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Abstract. — A theory of the dynamics of polymerized membranes in the flat phase is presented. The
dynamics of dilute membrane solutions is strongly influenced by long-ranged hydrodynamic interac-
tions among the monomers, mediated by the intervening solvent. We discuss the renormalization of
the kinetic coefficients for the undulation and phonon modes due to hydrodynamic “backflow” (Zimm
behavior). The dynamics is also studied for free draining membranes (Rouse dynamics) correspond-
ing to the Brownian dynamics method used in Monte Carlo simulations. The long time behavior of
the dynamic structure factor is given by stretched exponentials with stretching exponents determined
by the exponents of the elastic coefficients and the wave vector dependence of the Oseen tensor. We
also study the dynamics of the thickness fluctuations in red blood cells (flicker phenomenon) taking
into account the underlying polymerized spectrin skeleton. Qualitatively different dynamicat behavior
is predicted for spectrin skeletons isolated from their natural lipid environment.

1. Introduction.

There is now considerable theoretical and experimental interest in the statistical mechanics of
membranes [1]. In contrast to linear polymers, surfaces fall into several universality classes [2],
depending on rigidity, surface tension, and various microscopic constraints. One class of mem-
branes that is being studied thoroughly is that of polymerized (or tethered) membranes [3]. These
are two-dimensional analogs of linear polymer chains, and their study is a natural extension of
polymer science. But, unlike polymers, which are always coiled up in three dimensions, tethered
membranes are expected to exhibit a flat phase with long range order in the surface normals at
low temperatures or high rigidity [4,5].

This flat phase has several unusual properties. First, the very existence of a flat D = 2 di-
mensional phase is surprising, since the theorem of Hohenberg and of Mermin and Wagner [6]
forbids spontaneous symmetry breaking for two dimensional systems with a continuous symme-
try. However, the coupling between the in-plane elastic degrees of freedom and the out-of-plane
undulations introduces an effective long-ranged phonon-mediated interaction among the undula-
tions [4]. The system therefore does not fall in the regime of validity of the Hohenberg-Mermin-
Wagner theorem. Actually, the lower critical dimension found to leading order in a 1/d-expansion
is Dy = 2—2/d < 2 [7,8], where d is the embedding dimension. Second, the classical theory of
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elasticity is believed to break down due to the thermal out-of-plane fluctuations. The critical ex-
ponents, describing the nonclassical behavior of two-point correlation functions in the flat phase
can be evaluated in approximation schemes such as the ¢- or 1/d-expansion [7-10]. The elastic
constants are singular at long wave lengths, implying for example that the classical Hooke law is
invalid in the flat phase.

The fluctuations in polymerized membranes were also studied numerically by Monte Carlo
simulations [11-13] and molecular dynamics methods [14,15]. The results of these simulations
suggest that simple triangulated tethered membranes with self-avoidance are always flat, due to
the large entropically-induced bending rigidity. A high temperature crumpled phase has so far
been observed only in the case of non self-avoiding ”phantom” membranes [11].

From the experimental side there are several approaches to obtain tethered membranes. Poly-
metrized networks appear naturally in a biological context [16,17]. An example of a biological
tethered surface is the spectrin protein skeleton of erythrocytes, separated from its natural envi-
ronment [18]. Polymerization of Langmuir films [19] and lipid bilayers [20] is another possibility,
provided that the films can be made sufficiently flexible and placed in an appropriate solvent. A
partial polymerization of phospholipid vesicles has been reported recently [21]. Recently thin
membranes of graphite oxide have been synthesized by exfoiliating graphite [22]. Probing the
conformation of these membranes using quasi-static light scattering shows that these graphitic
membranes are folded into fractal objects with a fractal dimension d = 2.5 indicating that they
may be in the crumpled phase.

Whereas the statics of polymerized membranes has been studied quite extensively, the dynam-
ics of polymerized membranes have been studied only in the crumpled phase [3,23]. These inves-
tigations follow closely the concepts known from polymer dynamics [24]. The dynamics of linear
polymers in a good solvent are fairly well understood. The simplest approach to polymer dynam-
ics is to neglect the hydrodynamic interaction between different segments, which is known as the
Rouse model [25]. It is known, however, that the long-ranged hydrodynamic interaction between
different monomers, mediated by the intervening solvent, strongly influences the dynamics (Zimm
dynamics) [26,27]. The dynamics of thickness fluctuations of red blood cells has been studied by
Brochard and Lennon [28] using concepts known from the dynamics of surface waves [29].

In this paper we extend the equilibrium statistical mechanics of polymerized membranes in
the flat phase to time-dependent quantities and study the dynamics of membranes in a solvent.
Our purpose is to calculate transport coefficients like the diffusion constant of the center of mass
motion (molecular weight dependence), correlation functions of the in-plane and out-of-plane
modes and the dynamic scattering factor. The results are parametrized by the amplitudes and
exponents of the (singular) equilibrium elastic constants and by transport coefficients.

We consider polymerized flat membranes, i.e., a system of atoms or monomers that are con-
nected to form a regular two-dimensional array embedded in d-dimensional space (see Fig.1).
What distinguishes the static universality class of tethered membranes from liquid membranes is
their fixed connectivity. The statics of the flat phase of polymerized membranes is characterized
by a non local wave vector dependent bending rigidity, and in-plane elastic constants [1,4,7,9]

k(k) ~ ED—4+2 (1.1)

A(E) ~ (k) ~ & (1.2)

In dynamics, additionally, the permeability of the membrane to solvent molecules plays a crucial
role. Consider a simple model of beads of radius a connected by permeable tethers as shown in
figure 1. We neglect for now internal elastic forces within the membranes. For very large mesh
size the velocity of a particle is determined only by the local hydrodynamic forces acting on it.
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Fig. 1. — Simplified model of a polymerized membrane with beads connected by tethers. In fishnet-like
polymers such as spectrin, these tethers are themselves linear polymer chains. A force F acting on a particle
generates motion of the solvent indicated by the lines with arrows.

The bare viscous drag coefficients ¢, y relating the force on the particle to its in-plane (u) and out-
of-plane (h) velocity is then simply (3, = 6wna, where 7 is the dynamic viscosity of the solvent.
In general, however, the velocity of a particle depends in a complicated way on the forces acting
on all other particles, because of the long range solvent velocity field generated by a localized
force. The importance of this fluid backflow (hydrodynamic interaction) increases as the mesh
size of the polymerized network decreases. If the membrane is completely impermeable to the
fluid, the out-of-plane modes become slaved to the fluid motion perpendicular to the plane of the
membrane. In this case the dynamics is very similar to that of surface waves [29]. The in-plane
motion, however, should still show some slip relative to the liquid.

The above argument shows that the dynamics of polymerized networks are sensitive to the
permeability of the membrane for solvent molecules. We can think of highly permeable and im-
permeable membranes as constituting two different dynamic universality classes of polymerized
membranes. As an example of highly permeable polymerized membranes one may think of iso-
lated spectrin networks, whereas red blood cells themselves (i.e., a lipid bilayer with a spectrin
skeleton attached) represent impermeable membranes.

The bare friction of the membrane with the solvent is determined by the structure (perme-
ability) of the membrane. We will show in section 2 that the hydrodynamic interaction between
different monomers causes the renormalized mobility (4 ~ 1/() to become inversely proportional
to the wave vector k.

One explanation of this effect is that in the limit of long wavelength the motion of the membrane
becomes slaved to the dynamics of the solvent. In this limit the dynamics becomes equivalent
to a classical hydrodynamic problem with the boundary condition that the viscous stress of the
solvent equals the elastic forces of the membrane. Upon neglecting all nonlinear effects one has

S, 9%h oh . .
for example 27 — p = k77 and — = v, for the out-of-plane fluctuations k, where ' is the
velocity field of the solvent and p the hydrostatic pressure. The expression for the in-plane motion
oh(k,t) 1

are similar. A simple scaling analysis of these equations gives Enk“h(k, t), i.e, the
kinetic coefficient is inversely proportional to the wave vector k. One has to note, however, that the
above consideration is based on the assumption that one can neglect nonlinear effects. In order
to study those one has to use more sophisticated methods adapted from dynamic renormalization
theory, which will be the subject of section 3.
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The crossover from a wave vector independent friction { (Rouse dynamics, highly permeable
membranes) to { ~ k (Zimm dynamics, impermeable membranes) is determined by the ratio of
the (bare) friction coefficients ¢, and ¢y for the in-plane and out-of-plane motion and the dynamic
viscosity n of the solvent. The crossover vector for the out-of-plane undulation mode is found to
be

Ch
kp = — .
b=y (1.3)
and for the transverse and longitudinal phonon modes one obtains
Cu Cu
kJ. = %, and ]C" = E (14)

For large viscosity n and/or for low friction { (high permeability) the crossover wave vectors
become very small or even less than the smallest accessible wave vector ky;, = =/L. In this case
the dynamics is Rouse-like in the entire wave vector regime. In the opposite regime of very small
viscosity and/or small permeability the crossover to Zimm dynamics sets in already for very large
wave vectors. The location of the crossover point can thus be tuned by the viscosity of the solvent
and/or the permeability of the membrane.

In section 3 we study the Rouse and Zimm dynamics by dynamic renormalization theory and
find that the critical dynamic exponents characterizing the wave vector dependences of the char-
acteristic frequencies I'y » for the (overdamped) undulation and the phonon modes are

Ty~ k™ (1.5)

Ty~ k™, (1.6)

where the dynamic critical exponents are determined by the wave vector dependences of the mo-
bilities and the static exponents ¢ and w,

_ J 2+ 2 for Rouse dynamics, (1.7
“=1+2 for Zimm dynamics g

and

_ J2+w for Rouse dynamics, (1.8)
=11+w for Zimm dynamics. )

Here and in the remainder of the Introduction we specialize to a D = 2 dimensional membrane
embedded in d = 3 dimensions. The corresponding expressions for general d and D can be found
in the main text. Estimates of ¢ from simulations are in the range ¢ = 0.5 — 0.67 [11,12,15], while
w is now believed to be rather small [30].

A quantity which can be directly measured in experiments is the dynamic structure factor. In
the regime where the wave length is much larger than the linear dimension L of the membrane
only the overall translational motion of the membrane can be seen. Then the dynamic structure
factor shows an exponential decay

S(k,t) ~ exp [-Dk*t] , (1.9)

where the diffusion constant is
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Do { 1/L? for Rouse dynamics,

1/L  for Zimm dynamics. (1.10)

This result should be compared with D ~ L%/, obtained for Zimm dynamics in the crumpled
phase [23].

In the opposite regime, where the wave length is much smaller than the linear dimension of the
membrane, one is probing the internal motion of the membrane. The long time behavior of the
dynamic structure factor is given by stretched exponentials

S(k,t) ~ exp[-Ck*t°], (1.11)

if the scattering vector lies in or orthogonal to the membrane plane. For out-of-plane scattering
vector the stretching exponent is given by arouse = 2¢/(2 + 2¢) in the regime of Rouse dynamics
and azimm = 2¢/(1 + 2¢) in the Zimm regime, where ¢ is the roughness exponent. For in-plane
scattering vector we let & — J, where Brouse = w/(2 + w) and Bzimm = w/(1 + w). Since the ex-
ponentw, describing the renormalization of the phonon modes, is supposed to be a small number,
the latter decay represents an enormous stretching which approximates an algebraic decay. For
the special case w = 0 the static structure factor has power law singularities with a temperature
dependent exponent analogous to the behavior of two dimensional solids. The time dependence
is characterized by an algebraic decay, which is half as fast as the spatial decay for Rouse dynamics
and equally fast for Zimm dynamics.

