )j

Rh(P q, W v)
,

(A.22)

rli~(p, wi
=

Lop°
( / aT(p,

q) (Dlq~Rs(q, vi xi(qi) +

+aL(p, qi (Dlq~(Rt(q, vi xi(q))j c~(p q, w
v)

,

~~'~~~

where

~~~'~~~~ "l
"

v2
llllll'lqi)2 ~~'~~~

are the bare correlation functions of the phonon modes with the line widths

rl~>~~(qi
=

DjL>T)qaxl~>~~(q), (A.25)

and the static susceptibilities Xl(q)
"

I /~oq~, Xi(q)
=

I /(Ao + 2~o)q~. The response functions

are defined by

~~~~'"~
-iw + rh(p) '

(A.26)

~~ ~~'"~
-iw + r[~>~)(pj

(A.271

The vertex factors a(~>~) are given by

a~~>~)(p, q)
=

~o
I(q p)(p q)~ + (q (p qiipi + >o(p (p qiiqi) Pl(>~~(qi

~ ~~~o
I(q Pl(p al~' + (q (P qllp~'l + Ao(P (P

llq~')

The dhgrammatic contributions to the kinetic coellicient r20 are shown in figure 6.

P-q

p P

q

Pg. 6. Diagramms contributing to the vertex function r20 of the undulation modes to one loop order

(~~~ ).
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P-q

p

"""'

'"=; P

q

(a>

Pq

P P,,,._.~.... ,.-.

q

~b>

Fig. 7. Vertex functions for the phonon modes renormalizing the effective phonon-mediated vertices ((a):
~#'mc> (b)~ ~#'mc

lo

r~o(p, WI =
2Lopa +

r[[), (A.29j

where the mode coupling contrlution h

rt~(P,Wi
=

LIP~~
/ / 0t~(P, qiCT(q, vi + 0t~(P, qici(qi ii

Ch(P q,W vi (A.301

There h also a renormalization of the phonon modes due to insertions describing the decay
into undulation modes. The corresponding vertex functions

~#(P> WI ipl~onon "
-iW + ~#(P> WI imc

i

(A.311

~#(P>W)(pl~onon "

2(Di~i (PI ~ i'~~~S~(P)]P° ~ ~#(P> WI 'mc (A.32)

are shown in figure 7. The mode coupling (mc) contributions are explicitly given by

r#(P>
WI lmc " P~

/ / Dlb~(P> ~lf (~l+
~ +Dib~(P,

qlPL(qlj Loq~R1~(q, VICI~(P q, W V)

~~ ~~~

~#(P,W)imc
=

P~°
( / (Dl)~b~(P, qiPL(qi

+(Dii~b~(P, qiPL(q)j CI~(q, viC1~(P q> W
vi

~~ ~~~
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The vertex factors are defined by

b~~>~~(p, q)
=

~o
I(p q)(p q)' + (p (p q))qi + >o(p (p q))pi) Pit>~~(p)

~o
i(p q)(p q)m + (p (p q))qmi + >o(p (p

))pm) ~~~~~

From the above equations one obtains a self conshtent theory, if the bare correlation and re-

sponse functions are replaced by the fully renormafimd ones. Wis procedure corresponds to a

resummation of certain diagramms in the perturbation series, including those for the renormaliza-

tion of the phonon modes. Additionally one has to replace in the static quantities the elastic coef-

ficients by their renormalized wave vector dependence, I.e., lo
~

A(q)
=

Aq~, po -
~(q

=
Pq~,

and no -
K(q)

=
Kq21-2. Note that the vertex functions rii and r20 are related to the correlation

and response functions by

~~~ ~j
~

r20(P, WI
~ ~~j

' rii(p,w)rii(-p, -WI '

and

R(p,w)=
~

_i
~.

(A.37)
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