An important application of the dynamics of flat membranes are the thermal thickness fluctu-
ations of red blood cells. The membrane of an erythrocyte essentially consists of a lipid bilayer
(believed to be in a liquid phase) with a spectrin polymer network attached to the inner layer
through proteins. The presence of the spectrin implies that unlike the phospholipid component
of a biological membrane, the composite red blood cell membrane exhibits a shear modulus.

Under normal physiological conditions the red blood cells show a remarkable fiicker phe-
nomenon, which can be seen by phase contrast microscopy [28]. This flicker due to thermal fiuc-
tuations of the cell thickness.

Recently the spectrin skeleton of erythrocytes has been separated from their natural environ-
ment [18]. These isolated spectrin networks differ from the composite red blood cell not only in
the magnitude of their elastic constants but also -and more importantly- in their permeability for
solvent molecules. Whereas the permeability of the red blood cell is mainly determined by the
flow through small protein channels, the isolated spectrin network is highly permeable for sol-
vent molecules. As argyed above the permeability of the membrane determines the location of
the crossover from Rouse to Zimm dynamics. Hence we expect qualitatively different behavior
for isolated spektrin networks as opposed to red blood cells as a consequence of their different
permeability and elastic properties.

In section 5 we consider a simplified model of two membranes, separated by an average dis-
tance d and neglecting edge effects. We find the following crossover scenario for the thermal
thickness fluctuations: For highly permeable membranes, like the isolated spectrin network there
is a crossover from Rouse to Zimm behavior at a wave vector ky, = (,/4%. As a consequence of
hydrodynamic screening effects this is followed by a reentrant crossover to Rouse dynamics when
kd < 1. The Zimm behavior isrestricted to a wave vector regime (p/4n > k& > 1/d. For highly
permeable membranes this becomes a very narrow regime or even vanishes if ky < 1/d.

A completely different crossover scenario is obtained for impermeable membranes, like the
composite red blood cell. There one has to distinguish between large and small ratio of stretching
to bending energy y. For y >> 1, which is the case for red blood cells, one obtains a crossover from
Zimm dynamics with a kinetic coefficient proportional to 1/k to a kinetic coefficient proportional
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to k2 when kd < 1. In the regime y << 1 the linewidth shows a crossover from Zimm dynamics to
a kinetic coefficient proportional to k. The results for the case of a very large ratio y of stretching
to bending energy reduce to the results of Brochard and Lennon [28] for fluid like membranes
provided we assume a liquid-like roughness exponent { = 1. But, in addition to the lipid bilayer
there is also a spectrin network attached to the bilayer leading to a solid-like structure of the
composite object. This implies that there is a crossover from fluid- to solid-like behavior which
has observable static [30] as well as dynamical consequencies.

The crossover scenario of the fluctuations of the difference of the in-plane modes is similar to
that of the thickness fluctuations in the case of highly permeable membranes, whereas for imper-
meable membranes the crossover is from Zimm to Rouse dynamics. The in-plane modes have
up to now not been studied experimentally. It would be interesting to design experiments which
measure the in-plane dynamics of membranes.

Whereas the crossover of the relative modes is characterized by a change in the wave vector
dependence, the center of mass modes for phonons and undulations show an enhancement of the
amplitude by a factor of two in passing from kd >> 1to kd << 1.

‘We thus conclude that the crossover scenario, upon passing from kd << 1to kd >> 1, depends
sensitively on two factors, the permeability of the membrane and the ratio of stretching to bending
energy. This becomes evident if one considers the two extreme cases (i) an impermeable fluid (( =
1) lipid bilayer (with y >> 1) [28] and (ii) polymerized ({ = 0.5) isolated spectrin networks with
high permeability. The line width for the flicker modes are T{" ~ k% and T\"" ~ k3, respectively,
i.e., they differ by three powers in the wave vector!

The remainder of the paper is organized as follows: In section 2 we introduce the Langevin
equations of motion describing the coupled dynamics of the membrane-solvent system. Using the
functional integral formulation of Janssen [31] and de Dominicis [32] we define a generating func-
tional for the dynamic correlation and response functions. By integrating out the solvent velocity
fields we find an effective fluid-mediated long ranged hydrodynamic interaction between different
segments of the surface. In a preaveraging approximation (similar to that used for linear polymer
chains), the hydrodynamic interaction leads to a renormalization of the kinetic coefficients. The
renormalization of the resulting effective model is studied in section 3. It is found that the dy-
namic exponents can be expressed entirely in terms of the static exponents and the exponent of
the kinetic coefficients. The scaling properties and the wave vector and time dependence of the
dynamic structure factor is discussed in section 4. In section 5 we discuss the hydrodynamic modes
of two flat membranes. This can be considered as a model system for red blood cells. In the Ap-
pendix we show how to obtain the scaling functions from a self consistent dynamical theory which
is similar to mode coupling theory.

2. Model.

In this section we introduce equations of motion for the dynamics of a membrane in its flat phase
suspended in a fluid solvent. We shall describe the dynamics of a membrane-solvent system by a
set of coupled Langevin equations.

Apart from the nonlinear coupling between the bending and stretching modes, which determine
the static properties of flat membranes, the dynamics of dilute membrane solutions are strongly
influenced by long-ranged hydrodynamic interactions, mediated by the intervening solvent. We
assume that the dynamics is purely dissipative since the contributions of the inertial terms for
membranes in a solvent can be neglected for sufficiently large times. The Langevin dynamics
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for the membrane conformation ﬁ(s, t) (s is an internal coordinate parametrizing monomer po-
sitions) states that the friction force ¢J [c‘), R;j(s,t) — gov; [R'(s,t), t]] is balanced by the internal
elastic forces of the membrane and the random forces proportional to ©;(s, t)

6R‘—a(ts’t—) = —L?j%%;}%})) + gow;[R(s,1),%] + Oi(s, 1), (2.1)
where the matrix of the bare friction coefficients ¢; per unit area is the inverse matrix of the bare
Onsager kinetic coefficients LY. The values of these friction coefficients depend on the perme-
ability of the membrane to solvent molecules. As discussed in the Introduction, the permeability
should depend on the mesh size. If the membrane is completely impermeable to the fluid the On-
sager coefficients for the out-of-plane motion are zero and these modes become slaved to the fluid
motion perpendicular to the reference plane of the membrane. The in-plane motion, however,
should still show some slip relative to the liquid.

’H({ff}) is the free energy functional (made dimensionless by dividing by kpT") for the mem-
brane conformation field E(s,¢). In the flat phase the excitations can be decomposed into trans-
verse undulations, k, and internal phonon modes, u

R(s,t) = m[s + (u(s,1), h(s,1))] . (2.2)

The quantity m is the order parameter and characterizes the extension factor, i.e., the ratio
between the actual linear size of the fluctuating membrane and its size at T = 0. The internal
space of the membrane is characterized by a D-dimensional vector s. Note that vectors s in the
internal space are written in boldface, while vectors R in the d-dimensional external space are
denoted with an arrow.

The free energy functional is given by [4,5]

H= des [%/\ouf,- + uou?j + '_‘22(62,10)2] (2.3)
with the strain tensor

CHEES % [Oiuj + Ojui + Bihaljha) . (2.4)

The coeflicient «; is the bare bending rigidity, and A, and p, are the bare Lamé coefficients. The
parameter g is the bare strength of the hydrodynamic interaction, i.e., the coupling to the solvent
velocity field v;[&, ). This coefficient is arbitrary, and may be taken to be unity as is required for a
Galilean invariant model. One should also note that mode-coupling coefficients of the streaming
type (here go) are not renormalized in general [33,34]. If one sets gg equal to zero, equation (2.1)
describes the free draining (Rouse) model for the membrane dynamics.

The dynamics of the solvent velocity field is described by fiuctuating hydrodynamics. The rel-
evant hydrodynamic equations of motion for the fluid velocity are those of low Reynolds number
hydrodynamics. The solvent dynamics is thus described by linearized Navier-Stokes equations,
which incorporate friction forces due to the membrane and the random thermal velocity fluctua-
tions in the fluid

Ov;(Z,1)
ot

e a9 [p SHUBD (. =z o 18p o
= vy V*v;i(Z,1) p /d s6R,~(s,t) 8(Z — R(s,1)) 20 B2 +i(£,t).  (2.5a)
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Here v, is the kinematic solvent viscosity, p is the hydrostatic pressure, po is the fluid mass
density and {(,1) are random thermal forces driving the system to equilibrium as ¢t — co. It is
assumed that the fluid is incompressible, i.e.,

V.7=0, (2.5b)

which is an adequate assumption for describing low frequency dynamics of the membrane. Inertial
terms are also unimportant at low frequencies. The random forces 6(s, 1) and ((Z, t), necessary
for producing the correct equilibrium distribution function for both the membrane and the solvent
in the long time limit, are Gaussian white noise sources with zero means and variances

< 0i(s,1)0;(s', ') > = 2L 6(s — s")6(t — t'), (2.6a)

< GENDGE ) > = =200V28(F — F)6(t — 1')63; (2.6b)

where 70 = vppg is the dynamic viscosity and we have set kg7 = 1. It can be shown that cor-
relations calculated from the above Langevin equations satisfy the usual fluctuation-dissipation
relations.

The equations of motion for the fluid (2.5) can be formally solved by first transforming into
k-space

av.'(ii;, t) 9 7 go/ D &H _iLB tk; = -
Sy Eoi(k,t) = ~22 | dPs—— et R(st) 4 B (F ¢ (K, t 2.
at +V0 U( ’ ) PO s(SR{(S,t)e + POp( )+<l( ] )’ ( 7(1)

ik -k, t) =0, (2.7b)

and then eliminating the pressure in equation (2.7a) using the incompressibility condition (2.7b).
One finds

Bu;(k, 1) 2. pT(i [ ” 90/ oM _iiAey
" + vok“vi(k,t) = P;;(k) |(;(k,t) o d séRj(s,t)e , (2.8)
where
. kik;
Pl (k) = 8; — - (2.9)

is the transverse projection operator. The formal solution of equation (2.8) is

i
(E 1) = re=vok? (=t pT i | (B 1) — 9_0/ p._ M iRt
) /_wdte PL(k) [C,(k, )= 8 [ aPsrm e . (@210)

This shows that, whenever a force (2nd term in the square brackets on the right hand side of
Eq. (2.10)) acts on a surface element of the membrane, the result is a distorted velocity field in the
whole fluid. This "backflow” decreases only slowly (inversely proportional to the distance) and
drives other elements of the membrane into motion. As we will see, this hydrodynamic interaction
leads to a drastic renormalization of the kinetic coefficient. Note also thatonly the transverse noise

#(k,t) = PJ¢;(k,¢) enters since the fluid is incompressible.
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As in discussions of polymer chain dynamics [24], we assume that the typical solvent relaxation
times are much shorter than those of the membrane conformation and make the replacement [35]

T 2
e vk (t=t) _, m.S(t—t'). (2.11)

In this Markovian approximation the formal solution of the fluid equation simplifies to

vi(k,t) = ——PX(k) [c, (E,1) — / d”s- Rj;’:’t) exp (—if - R‘(s,t))] : (2.12)

Therefore the hydrodynamic interaction term goﬁ[ﬁ(s, t),?] in the Langevin equation for the
membrane becomes

gov:[R(s,2),4] = g (‘21 ;’dyzkz ,,(k)[(,(k t)exp (k- f(s,1))

-p—o /aDs'#:W exp (i - (R(s,2) - é(s',t)))] .

One way to proceed would be to insert these expression into the Langevin equation for the
membrane and study the dynamics directly in terms of the equations of motion as in the renor-
malization group approach to dynamic critical phenomena [36,37]. Here we formulate instead
a path integral description for the membrane-solvent dynamics, a method which has also been
successfully used to study critical dynamics.

Before analyzing the effects of the nonlinearity in the static Hamiltonian and the hydrodynamic
interaction let us consider a simple case first. If the membrane is completely impermeable for the
fluid and there is no slip for the in-plane motion of the membrane, the dynamics of the membrane
becomes completely slaved to the dynamics of the solvent, ie.

?9_}: =v,(t), and .6_6%1 =y(t), (i==z,y).

Neglecting effects from the roughness of the membrane surface and the nonlinearities in the
static Hamiltonian (see Sect. 2.2) the dynamic problem is equivalent to a classical hydrodynamic
problem with the boundary conditions that the viscous stress of the fluid equals the elastic forces
of the membrane

(2.13)

5z T 0z )z'("°+2"°)3§2"

where for simplicity we are considering the case v, = 0. These boundary conditions determine
the coefficients A and B in the solution of the linear Navier-Stokes equation

p— =K + 32“::
8z P T Mg

3’0; 64’1 (ava: ava
27

Vg = (ikAekz _ ICelz) ei'kt-iwt’ v, = (kAekz + ikCelz) eikz—iwt’
p= _iprekzeikz—iwt

Without even solving these equations explicitely one can recognize from a pure scaling analysis
that the equations of motion for the undulation and phonon modes are of the form

Oh(kt) 1 .,
e k Kok*h(k, 1),
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?—"”a(tﬁ ~ %()\o + 2u0) k2 h(k, t).

Compared to a Rouse model with wave vector independent kinetic coefficient the above anal-
ysis shows that in the regime where the membrane dynamics is slaved by the solvent motion the
kinetic coeffients become inversely proportional to k. Here this is a consequence of the solution
of a classical hydrodynamic problem with boundary conditions similar to the well known problem
of capillary waves. The physical reason is the long ranged nature of the hydrodynamic backflow
as explained above.

In the next section we formulate a path integral description of the dynamics, which allows us to
study the effects of static and dynamic nonlinearities and to scrutinize the approximations made
in the above hydrodynamic analysis. Furthermore, this formalism allows us to study the general
case of a D-dimensional membrane embedded in d dimensions.

2.1 PATH INTEGRAL FORMULATION AND DYNAMIC FUNCTIONAL. — In order to implement dy-
namic renormalization theory in a way analogous to static critical phenomena we need a func-
tional which generates the perturbation expansion for the frequency dependent correlation and
response functions, which follows from the equations of motion. We shall use a functional inte-
gral formulation [31,32,38,39] which converts the Langevin equations into a dynamic functional
with one additional field [39]. The idea is that instead of solving the Langevin equations (2.1) and

(2.8) for the membrane field R(s, t) and solvent velocity field #(Z, t) in terms of the random forces
O(s,t) and {, (Z,¢) and then averaging over the Gaussian weight

w({@},{cuh) ~em [~ [ ot [P0 01046,
X exp [-% f di / ddxc';(f,t)(no(ﬁ)?)-lﬁ(f,t)] ,

one can eliminate the random forces in favour of the conformation variables for the membrane
and the velocity fields of the solvent by introducing a path probability density W{({R}, {v}) via

W({R}, {v})D[R]D[v] = w({8}, {(L)D[O]D[(L]. (2.15)
Furthermore, it is convenient to perform a Gaussian transformation in order to “linearize” the
dynamic functional. This is accomplished by introducing response fields R and # [31,32,38,39]

(2.14)

WU{R, (D) = [ DG [ Dlislexp [7(R), (R, (), (3D)] (216)

For more details on the general formalism we refer the reader to references [31,32,38,39]. The
dynamical functional is given by

J({R}> {R}’ {‘U}, {5}) = Jﬂuid({R}i {R}, {’U}, {5}) + Jmembrane({R}’ {R}, {v}’ {5}) s (2’17)

where

Tauid = /k / dt [a.-(l}’,t)qok21>,§(l‘c)5j(-E,z) — 5:(E, ) PX (k) [0 — wok?] v5(~F, )
6H

B %%5:‘(5,01’5(’;)/stéRj(S,t) xp (ig’ E(S’t))] ’

(2.18q)
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and

Jmembrane = / / dt[R,(s t)LY; Ri(s,t) — Ri(s, 1) [&R«(s t) + LY; 512:7‘ )] 2.18)

+ goRs(s,t) PR (R)os [, 1), t]]

We have used the notation f, = [d?k/(2x)? and [ = [dw/2x. Since the dynamical func-
tional is quadratic in the solvent velocity fields, they can be integrated out exactly. One finds

oxp [Ta({R), {8)] = [ Dliw) [ Dol exp [J(RY. (R}, (o}, 1)

] ) (2.19)
= const. x exp [Frowe({R}, {2}) + Janaro( (R}, {RY)] -

The first term,
JRouse({R},{R}) = /st/dt [R;(s,t)L?jﬁj(s,t)

—Ri(s, 1) (B:R;(s 1)+ L 536? t)) ]

corresponds to the dynamics of a free draining membrane. In analogy to the polymer case we call
it the Rouse part [25] of the dynamical functional. The second term is more conveniently written
in Fourier space

(2.20a)

Jayaro({R}, {R}) =

-5 i(k,w), —0:(F T A E N Bf T T (2.205)
_2p0/;L(Q-(k,w), Qi(k,w)) (A~ (k,w))i; (Qi (—k, —w), —Q; (—k, —w))T,

and describes the hydrodynamic interaction between different parts of the membrane. Here

1 1 0 w + vok? :
1 = 0 T
(A7 (kW) = w? + (vok?)? (—iw + vpk? ok ) B (k), (221)
and we have defined the “generalized” Fourier transforms
- §H T
. - D — —_— . R

Qi(k,t) /d S6R.-(s,t) exp [ ik R(s,t)] , (2.22a)
and

Gi(F.t) = / a2 st (s, ) exp [~iE - F(s,1)] . (2.225)

Explicitely one finds in the Markovian approximation (see Eq. (2.11))

Jaaro({R}, {R}) = / 4, / dPs / dPs / dt[R,(s 1)PL() R (<", 1)

SH 1 ria o Ao
“Ri(S,t) T(k)m]e iE-(A(s,t)- R(s' 1))

(2.23)
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This can also be written as

Ty (B}, (7)) = [t [ Rl 0K~ (fi-an-mns] @29

where
Kii(qQ) = / / dPs / st’Pg(I});%e"‘q'(s’sl) exp [-u}'-(é(s,t)- R‘(s',:))] . (2.25)
& 0

2.2 PREAVERAGING APPROXIMATION. — One way to analyze the hydrodynamic interaction is
to replace the operator K;;(q) by its averaged value < K;;(q) >, the so called Oseen tensor.
This preaveraging approximation is frequently used in polymer physics and is due to Kirkwood
and Riseman [27] and Zimm [26]. As in reference [15], we assume that the static fluctuations
discussed in reference [4,7,9] have been incorporated into renormalized, wave vector dependent
elastic constants. Accordingly, we make the replacements ko — sr(g) ~ ¢7 4%, po — pr(g) ~
q“,and Ao — Ar(g) ~ ¢“ inequation (2.3). Upon averaging with respect to this fully renormalized
static Hamiltonian one finds

< K,-j(q) >=LP / /dD(s - s’)P:.'l.-(];)Le—i(Q+kJ.)'(s—8’)
: i\ k2

(2.26)
X exp [-2k,k,,, f x"™(p)sin’*(p - (s — ') /2)] ,
p
where the static susceptibility matrix x'™(p) reads
zz — ~ 1
xa(P) = x™(p) =< h(P)h(~P) >~ 5oz (2.27a)
for the undulation modes with the roughness exponent ¢ and
37 a L —_— T —_—
xi (p) = P (p) oo T P;(p) e (2.278)

for the phonon modes with the exponent w. As shown by Aronovitz and Lubensky [9], the expo-
nents { and w are not independent, but obey instead the important scaling relation

¢ = %(4 - D+uw). (2.28)

The coeficients «, A and p are wave vector independent renormalized amplitude factors. By a
straightforward scaling analysis of equation (2.26) one finds

< Kij(q) >=¢*72L" / /

21

X exp [‘——Ah(es)lxlz( z5g®” 2‘] (2.29)

dD:L‘PT 3 —-i(éq+z,L)-x
/ ( )UO(Z_L +Z )

1
e _ Alm(es Al As) w+(2—D) m D—w] ,
xexp |- (g AL + AR @) ) llH - D):L Ty
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where d, = d — D is the co-dimension and the amplitude factors

An(es) = f dPyy=P=%(1 — cos(y - &)) (2.30)
and
AG2(e) = [aPyy >0 - costy - e Piry) (231)

depend on é; = (s —s’)/|s — s|. k. and ky denote the in-plane and out-of-plane components of
the wave vector & respectively. This scaling analysis is valid for0 < ¢ < 1and0 < w+2—-D < 2.
Otherwise the p-integration in equation (2.26) depends explicitly on the lower or upper bounds
of the integral. With these restrictions the leading wave vector dependence of the Oseen tensor
in the flat phase is given by

< Kgar(q) >~ ¢%2 (2.32)

Currently accepted values of { for d = 3, D = 2 are in the range 0.5 < { < 0.67 [4,15,30,40]
while it is believed that w > 0 [9,15,40]. The long wave length behavior of the Oseen tensor
is thus independent of the precise values of the static critical exponents { and w. Furthermore,
it does not depend on the internal and external dimension separately, but instead solely on the
co-dimension. From this analysis the hydrodynamic interaction can be regarded as relevant for
deo < 2, marginal for d, = 2 and irrelevant for d, > 2. The marginal case corresponds to rod
like polymers (D = 1) in d = 3 dimensions with bending rigidity.

The above result for the Oseen tensor is equivalent to replacing the term R(s,t) — R(s',t) in
the hydrodynamic interaction, equation (2.23), by its average value s — s’, which is non zero due to
the fact that the membrane is flat on average. This approximation corresponds to neglecting some
correlation effects in the hydrodynamic interaction. The 1/g-behavior of the Oseen tensor reflects
the broken symmetry of the flat phase. In the crumpled phase the average value of R(s,t)— R(s', t)
is zero, but there are non trivial renormalizations due to self-avoidance (see below).

The dynamic properties of a solution of self-avoiding crumpled membranes has recently been
studied by Mutukumar [23] using a preaveraged Oseen tensor approach. He finds for the Oseen
tensor

< Kcrumpled >~ q-D-"(z—d) , (2.33)
where
D+2

is the exponent of the mean square distance between two points of the manifold,

< [R(0) - R@L))? >= |L|*, (2.35)

found in a self consistent approach for the excluded volume eflect. This result for the exponent
v agrees with a Flory type argument [3], and with the value found by numerical simulations [3],
v = 0.80 £ 0.05. A first order e-expansion gives v = 0.556 [11,41]. If the Flory value for v
(v = 4/5, for d = 3, D = 2) is used the wave vector dependence of the Oseen tensor is given by
< Kerumpled >~ ¢~5/%, which is close to what we found for the flat phase. But, the physical basis
is completely different.
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In the crumpled phase the wave vector dependence of the Oseen tensor depends crucially on
the renormalization of the "elastic” coefficients due to self-avoidance or equivalently on the fractal
dimension df = 2/v = 2.5 of the crumpled object. One should note that without self avoidance
(i.e., for "phantom” membranes) the radius of gyration scales as R; ~ v/In L implying that the
Oseen tensor would scale as < Kerumpled >~ g~2, which is completely different from the above
result with self-avoidance.

In the flat phase the wave vector dependence is dominated by the fact that the membrane is
a flat object. Actually, summarizing both results, equations (2.32) and (2.33) the wave vector
dependence can be written in terms of the fractal dimension as

< Kcrumpled >~ q_D+D(d_2)/d' (2.36)

In the flat phase, the leading wave vector dependence of the Oseen tensor can be obtained by
making the replacement

exp [—iic‘ (R(s,t) - R(s, t))] — exp [—ﬂ}’ {R(s,t) - R(s', t))] (2.37)

in the hydrodynamic interaction, equation (2.24). With this approximation, the resulting dynam-
ical functional corresponds to the following set of effective Langevin equations for the phonon
modes

Ou;(k, 1) oM ~
—_— 1 =D (k) ———— io(k, 1), .
e ;i ( )6uj(_k’t) + 0;(k, 1) (2.384)
and the undulation modes
Oh(k,t) &M =
2 e LK) — .
where the hydrodynamically renormalized kinetic coefficients are given by
. 2 o 1 kiks
i = ij o 90 (g5 2 KiEj
D;j(k) = Dod" + %m0 (6 352 ) , (2.39a)
g
Lk) = . 2.39b
(k) = Lo+ gy (2.390)

The covariance of the noise terms are

< 6;(k,1)8;(K',t') >= 2D;;(k)é(k + k")8(t — '), (2.40a)

< On(k,t)On(K', ") >= 2L(k)6(k + k')6(t — t') . (2.400)

The hydrodynamic interaction leads to kinetic coefficients proportional to 1/k in the long wave
length limit, reflecting the long-ranged nature of the fluid-mediated interaction.

At the harmonic level one can already discuss the crossover from Rouse to Zimm behavior (for
sufficiently permeable membranes), i.c., a crossover in the kinetic coefficients from a wave vector
independent constant to the singular 1/k-behavior. As can be inferred from equations (2.39), the
crossover wave vector for the out-of-plane undulations is given by

ky = 9 (2.41)
4ng Lo
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For the phonon modes we find

Jo
ks 71000 (2.42q)
and
2
9o
= 2.42b
I~ 419 Do ( )

Note that the crossover from Rouse to Zimm behavior for the longitudinal phononsis shifted by
a factor of 2 with respect to the crossover for the transverse phonons, i.e., &, / ky = 2. The physical
reason for this shift is that the fluid is incompressible. Therefore the coupling of the longitudinal
membrane phonons to the fluid motion is weaker than for the transverse ones. The crossover from
Rouse to Zimm dynamics is determined by the ratio of the friction coefficients of the membrane
and the viscosity of the solvent. Hence for membranes with a high friction coefficient, or in other
terms low permeability for solvent molecules, and/or a solvent with a small viscosity the crossover
to Zimm dynamics already starts at large wave vectors. This implies that a membrane with a small
permeability can be described by Zimm dynamics throughout the entire wave vector regime.

On the other hand, if the membrane is highly permeable for solvent molecules (small friction
coefficient) and/or the solvent has a large viscosity the crossover from Rouse-like to Zimm-like
dynamics is shifted to very small wave vectors. The crossover wave vector may even become less
than the smallest accessible wave vector kyin = 7/L, where L is the linear dimension of the
membrane. Then the dynamics is Rouse-like over the entire wave vector regime.

3. Renormalization of the effective model and self consistent theory.

In this section we study the renormalization of the effective model introduced in the preceding
section. To cover both cases, Rouse and Zimm dynamics, we take the kinetic coefficients to be of
the form

Lo(p) = Lop®, (3.1a)

and

D{;(p) = (DkPL(p) + Dj P (p))p" (3.18)

The exponent a = 0 corresponds to Rouse and a = deo—2 (e = —1for D = 2and d = 3) to Zimm
dynamics. While the Zimm dynamics is the realistic model for a single membranes with a small
permeability for solvent molecules, the Rouse model is important for the following reasons. (i) As
discussed in the preceding section there is a crossover from Rouse to Zimm behavior by passing
from smaller to larger wave vectors. This crossover may even be absent for membranes with
a large permeability and/or a solvent with a large viscosity. (ii) The Brownian dynamics method
used in Monte Carlo simulations actually corresponds to Rouse dynamics. (iii) The hydrodynamic
interaction is relevant only if the co-dimension d, = d — D < 2, it is marginal for d, = 2, and
irrelevant for d., > 2 (see Sect. 2.2).

Now we study the consequences of the vertex structure and fluctuation-dissipation relations on
the renormalization of the kinetic coefficients. The dynamic functional for the effective Langevin
equations reads

J({R},{R}) = Jo({R}, {R}) + Jm({R},{R}), (3.2)
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where the harmonic part of the dynamical functional is given by

Jo({R}, {R}) = i({h}, {B}) + i({u}, {@})| , :
ot} 1) = [ [ [icthy, ) + st (@) (33)
with

SRY TR = —3 (R0, w), A° (2, ) AL (0,0) (B (-, —), W (—p, )T (34)
for the bending modes and

i{u}{ah) = —%(ﬁ"(p,w),u‘(P,w))Af.j(p,w)(ﬁj(—p, —w), v (-p,—w))" (3.5)

for the phonon modes. The tensors Ay and A, are

op _ cap —2Lop® iw + Lop®(p* + 70p?)
Ah (paw) =4 (—z’w + Lopa(p4 + T0p2) 0 ’ (36)
and
ii —2A% (p) iwb + B (p)
& = o oA
Af(p,w) = (—iw&" + B (p) 0 : (3.7)
with
A% (p) = Dp* P§(p) + D{p" P (p), (3.8a)
and
B (p) = Dgp®(Ao + 2p0)p* P (p) + D{p*nor* PL(p) - (3.8b)

The transverse and longitudinal projection operators in the D-dimensional internal space are
defined by

Pj(p) =48 - ’%, (3.9a)

and
Pite) = B (3.90)
Note that the Onsager coefficients for the undulation modes Ly and the phonon modes Dy are

in general different.
The interaction part of the dynamical functional consists of three parts, two 3-point vertices

3
s =] [ 6(Zp,)6(2w,)Lopl (#o [(Ps - P)P, + (s - 2]
i=1YPuws iz (3.10)

+Xo(P1 'Pz)Pga) h*(p1,w1)h? (p2,w2)u! (P3,w3),
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3 3
Ja =3 2 gos H / 8> _pi)6(Y_wi) (o [(ps - 1)Ph + (P3 - P2)P] + Ao(P1 - P2)ph)

i=1VPuWe =1 i=1

x[Dk P, (ps) + D§ Pir(p3)1pgh (p1,w1)R? (P2, w2)i™ (P3, w3) ,

(3.11)
and one 4-point vertex
4
Ja=-11 / 6(sz)6(2wz)Lop1 [uoé“«sf"' 2059887\ (p1 - p2)(Ps - P4)
i=1YPu¥: =1 i=1 (312)

x he (P1,w1)hp(P2,w2)h7(P3,w3)h (P4, ws).

Note that all legs of the vertices have a momentum factor. The diagramatic representation of
the vertices is shown in figure 2.

\\ ‘ \

>/

Fig. 2. — Interaction vertices in the dynamic functional. A wavy line corresponds to a phonon correlation
field and a stralght line to a undulation correlation field. The response fields are indicated by broken lines

((a): J t’ (®): J v ©: J;

Since fluctuation-dissipation theorems play an important role in relating static and dynamic
critical exponents, we study them next. Adding to the Hamiltonian “external” fields By and B,
which couple linearly to the undulation and phonon modes, the susceptibilities for the undulation
modes,

6§ < h*>
A 3.13
h 635 !Bn 0, ( )
and the phonon modes
s b<ut >
VW= —— |B.—0) 3.14
Xll 635 IB- ] ( )

can be written as [38}
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X2(0) = 0= < KOH(0) >, (3.15)

and
ij d i j
xJ @)= —O(t)a < (@)’ (0) > . (3.16)
On the other hand one finds directly from the dynamical functional (3.2-3.12) that
X’ (p,1) =< h*(p, ) Lop®h?(-p,0) >, (3.17)

xi (p,t) =< w'(p,t) D] (p)i'(—-p,0) > . (3.18)
This implies the following relations,

“iwrgooo(P,w) = Lop* (Ftl)mo(P)w) - Pgwo(‘Px —‘")) ) (3.19)
. (LT)0 LT L,T LT
_""Fgozo) (p,w) = D(() )Pa (Fgon)o(P,w) - Fgou)o("P,“W)) ) (3.20)

connecting different vertex functions. Here I'y; ,, ¢  denotes a vertex function with M undu-

lation response fields h, M undulation correlation fields h, N phonon response fields @, and N
phonon correlation fields u. 'We shall now study the dynamic functional (3.2-3.12) using field-
theoretic renormalization theory [38]. To remove the divergences, we introduce renormalization
factors, which we choose to parameterize as follows:

(i) wave-function renormalization

ufl =Z hg = Z-2pe R ﬁi( = Z—lﬁi, 71:{ = Z"Y2pe , (3.21)

(ii) kineti¢ coefficient renormalization

Lr=22{'Ly, DED =27225'D{D, (3.22)

(iii) and vertex renormalization

pR=M"Z2Z; o, Ar=M"Z2Z ), (3.23)

where M is a reference wave number.

Due to the Ward identities [10] associated with the linearized rotational symmetry of the free
energy functional H, it is not necessary to introduce additional renormalization factors for the
vertices, equations (3.10-3.12). Since the dynamics obeys detailed balance the renormalization
factors Z, Z,, and Z,, are the same as in statics [10]. The only renormalization factors left are
those for the Onsager coefficients L, and D((,L’T). Using the structure of the vertices and the
above fluctuation disspation theorems we will show next that these are not renormalized.

Since due to the wave vector dependence of the vertices all two point functions vanish in the
limit ¢ — 0, one finds for the renormalized vertex functions

8uT1100(q = 0) = i(Z2)"/* (3.24)

and
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awroou(q = 0) = z'(ZZ) . (3.25)

This implies the relation

Z7 =1 (3.26)

between the Z-factors for the field renormalization of the response and correlation fields, which
is exact to all orders in perturbation theory.

Inserting in the fluctuation-dissipation theorem (3.19) the definitions (3.21-3.23) one finds for
the renormalized vertex functions of the undulation modes

—iwZ ™ Ta000(P,w) = Z7* ZLLR(Z2Z)™/?p* (T1100(P,w) — T1100(—P, —w)) - (3.27)
Therefore there is the following exact identity

Z7l' =127 Y(22) V2, (3.28)

relating the renormalization factors of the fields and the kinetic coefficient of the undulation
mode. With equation (3.26) we find

ZL=1, (3.29)

i.e., there is no renormalization of the Kinetic coefficient of the undulation modes. For the phonon
modes one finds analogously

77 = 2pZ%(22)7", (3.30)
and with (3.26)

Zp=1. (3.31)

This implies that there is no dynamic renormalization of the Onsager coefficients for the undu-
lation and phonon modes. All exponents including the dynamic critical exponents are therefore
solely determined by the static renormalization factors and fixed points. Therefore the typical
linewidth for the phonon modes I'y and for the undulation modes I'y, have the following wave
vector dependences

Ty ~ po+2+v (3.32)

[y ~ po+P+2% (3.33)

implying that the dynamic critical exponents are z, = e + D + 2¢ and z, = a + 2 + w, as quoted
in the Introduction for D =2and d = 3.

Knowing the critical exponents there are two possible ways of calculating the scaling functions.
One is to calculate the non divergent parts of the vertex functions in an e-expansion. Here we
use a second approach, which is analogous to mode coupling theory, namely to sum up the most
divergent diagrams in the perturbation series and take into account the statics by using the fully
renormalized static susceptibilities [42].

The resulting set of self consistent equations (see the Appendix) lead to the following scaling
behavior of the correlation C(p, w) and response functions R(p,w)
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Lap® P

Ci(p,w) = Wg@.(w) (3.34a)
1 A /n
Rapw) = WR]I(“)), (3.34b)
DL,T a+w—2¢ . .
M) = prmpegzap O @) (3.350)
1 ALT -

RYT(p,w) = 'DL,T—WL,T_@R:]T’T(W)! (3.356)

where C and R are scaling functions and we have specialized to D = 2and d = 3. L denotes the
renormalized kinetic coefficient for the undulation modes. The scaling variable for the frequency
is given by

N W
&= (3.36)

i.e., it is characterized by the linewidth of the slowest mode, namely the undulation modes. With
this scaling Ansatz all diagrams contributing to the vertex functions of the undulation modes have
the same wave vector dependence. The frequency dependence of the vertex function I'y; for

the phonon modes has a subleading frequency dependence. This can be explicitly seen from the
scaling form

a W& >~ L K - -
Ti7(p,w) phonon = DT pp™+2+ [—zw D;ﬂ P~ 4+ D'™(@)] , (3.37)

where the first term in the square brackets is the subleading frequency dependence. The leading
frequency dependence comes from the mode coupling contribution D'™ representing the decay
of phonon modes into undulation modes (see Eq. (A.33)). Hence there are two time scales for
the decay of the phonon modes. There is an initial decay due to the internal phonon dynamics
and there is a much slower second decay due to the coupling to the out-of-plane modes.

One should further note that the anomalous scaling of the correlation function of the phonon
modes (the term DLTpe+¥=%) is a consequence of the fact that the scaling of the frequency
variable is determined by the line width of the undulation modes. This is not a renormalization of
the kinetic coefficients DT, as can be seen from the scaling of the response function (note that
there is a fluctuation-dissipation relation: iwI'%T(w) = DT[Nk (w) — TLT(—w))).

The structure of the correlation function for the undulation modes is mainly determined by
the first mode coupling contribution, which is frequency independent. The phonon-mediated
mode coupling terms vanish in the limitw — 0. Hence to a first approximation , the shape of
the correlation function is given by a Lorentzian, where the line width is given by the wave vector
dependence of the bending rigidity. For more information on the scaling function one has to solve
the equations discussed in the Appendix with a self consistent numerical procedure.
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4. Dynamic structure factor.

The structure factor S(k, t) observed in dynamic light scattering or neutron scattering experiments
is given by the Fourier transform of the density-density correlation function

S(k 1) = J-i/- / aPs / AP G(R ;5,8 , (4.1)
where
G(k,t;s,5') =< exp [u? : (R’(s,t) - R(s', 0))] >=ekrGg(f 45, ¢). (4.2)

Herek is the in-plane partof £ and A is determined by the normalization S(k=0,t=0)=1

The behavior of the dynamic structure factor has two limiting regimes depending on whether
the wave length is much larger or much smaller than the linear dimension L of the membrane. In
the regime k) mL << 1, where the wave length is much larger than the linear dimension of the
membrane, only the overall translational (and rotational) motion of the membrane can be seen
in the dynamic structure function. Hence the dynamic scattering function in the long time limit is
given by

S(k,t) = exp [-Dk%] , (4.3)

where the diffusion constant D for the center of mass motion can be calculated with the Kirkwood
formula [44,45], which is simply the Oseen tensor in the Markovian approximation at zero wave
vector. In the case of a disc geometry the diffusion constant is

2
p = kel (_4_2) / d%s / L — (4.4)
6xn \vL 1s|<L/2 {s'|<L{2 |R(s,t) — R(s’,t)|
For a rigid disc (i.e., B = (s1, s2,0)) this gives
2kpT 1
Drigig dise Sl "~ T (4.5)

In a factorization (mode coupling) approximation due to Kirkwood and Riseman [27,45] (equiv-
alent to the preaveraging of the Oseen tensor with the linearized static functional with fully renor-
malized bending rigidity and Lamé coefficients) equation (4.4) reduces to

kBT d 7, 1
= — k)— .
p= 2 [asyg, (46)
where S(k) is the normalized static structure factor, discussed in reference [15]. Using an

effective, long wave length free energy functional with the fully renormalized elastic constants
one finds

2
S(B) = S(ky, ks, L) = [ — / dPs / P’ F(s —s'), (4.7)
7L} Jia<rs2 Is'|<L/2

where

. 1 ) i [AD(Es) | AZ(a) )| wra-
F(s) = exp {sz_ s — —k2Au(&)lsI — kLK ( AL+(; ”) + T,fe )> ls|+? D] (4.8)
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with the amplitudes Ap(é;) and AET(é,) given by equations (2.30,31). The wave vectors k; and
k. denote the in-plane and out-of plane components of the scattering vector E, respectively. The
scaling analysis is completely analogous to the one we did for the preaveraged Oseen tensor in
section 2.2. One finds for the molecular weight dependence of the diffusion constant in the flat
phase

L-dm+2
LD
corresponding to Dgy = L~! in d = 3 dimensions for a D = 2 dimensional membrane. This

is exactly the same result as for a rigid disc, equation (4.5). Note that for Rouse dynamics the
diffusion constant would be

Daat ~ (4.9)

kT
DRouse = 'A_;%Z ) (4.10)

where ( is the friction coefficient of an individual bead and N is the number of monomers. This
corresponds to a molecular weight dependence Dgoyse ~ L2, Except for logarithmic corrections,
equation (4.9), also contains the case of a rigid rod, where [24]

InL
Drigid roa ~ —— (4.11)

The above result for the flat phase has to be compared with what is obtained for the crumpled
phase [23]
Dcrumpled ~ L_V(d_ 2) (412)

In d = 3 dimensions and taking the Flory value for the exponent v = 4/5 one obtains

Dcrumpled ~ L—4/5 (4.13)

If the wave length is much smaller than the linear dimension of the membrane kymlL >> 1
one is probing the internal motion of the membrane. This limit is equivalent to considering a
membrane of infinite extent. Using again the Gaussian approximation for the dynamic free energy
functional with fully renormalized coefficients one finds

o(F,tis,) =exp [T, < (65, (6,0) (F(5.0) - w(5,0) 5]
(4.14)
X €Xp [—%kﬁ < (h(s,t) — h(s',0))? >] .

The correlation functions for the undulation modes and the phonon modes can be written as

Cu(s, s, 1) = < (h(s,) — h(s',0))* >

= /p [2xh(P)(1 —cos(p - (s — ) + 2xu(p) cos(p - (s — s')) (1 _ e-r.(p);)] ,

(4.15)
and
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Ci(5,8,1) = < (w(5,1) — (51, 0) (W (s, 1) — W (&',0)) >

= fp [2xf.j (P)(1 — cos(p - (s — ")) + 2x!(p) cos(p - (5 — §7)) (6,,- _ e-r::'(p)t) ] ’

} (4.16)
where xn(p) and xy (p) are the fully renormalized static susceptibilties. The line widths are given

by

_ Ln(p)
Tu(p) = o) (4.17)
and
Iy (p) = DY(p)(xa )" (P) (4.18)

with the kinetic coefficients given by equations (3.1.a,b) with the bare quantities Lo and D(I;’T
replaced by the full renormalized ones, Ly and Dy 1. For ¢t = 0 the above expressions reduce to
the static structure factor, discussed in reference [15].

Now we turn to a scaling analysis of the dynamic structure factor. By substituting yP+2¢+e =
LyxpP+2+e¢ and analogous expressions for the phonon modes, where the exponent a = 0 cor-
responds to Rouse behavior and e = d, — 2 to Zimm dynamics, the correlation function can be
written as

: 2 R
Culs,s',1) = — (Ah(es)ls — ' + B ful(s — S')/lh)) (4.19)
and
.. 9 o _ o
Gl ) =5 (4f (€)ls - &'[¥272 + 427D i (s — ') /1))
4.20)
2 (i - i (
+2 (Al — 1422 4 1P (s - /i)
Here we have defined the characteristic lengths
Iy = (Lywt)/(PF2+a) (4.21)
I = (DL(A + 2u)t)!/Crete) (4.22)
It = (Dypt)H Gtete) (4.23)
The scaling functions fy and f, are given by
fiulx) = / dPycos(x - y)y~P-% (1 - e-v”“‘*“) (4.24)

and

fix(x) = / a2ycos(x - y)y~2 (1- 7" Bin(y). (4.25)
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The general case is rather complex. But, to extract the characteristic features of the dynamic
behavior it is enlightening to study the two limits, where the scattering vector lies parallel and
perpendicular to the membrane plane.

(i) For k1 = 0 the dynamic structure factor simplifies to the scaling form

Stks = 0,1, 0) ~ £/ [ aPexp (1 [ As(en)s™ — Kf(oast /P39 /)] )
(4.26)
where the scaling variable p is defined by
1/2¢
p= (kﬁ(Lhnt)2¢/<D+2<+°>) (4.27)
In the long time limt p >> 1 the scaling function reduces to a constant
j0) = / dPy (1- 77" ymPx (4.28)

independent of z. Hence in this regime the dynamic structure factor is given by a stretched expo-
nential

Sl = 0,k),8) = S(ky = 0,ky,0) exp [-Cakie] , (4.29)
where C}, is a constant given by (note kg7 is set equal to 1)
Ch= ;lc-(Lhn)z(/(D“C"'“)f(O) . (4.30)
The stretching exponent
a=2¢
RS .

is listed in table I for a set of values for the roughness exponent ¢ (for D = 2 and d = 3).

Table 1. — Stretching exponents o and (3 for a set of theoretical and numerical values of the exponents
w and ¢ for Rouse (a = 0) and Zimm (a = —1) dynamics (D = 2, d = 3). The case (wv,{) =
(0,1) corresponds to a fluid membrane. (w,{) = (2/3,2/3) is the result from a 1/d-expansion to
leading order [7,8,10}. (w,¢) = (0,1/2) [39] and (w,¢) = (0.2,0.55) [40] are results from numerical
simulations of tethered membranes.

a(@=0)  f(a=0) afa=-1)  fla=-1)
— 0 < =1 l 0 (»ln») g 0 (»ln»)
w=he= 2 3
1 1 3] » l 22, »
w=0,(=3 3 0 ("In”) 5 0 ("In”)
_2..2 2 1 4 2
“=3l=3 5 1 7 5
11 1 11 1
w=02¢=055 3 O 5 =
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(ii) For kj = 0 the dynamic structure factor is

S(k_]_, k" = O,t) ~ kID /dpxei"'é*x

1 i ¢ —w - w2~ wa) pif
xexp(/\+2u [—A}f(es)kf gw+2-D _ki(DL(A+2p)t)( +2-D)/(2+w+ )fLJ(x/PL)]) %

X €exp (‘% [_ ?(és)kf""z“’”'n _ ki(Dr#t)(w+2—D)/(2+w+a)f,§j(x/pT)]) ,

(4.32)

where é; = k, /|k, | and the scaling variables are
pu = ki (DL(A + 2p)t)t/ @Fete) (4.330)
pr = ki (Drput)!/(Zrete) (4.33b)

For p >> 1 the scaling function reduces to a constant independent of z. Hence the dynamic
structure factor is given by a stretched exponential

S(ka, k” = O,t) ~ €Xp [-—Cukitﬁ] (4.34)
where Cy is a constant and the stretching exponent

_w+2—D
T 24w4a

is listed in table I for a set of values for the exponent w (for D = 2 and d = 3). The case
(w,{) = (0,1) corresponds to a fluid membrane. (w,() = (2/3,2/3) is the result from a 1/d-
expansion to leading order [7,8,10]. (w,¢) = (0,1/2) [30] and (w,¢) = (0.2, 0.55) [40] are results
from numerical simulations of tethered membranes. Since the exponent w found in numerical
simulations of tethered membranes is very small [30,40] this is an enormous stretching or equiva-
lently, close to an algebraic decay.

For the crumpled phase one finds, using the results of reference [23], that the long time behavior
of the dynamic structure factor is also given by an stretched exponential

B (4.35)

S(k, )erumpled ~ €xp [—C.k*t"] (4.36a)
with the stretching exponent

2
T2y w-_[Dtu2—d)]’

¥ (4.366)

Here v is the exponent of the radius of gyration (R, ~ L”) and D + v(2 — d) is the exponent

2, one finds

of the preaveraged Oseen tensor. Taking the Flory value for the exponent v = F+2

2
7=3
Now we consider (for (D, d) = (2, 3)) the special case that the phonon modes are not renor-
malized by the coupling to the undulation modes, i.e., w = 0. This case is interesting first because
there is a static crossover from ({,w) = (1, 0) to the asymptotic values and second because it is not
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yet clear from numerical simulations whether the exponent w is close 1o or identically zero. Fur-
thermore, it may be difficult to distinguish between these two cases experimentally. For in-plane
scattering vectors the density-density correlation function is

G(ky,k, =0,¢;s,8") =< exp [zl}. (ﬁ(s,t) - ﬁ(s’,O))] >

. , (4.37)
= ek leNg(ky b, = 0,8;5,5).
The angular average of g is of the form
kgT[ 1 d
gav(ky, k, = 0,¢;s,8') = exp (kii [——— / L1 - Jo(pls — s'e~TrP)
At p (4.38)
1 fdp ’
4= | =1~ Jo(pls -+ e"rT(P)t]),
2] 3¢ o(pls — ') )
where Jj is a Bessel function of the first kind. The line width for the phonon modes are
TL(p) = (A + 2u)DLp™**, (4.39a)
I'r(p) = pD1p**e, (4.39%)
where the exponent ¢ = 0 for Rouse and a = —1 for Zimm dynamics. Note here kgT is not set

equal to 1 as elsewhere in this paper.

One should note that equation (4.38) is exactly the expression for the dynamic density-density
correlation function of a two dimensional solid. For the static case (¢ = 0) one finds an algebraic
decay [46]

gav(ki, k. = 0,1 = 0;s,8") = |s — s'|~"D) (4.40)
with a temperature dependent exponent
k2 ksT(3p + A)
T)= L2 V7~ 7/
n(T) dxu(2p+ A)

This power law decay leads to a power law singularity in S(k, ) at the reciprocal lattice points
{G}. Fork, =~ G, one gets

(4.41)

1
" kL - G
The time dependence of the dynamic density-density correlation function is also given by an

algebraic decay. The value of the exponent depends on the exponent of the kinetic coefficient,
i.e., on a. One finds for large times

S(ky) (4.42)

gav(k, b = 0,8;8,8) = t77TVA, (443)

oo
A= / dy y'toe v = {
(]

where

for Rouse dynamics (a = 0), (4.44)
for Zimm dynamics (a = —1).

Lad ST Y
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Hence the time decay is half as fast as the spatial decay for Rouse dynamics, but equally fast for
Zimm dynamics. More generally, the density-density correlation function for the phonon modes
has the scaling form

gav(ky, k; = 0,8;8,8") = |s — '|7"Dg(|s — 5’| /t4). (4.45)

5. Flicker phenomenon in red blood cells.

The membrane of a erythrocyte or red blood cell is a thin material, only about 5 nm thick, and
essentially lamellar in structure. It consists of a lipid bilayer (believed to be in a liquid phase)
in which macromolecules are incorporated. In addition there is also a spectrin polymer network
attached to the inner layer through proteins. The presence of the spectrin implies that unlike
the phospholipid component of a biological membrane, the composite red blood cell membrane
exhibits a shear modulus [47,48].

The shape of the cell is biconcave-discoid (of dimension ~ 8u x 2u) under normal physiolog-
ical conditions. In this state the membrane surface tension is very small and the red blood cells
show a remarkable flicker phenomenon, which can be seen by phase contrast microscopy [28].
This flicker is a purely physical effect and due to thermal fluctuations of the cell thickness. It
was first observed by Browicz [49] using ordinary light microscopy. More recently Brochard and
Lennon [28] have measured the frequency spectrum for the flicker intensity (flicker spectrum).
They interpret the spectrum in terms of a linear theory considering an essentially incompressible
fluid membrane with bending rigidity but no shear modulus, which is completely impermeable for
solvent molecules.

Recently the spectrin skeleton of erythrocytes has been separated from their natural environ-
ment [18]. These isolated spectrin networks differ from the composite red blood cell both in
the magnitude of their in-plane bulk modulus and in their permeability for solvent molecules.
Whereas the permeability of the red blood cell is mainly determined by the flow through small
protein channels [16-18], the isolated spectrin network has a mesh size ranging from 20 nm to 200
nm [18] which makes it highly permeable for solvent molecules. As discussed in the Introduction
and in Section 2, the permeability of the membrane determines the location of the crossover from
Rouse to Zimm dynamics. Hence, we expect qualitatively different behavior for spektrin skele-
tons as opposed to red blood cells as a consequence of their different permeability and elastic
properties.

We simplify to a model of two membranes, whose conformations are described by surfaces
R® and R, separated at a fixed average distance d =|< R() — R(® >|[28], as shown in figure
3. We assume that the membranes are infinite in extent and are therefore neglecting boundary
effects. This restricts our analysis to wave lengths smaller than the cell diameter (= 7.5 um). For
larger wave lengths the closed geometry of the cell has to be taken into account. The free energy
functional of each membrane is taken to be that of a flat membrane with bending rigidity and
internal shear elasticity due to the spectrin network.

This model of two dynamically interacting membranes is also a starting point for investigating
the dynamics of semidilute membrane solutions, where the inter-membrane interaction becomes
of importance. From the two-membrane model considered below one may infer how the interplay
between inter- and intra-membrane interaction leads to a screening of the long range hydrody-
namic interaction in semidilute solutions. One direction for further study would be the dynamics
of lamellar phases of tethered membranes [50-52}, which should have some similarity with the
dynamics of smectics [53].
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RS

(L T]
/]

Fig. 3. — Model of two flat membranes separated at a distance d. The fluctuations of each membrane are
characterized by bending (2 and phonon modes «(1:2)

In our model we neglect the static steric repulsion between the two membranes. Hence the
interaction between the membranes is of purely dynamic origin and due to the backfiow of the
solvent fluid. The equations of motion for each membrane are then a straightforward generaliza-
tion of equation (2.1),

ORM(s ) __ SH{RCDY)
ot 5B (s, 1)

For notational convenience we omit all subscripts ”0” indicating bare quantities in this section.
The coupling between the membrane is mediated by the intervening solvent, whose velocity field
obeys the following Langevin equation similar to equation (2.8),

+ gui[BOD(s,1), 1] + 04 D(s, 1) . (5.1)

ED ¢ il = BB [0 - ¢ [ a2s

5 exp (—z’l?- ﬁ(l)(s,t))

SR (s 1)

oR; (s,%)

-2 [y (< B0
p §R)(s,1) p( (s ))

Upon inserting the formal solution of the latter equation into the Langevin equation for the
conformation fields of the membranes one finds, in the Markovian approximation for the solvent,
the following coupled Langevin equations

(5.2)

OR{"(s,t) _ L_.m({étl'?)})
T Y sRM(s 1)

ot
_g2/ LPI(IE)/st'-Lexp [iic'. (R’(lﬂ)(s t) — R2)(s' t))] (5.3)
& nk2 3 6R(1'2)(s’,t) ’ ’

1 ~ &M .7t 3 > ’
_g2/k q?Pg(k)/stl,SR(_—z,l)(s',t) exp [zk. (R(l,z)(s,t)— R@(s ,t))]

+6{2(s,1)

for the membrane conformations, where (:)El’z)(s, t) are noise terms modified similar as in section
2. Note that the equation of motion for each membrane contains two hydrodynamic interactions,
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one is due to a intra-membrane and the other to a inter-membrane backflow. The interplay be-
tween these two effects will be of crucial importance for the dynamics of the thickness fluctuations

(see below). In the preaveraging approximation, i.e., upon replacing - (R (s) — R)(s")) by its
average value < k - (R()(s) — R(s')) >=k - (s — ¢') and & - (RW(s) — R((s')) by its average
value < k - (R0)(s) — B(s")) >= k- (s — ') + iky d (the in-plane wave vector is denoted by k),
the equations of motion for the undulation and phonon modes of each membrane reduce to

ik, t)

= - Dl () — 2 _ pierge) O
ot Su (1)(—k ) Su (2)( k1) (5.4)
2d k' -kd 67" ~
M ES 6h_(2)(—k,t) +Oi(k1),
au(z)(k t) _Dmtra( ) 1nter( )
ot Su (2)( k t) Su (1)( k,1) (5.45)
2d k‘ —kd 67{ ~
T F sy T Ok
dhM(k,¢) intra M inter oH
o - L) shD(—Xk,1) L (k)6h(2)(—k,t)
+i LA O +6(k,1) (540
dn k- suP(—k,1) Y
7 ’
ah(z (k t) intra 6H inter §H
at —L" ()3 SR (=k,t) L (k)ah(l)(—k t)
Sdb oy ) ’ (5.4d)
—iT——eF 4 O(k,t).
dn k- sulM(=k,1)
7 )
The kinetic coefficients for the inter- and intra-membrane interaction are given by
i ; i Lkik;
D:,;“’a(k) D6 j + — 2 A (6 i 2 k—;) , (5.5(1)
2
inter .y 9" (i 2 e—kd
D7 (k) ok (6 (1 + ch) ) ) (5.5b)
for the phonon modes (for simplicity we have assumed Dy = Dy = D,), and by
intra gz
mn = —
LP (k) = Lo+ g (5.6a)
int g kd
inter — 3 -
L™ (k) = ank (14 kd)e™" %, (5.60)

for the undulation modes. The above equations show that there is an inter-membrane coupling be-
tween the longitudinal phonon modes and the undulation modes, whereas the transverse phonon
modes couple neither to the longitudinal phonon modes nor to the undulation modes. This de-
coupling results from the incompressibility of the intervening fluid. Although the shear modulus
of the spectrin skeleton does not directly modify the spectrum of the thickness fluctuations, the
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crosslinking inherent in the spectrin skeleton is responsible for the solid-like behavior of the cell
membrane and therefore for the very strongly renormalized bending rigidity [4]. The amplitude
of the shear modulus and the other elastic constants determine the static crossover wave length
from fluid- to solid-like behavior of the membrane [30] (see also the end of this section). For
recent experiments which study how crosslinking the cytoskeleton affects membrane undulations
see reference [54].

For the further analysis of the Langevin equations it is convenient to decompose the phonon
field into its transverse and longitudinal components

) y ks
i = Pluj + Pilu; = —kluL +wT, (5.7)

and to introduce the center of mass and relative coordinates,

AE) = p(1) 4 p) (5.8a)
u{i) = ug) + ug) , (5.8b)
oy = uR 43, (5.8¢)

of the fields. The equations of motion take the form

oult) _ :
ST = — (D £ DR (kR (5.9)

for the transverse phonon fields, and

(+) . . 2
a’éht = — (D™ + D) [AR) + 2u(k) k2 i%e-kdn(k)k‘*h(-) . (5.10a)
- . . 2
a’jT = — (£ - pinter) (k)k*h() + i%ie‘“[,\(k) + 2p(k)uf? (5.106)

for the coupling between the sum of the longitudinal phonon fields and the difference of the
undulation modes, and

(- . . 2

6‘(‘; = — (D™ — D) [A(k) + (k)27 + i-gz;’c—le‘“;c(k)k“h(‘) (5.11a)
(+ . . 2

6}:% - _ (Lmtra + Lmter) Ic(k)k4h(+) - i%—;e""d[).(k) + 2p(lc)]k2u§__) (5.118)

for the coupling between the difference of the longitudinal phonon modes and the sum of the
undulation modes. Here we have taken the free energy functional to be quadratic in the fields
and have taken into account some effects of the nonlinearities by using the fully renormalized
bending rigidity «(k) and Lamé coefficients A(k) and p(k). This is justified by the fact that the
kinetic coefficients of the above model are not renormalized (see Sect. 3).

The longitudinal and transverse kinetic coefficients for the phonon modes are given by

2

intra __ 9
D¥™ =Du+3r, (5.12a)
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2

Div = D, + 4% , (5.12b)
for the intra-membrane interaction, and
Dinter — ie—-kd (5 13 )
T - an 3 . a
Diater — 2 (1 —kd)e~*d (5.13b)
L - 3 .

4dnk

for the inter-membrane interaction. The coefficients Dy and Ly, are proportional to the perme-
ability of the membrane. For red blood cells the permeability is very low and hence these constants
can be set to zero. For isolated spectrin networks, however, these constants are much larger as a
consequence of their large mesh size.

The transverse phonon modes are completely decoupled from the rest of the modes. The
linewidths are given by

k)k
iwy 5 = Dyp(k)k? + % (1+e %), (5.14)
where here and in the remainder of this section we have set g = 1.

There is, however, a coupling between the longitudinal phonon modes and the bending modes,
mediated by the intervening solvent. In discussing the two sets of coupled equations, equations
(5.10.a,b) and equations (5.11.a,b) it is convenient to introduce a scaling variable for the frequency

by

Anw
k(k)k3’
which measures the frequency in units of the line width of the undulation modes of a single mem-
brane (Zimm behavior). Furthermore we introduce two scaling variables for the wave vector

(5.15)

w=

z=kd, (5.16a)
_ [ kfky=4nLyk fora=h
o= { kfky =Dk fora=u {5.16b)
and a quantity
_ Alk) +2u(k)
O (5.16¢)

characterizing the ratio of stretching to bending energy. For red blood cells this ratio is usually
very large, even for the smallest experimentally accessible wave vectors, due to the very low com-
pressibility of the bilayer [48]. In the case of an isolated spectrin network, however, this ratio may
eventually become smaller or even be of the order of unity.

The equations (5.10.a,b) describe the coupling between the relative mode of the undulations
(thickness fluctuations) and the center of mass mode of the longitudinal phonon modes. The
linewidths are found to be

1 1
iy =5 (ay+b)+ -2-\/(ay —b)? + 422ye~2% (5.17)
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where we have defined the sum

a=14+(1—-2z)e""+2z, (5.18a)

and the difference

b=1-(1+z)e™ 42 (5.18)

of the intra- and inter-membrane kinetic coefficients of the longitudinal phonon modes and the
undulation modes, respectively, in terms of the scaling variables. The normalized eigenvectors
are

e = ({9, A7), (5.19)
with
(+) _ —ze~ 7"
Uj gy = , 5.20a
I o e (5:200)
K7 = izt dy (5.200)

The wave vector dependence of the linewidths depends on two length scales, the distance be-
tween the membranes d and the crossover wave vectors ky . It also depends on the ratio y of
stretching to bending energy.

If the membrane shows no in-plane stiffness for longitudinal phonons (y = 0) there is only a
bending mode with the linewidth

We=b=z+1— (1 + z)e“” (521)

In the limit of wave lengths much smaller than the distance d between the membranes (kd >>

w(k)k®
4

1) equation (5.21) reduces t0 iwy = (1+&/ky). In this limit the membranes are decoupled

and the dynamics correspond to those of a single isolated membrane with a crossover from Rouse
to Zimm dynamics at k. For long wave lengths or small distances between the two membranes,
k(k)k3
47
wave vector dependence of the line width is the Rouse term Lyx(k)k* unless the permeability
of the membrane for solvent molecules is very small. Hence we have the following crossover
scenario for isolated spectrin networks in the case of y = 0. For wave numbers k& > ky = 1/47Ly
the dynamics is governed by Rouse behavior. Then there is a crossover to Zimm behavior, which
would be the ultimate long wave length limit of the dynamics of a single membrane. But, in the
present case of two hydrodynamically coupled membranes, there is a reentrant crossover to Rouse
dynamics at kd = 1. This is due to a screening of the hydrodynamic interaction (the 1/k-singularity
of the inter- and intra-membrane interaction cancel). The width of the Zimm regime is given by
ky > k > 1/d. If the membrane has a high permeability such that k¥, < 1/d one has Rouse
dynamics over the entire wave vector regime. On the other hand, if the membrane is essentially

kd << 1, the line width is given by iw, = (k/ks + (kd)?/2). In this regime the dominant

3
impermeable (like a lipid bilayer) the crossover is form Zimm dynamics iw; = % forkd >> 1

w(k)k3

& (kd)? for kd << 1 corresponding to a kinetic coefficient proportional to k2.

10wy =
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For membranes with a very high resistance to compressions (y >> 1), as is usually the case for
red blood cells, the bending mode has the linewidth

2p—27
iy = b— 22 (5.22)
a
and the linewidth for the phonon mode has the form
iwp =ay=(kfky +1+ (1 -2z)e ")y. (5.23)
. ) k(k)&3
For kd >> 1, where the two membranes fluctuate independently, one finds iwy, = —4——(1 +
n
k
k/ky) for the undulation mode and iwy, = M%j”_(“_L(l + k/k,) for the longitudinal phonon

mode.

In the regime kd << 1, where the two membranes are strongly coupled by the hydrody-
namic interaction, the resulting linewidths differ from the above case. For essentially imper-
meable men;braness, k/ky << 1and k/k, << 1, the line width of the thickness fluctuations is
Twh = i(-‘l-;)’i &g)— and the phonon modes show Zimm behavior iwy, = %)g%(km, which
has an amplitude two times larger than for kd >> 1. The result for the thickness fluctuations
for impermeable membranes with a large ratio of stretching to bending energy corresponds to
the result found by Brochard and Lennon [28] provided one assumes a liquid-like roughness ex-
ponent { = 1. However, for highly permeable membranes like the isolated spectrin network
the dominating wave vector dependence for the undulation and the phonon modes are given by
iwp = Lyx(k)k* and iwy = Dy[A(k) + 2u(k))k? cooresponding to Rouse dynamics. Therefore
we have the same crossover scenario for highly permeable membranes independent of the mag-
nitude of y. One should note that the result for the Kinetic coefficient of highly permeable and
impermeable membranes differ drastically, namely by two powers in the wave vector.

The coupling between the sum of the bending modes and the difference of the longitudinal
phonon modes is described by equations (5.11.a,b). The linewidths are found to be

Wy = —;— (ay +b) £ %\/(ay —b)2 4+ 4z2ye-27 | (5.24)
where now
a=1—-(1-2z)e"" 42, (5.25a)
and
b=1+(14z)e™" + 2. (5.25b)

The corresponding normalized eigenvectors are given equations (5.19-20) with a and b given
by equations (5.25).
For y = 0 there is only a bending mode with linewidth

wy=b=kfky+1+(1+2z)e™" (5.26)

By passing from wave vectors kd << 1 to kd >> 1 the amplitude of the Zimm term merely

3
~(b)k (1 + k/ky) for kd >> 1 and

changes its amplitude by a factor of 2. One finds #wy = i
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E)E?
iwp = %—3}——(2 + k/ky) for kd << 1. In both regimes the sum of the undulation modes shows a
crossover from Rouse to Zimm behavior similar as for an isolated membrane. In particular, there
is no cancellation of the hydrodynamic 1/k-singularity in the kinetic coefficients. This has to be
contrasted with the behavior of the thickness fluctuations (difference of the undulation modes)
discussed above.

For y >> 1 the linewidth of the bending mode reduces to

m2e—2:c

iop = b— (5.27)

a
and for the phonon mode we find

iwp =ay=(k/ky+1-(1-2)e ")y. (5.28)

In the limit kd >> 1 one recovers the results of two independent membranes. For kd << 1

there is no change in the wave vector dependence of sum of the the bending mode but merely an

3
enhancement of the amplitude of the Zimm term, iwy = '—C(—i%k—@ + kfky — kkyd/(2kyd + 1)).

The relative longitudinal phonon mode has the line width iy, = L&%%M(k/ku + 2kd)
corresponding to Rouse dynamics for both highly permeable and impermeable membranes.

In summary, we have found the following crossover scenario for the thermal thick ness fluctu-
ations (flickering). The crossover in the line width depends sensitively on the permeability of the
membrane.

For highly permeable membranes, like the isolated spectrin network, we find a crossover from
Rouse to Zimm behavior at a wave vector k, = 1/4nLy. As a consequence of hydrodynamic
screening effects there is a reentrant crossover to Rouse dynamics at kd = 1 with Leg(k — 0) =
Ly. The Zimm behavior is restricted to a wave vector regime 1/4n9Ly, > k > 1/d. For highly
permeable membranes this becomes a very narrow regime or even vanishes if ky < 1/d.

A completely different crossover scenario is obtained for impermeable membranes, like the
composite red blood cell. There one has to distinguish between large and small ratio of stretching
to bending energy y. For y >> 1, which is the case for red blood cells, one obtains a crossover
from Zimm dynamics with a kinetic coefficient proportional to L.g ~ 1/k to a kinetic coefficient
Leg(k — 0) = k2d%/24n. In the regime y << 1 the linewidth shows a crossover from Zimm
dynamics t0 iwy, = x(k)k3(kd)? /87 corresponding to a kinetic coefficient proportional to Leg ~ k.

The crossover scenario of the fluctuations of the difference [u(!)(k,t) — u(®)(k,t)] of the in-
plane modes is similar to the scenario of the thickness fluctuations in the case of highly permeable
membranes. The asymptotic behavior is Rouse-like with Dz‘&T(k — 0) = D,. For impermeable

membranes the crossover is from Zimm to Rouse dynamics with DL‘&T(Ic — 0) = d/f2.
The correlation function for the thickness fluctuations is given by

Legt (k)

o) = ek Lea (O (529)
where for y >> 1 the effective kinetic coeflicient is given by
_ 1 3 —kd (kd)2e—2kd
Leg(k) = Ik [k/kh-}- 1—(1+kd)e h il FdeH| (5.30)

One should note that there are two types of crossovers, which determine the actual wave vector
dependence of the line width. First, there is a dynamic crossover described above. But second,
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there is also a superimposed static crossover associated with the wave vector dependence of the
bending rigidity. For relatively large values of the amplitude of the bending rigidity or relatively
small shear modulus, the small wave length modes of the membrane are characterized by fluid
like behavior with a roughness exponent { = 1. It is only for larger wave length when the systems
shows a crossover to the true asymptotic behavior with ¢ close to 1/2. The crossover length scale
found from numerical simulations [30] is given by

_ 27k
T (T2
with the Young modulus T = 4u(A + p)/(2p + A) and ¢ = 1.3. Hence depending on the
numerical values of the amplitudes of the elastic constants and the viscosities, these crossovers
will be mixed up.
Next we consider the flicker spectrum

! (5.31)

G(w) = / d%¢Ca(q,w) . (5.32)
Scaling gives the following power law for this quantity
Gw)~w™, (5.33)
with
_(2+4¢+b)
= @125’ (5.34)

where b is the exponent of the effective kinetic coefficient Leg(k) ~ k°. The values of the exponent
o are summarized in table II for different values of the roughness exponent, corresponding to fluid
like and solid like membranes.

Table II. — Exponent o of the frequency dependence of the flicker spectrum for a kinetic coefficient
Leg ~ k® for different values of the roughness exponent [7,8, 10,39, 40) (see also Tab. I) corresponding
to solid-like and fluid-like membranes.

¢ b=2 b=-1 [Zimm] b=0 [Rouse]
. 4 5 3
1 . 6 3 4
g (solid) ¢ 3 3
2 . 5 11 7
3 (solid) 7 7 5
R 62 32 42
0.55 (solid) = 5T =

A first indication of the dynamic crossover has recently been observed experimentally [55].
Since the resulting exponents for the frequency spectrum G(w) are not very sensitive to the actual
value of the roughness exponent, rather precise experiments are necessary to distinguish between
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fluid and solid-like behavior. An easier experiment might be the measurement of the frequency
and wave vector dependent correlation function.

As we have shown above, the crossover scenario, upon passing from kd << 1to kd >> 1,
depends sensitively on two factors, the permeability and the ratio of stretching to bending energy.
This becomes evident if one considers the two extremal cases (i) an impermeable fluid (( = 1)
lipid bilayer (with y >> 1) [28] and (ii) polymerized (( = 0.5) isolated spectrin networks with
high permeability. The line width for the flicker modes are I‘g’) ~ k% and I‘g") ~ k3, respectively,
i.e., they differ by three powers in the wave vector !

Furthermore, the in-plane modes show interesting behavior. These modes have up to now not
been studied experimentally. It would therefore be interesting to to design experiments, which
allow to measure the in-plane dynamics of the membrane.
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Appendix
Self consistent theory and scaling functions.

In formulating a self consistent theory we start with integrating out the phonon modes. This can
be done since the in-plane degrees of freedom enter only quadratically in the dynamic functional.
The effect of integrating out the phonon modes will be to introduce new effective interactions
between the out-of-plane undulations mediated by the “exchange” of phonons.

Upon combining the harmonic part of the dynamic functional, equation (3.5), with the two 3-
point vertices, equations (3.10-11), containing the phonon ficlds one can write the phonon part of
the dynamic functional as

Jphonon =- %/"L(ﬁi(p;w): ui(paw))Aij(p)w)(ﬁj(_p» _w): uj(—p; —w))T (Al)

+ /p /w [Q'(p,w)U'(—p, ~w) + Q'(p,w)# (-p, “")] ‘

Here we have introduced the composite undulation operators

2
Qp,w) =i*? I] /

/ 8(P1 + P2 + P)LopiV!(P1, P2, P)h%(p1, w1 )R (P2, w2),  (A2)
i=1Y Py Vi

. 2
Q'(p.w) = 8 ] ] / 6(p1+p2+p)[DoTp°ﬂ’:,.(p)vm(p1,p2,p)
i=17P e (A3)

+D%p“P,’,;,(p)V'"(p1,pz,p)] h*(p1,w1)hP (p2,ws) -
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The vertex factors are defined by (see Eqgs. (3.10-11))

VI(p1,p2,P3) = pio [(P3 - P1)Ph + (P3 - P2)P.] + do(P1 - P2)P} - (A4)

Since the phonon fields enter only linearly in the dynamic functional they can be integrated out
by

Ihwon = [ D01) [ Dl Tpenn, (A5)

resulting in new effective 4-point vertices,

Tn = 5 [ [ (€0.0.80.0) (A7) (0,0) (@"(-p. ), @"(-p, =), (A6)

describing the long-ranged phonon-mediated interaction between the undulation modes (for in-
tegrating out the phonon modes in statics see Refs. [1,4]). The "exchange” propagators are given
by

(AZH9(p,w) = (A7) (p,w)PY(p) + (A7) (P, w)P5(P), (A7)
where

(A—I)T(p w) — 1 0 iw+ Dg‘pallﬁpz (A 8)

w T W 4 [Dfppop®? \ —iw + Diptuop®  2Dgp° ’ ‘

(Az1)-(p,w) = ~

w? + [Dfp®(Ao + 2p0)p?)? (A9)

0 iw + DEp® (Ao + 2p0)p? '

—iw + Dfp* (Ao + 2p0)p? 2Dk p° '

®)

Fig. 4. — New effective phonon-mediated four-point vertices after integrating out the phonon modes { (a):
T (0 Jet )
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More explicitly we find two new vertices, depicted in figure 4. The corresponding analytic ex-
pressions are

1
J = __// / // / LUpava P1, P, P2,w)X
) 2 oo SoadoJus Jus (1 24) (A.10)

xR (p1,w1)h*(p — P1,w ~ w1 )h? (p2,w2)AP (—p — P2, —w — w3)

=—C Lopi Lopsvs(P1, P, P2,w
Tet = //p/p//w/w, i Lop§ua( ) (A.11)

x h¥(p1,w1)h%(p — P1,w ~ w) kP (P2, wa)h? (—p — pa, —w —ws),

where the vertices are given by

P (p)
w4+ DT ;lop“

PL.(p)

w + D ° (/\0 + 2p0)p?

'Ua(pl,p, p2aw) V (pl) P— P, p) [
(A.12)

] m(P?., -p— p2:p) 3

Pr.(p)
w? + [Dop pop?)?
2D§p* P, (p)
w? + [Dgp*(Ao + 2p0)p)?

v(p1,P,P2,w) = V(p1,p — pl,—p)[

] V™(p2,—P — P2,P) -

(A.13)
The vertices are frequency dependent indicating that there are retardation effects in the phonon-
mediated interaction. The retardation time is proportional to the lifetime of the transverse and
longitudinal phonons. The vertex J 22 can be combined with the original 4-point vertex JZ, to give

“l:"//p, /m/w/m L Loptva(p1, P, P2,w) (A.14)

xh%(p1,w1)h%(p = P1,w — w1 )hP (pa,w2)hP(—p — P2, —w — w2),

where
Dip 1
, W) =Vi(ps, )
Ue(P1,P,P2:w) =V (P1,P — P1 P)[ (p)(zw+D0P “pop? #opz)
DLpa 1

Ry (e S, S ) VM)
1o (P) zw+D%p“(/\o+2uo)P2 (o + 2p0)p? (P2,—P — P2,P)
(A.15)

and

Wb [ [ L] e etion

xh*(p1,w1Yh*(p — p1,w — w1)hﬁ(P2,w2)hﬁ(—P — P2, —w —ws) .
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Fig. 5. — Diagramms contributing to the vertex function I'1; of the undulation modes to one loop order
b
(@: T8, (0: T8, (0): 189 ).

The resulting interaction part of the dynamic functional is then

B R R O S (A.17)

Now we start the diagrammatic analysis of this effective theory. The diagramms contributing
to the vertex function I';; for the undulation modes are shown in figure 5.

T11(p,w) = —iw + Lop®iop® + T + T 4+ 1§ (A.18)

The term T2 reads

4 + A
D) = Lopt [ [ 200 opt @y -aw 1), (A19)
qJv 2p0+ Ao
where C(p,w) is the bare corrlation function given by
2Lop®
Ch(pyw) = 4—=+3 A20
h(p w) w? + Ph(p))?‘ ( )
with the bare line width
Ta(p) = Lop*kop®* . (A.21)

This contribution is frequency independent and leads to a renormalization of the bending rigid-
ity xo. If the bare quantities are replaced by the fully renormalized terms this term is the dynamic
generalization of the self consistent theory in reference [4]. The next two terms in equation (A.18)
are frequency dependent and come from the phonon mediated effective 4-point vertices, equa-
tions (A.11,14),
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ngl)(P,w) = L?)Pza f / [aT(P’ ‘l)C;r(‘la v)+ aL(P, Q)C},‘(q, 1/)] Ry(p—q,w—v), (AZ22)
qJv

{9 (p,w) = Lop® aT(p,q) (DF¢°RY(q,v) — xT
©(p, ) pL[[@m(wmm> (@) +

(A.23)
+a"(p, q) (D5¢*(Ry(a,v) - xﬁ(q))]Ch(p —qw-v),
where
9p{LT) a
c{-D(q,v) = o (A-24)
v?+ (I (9))?
are the bare correlation functions of the phonon modes with the line widths
r{D(a) = Df-Pe*xi (), (A.25)

and the static susceptibilities xX(q) = 1/u0¢?, x5(q) = 1/(Xo + 2£0)¢%. The response functions
are defined by

1
Ru(p,w) = m ; {A.26)
1
RED(pw) = e (A27)
—iw +I{D(p)
The vertex factors aT) are given by

a®™D(p,q) = (#o [(a-p)e—9)+(a:(p— @)F] + Xo(p - (p - q))q’) P{-D(q)

(A.28)

(#o [la-P)p—9" +(a-(p—q)p"]+ do(p- (P - q))q”‘) .

The diagrammatic contributions to the kinetic coefficient I'yo are shown in figure 6.

Fig. 6. — Diagramms contributing to the vertex function I'z¢ of the undulation modes to one loop order
(a)
(T2 )
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P
q
(a)
Pq

p p
q
(®)
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Fig. 7. — Vertex functions for the phonon modes renormalizing the effective phonon-mediated vertices ((a):

TP lme, (0): T53 Ime )-

Tao(p,w) = 2Lop” + Ty,
where the mode coupling contribution is

(A.29)

M) = 13 [ | [aT(p,q)CI (0,) + a(p, 4)Cl(a, u)] Calp—ayw—v).  (A30)
qJv

There is also a renormalization of the phonon modes due to insertions describing the decay

into undulation modes. The corresponding vertex functions

FllT(p,w)lphonon = —iw + rllr{z(p’ w)lmc 3

rlzrg(l)»“’)lphonon = 2[D(IJ‘PII;n(P) + Dng',‘(p)]p“ + P;’S(P’w)lmc )
are shown in figure 7. The mode coupling (nc) contributions are explicitly given by

I (p,w)|me = p° / / [ngT(p, Q) P, (@)+
qJv

+D5o(p, q)P:’:n(q)] Log®Ru(q, v)Cu(p — q,w — V),

T (9,0)|me = 9 /

q

/ {(DE)?bT@,q)PE,.(q)

+(D%)26L(p,q>P,%n(q)] Ch(a, )Ch(P — @, — ).
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(A.31)

(A.32)

(A.33)

(A.34)

69
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The vertex factors are defined by

¥D(p,q) = (ﬂo (@ -a)p—9) + (- (p—a)d'] + Xolp-(p- q))p') P (p)
(A.35)

(po (p- 22— 0" + (- (P — @))g™] + Aolp - (p— q))pm) .

From the above equations one obtains a self consistent theory, if the bare correlation and re-
sponse functions are replaced by the fully renormalized ones. This procedure corresponds to a
resummation of certain diagramms in the perturbation series, including those for the renormaliza-
tion of the phonon modes. Additionally one has to replace in the static quantities the elastic coef-
ficients by their renormalized wave vector dependence, i.e., Ag — A(q) = Ag¥, po — p(q) = pg“,

and xq — x(g) = g% 2. Note that the vertex functions I';; and Ty are related to the correlation
and response functions by

Tao(p,w)
C(p,w) = , A.36
(P.w) T1(p,w)T11(—p, —w) ( )
and
R(p,w) = ———— (A37)
T Tu(-p,—w) '
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