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Rksumk. On pr6sente ici les clich6s de diffraction optique de tapis de sierpinski a16atoires de

diff6rentes dimensions fractales, pris I des niveaux d'it6ration diff6rents. Au moyen du

forrnalisme de la matrice de transfert dans les fractals, on montre la sensibilit6 de cette analyse

exp6rimentale aux corr61ations I moyenne et longue port6e. Ainsi la relation entre les sous-

dimensions fractales du F-M.T. et les rapports d'intensit6 entre les clich6s de diffraction de figures

fractales I des niveaux d'it6ration diff6rents est soulign6e. Enfin on esquisse le principe d'une

analyse exp6rimentale de ces nouvelles dimensions th60riques.

Abstract. The optical diffraction patterns of random sierpinski carpets of different fractal

dimensions at different levels of iteration are shown and analyzed. The sensitivity of such an

analysis to long range correlations, is demonstrated theoretically by means of the transfer matrix

formalism of fractals, T-M-F- The relation between the subdirrtensions defined in T-M-F- and

diffraction patterns is outlined. Finally an analysis of experimental diffraction patterns is

proposed in order to measure these new theoretical subdimensions.

Inhotluction.

The Optical diffraction of bidimensional structures is well known to be a powerful tool for

investigating the short and long range Order in 2d structures [1, 2]. This tool has become more

and more practical since convenient coherent sources such as lasers became available. For

instance, numerous optical diffraction pattems were obtained for structures with fivefold

symmetry : Penrose's tilings [3, 4], Robinson's tilings [5]. They have been compared to the

diffraction pattems obtained from an electron beam or an X ray beam on quasicrystalline
materials of the icosahedral I phase [6] or of the decagonal T phase [7], with the evidence of a

two-dimensional phase with fivefold symmetry as the T phase. Recently AJlain and Cloitre [8]
computed the diffraction pattems of a deterministic Koch set. Here we chose to investigate a

rather large class of fractals the random Sierpinski carpets C(n, p) where the iteration

process consists in a segmentation of each square into n x n subsquares conserving among

(*) ERS du CNRS.
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them only p(« n~) subsquares at the next step of iteration. These p subsquares are chosen at

random. The fractal dimension di: Ln ~p)/Ln(n) can be considerably varied, and the

randomness introduced in the choice of subsquares strongly enhances the number of relevant

configurations at the expense of inherent fluctuations. These RSC are good examples of

fractal structures [9] and there is abundant literature about phase transitions on them.

Moreover, numerous analytical properties of the structure of these random Sierpinski carpets
have already been obtained [10], and these properties reveal themselves useful to understand

the diffraction pattems. Among these properties, percolation, I-e- the appearance of an

infinitely connected cluster, is known to occur for structures with fractal dimension lower than

2 [9]. Thus a threshold of percolation must be observed when considering a series of random

Sierpinski carpets which covers a large range of fractal dimensions. Since percolation is, by
definition, a long range property, the optical diffraction which is sensitive to long range

effects, must be sensitive to percolation. This defines the first aim of this work, which is to see

if and how optical diffraction can be sensitive to percolation and how diffraction is sensitive to

a fractal structure. Secondly, Mandelbrot et al. [ll] developed a transfer matrix formalism,
T-M-F- for the analysis of border properties in deterministic and random Sierpinski carpets,
what led two of us (M. Perreau and J. C. S. Idvy) to generalize the TMF in order to study the

evolution of local connectivity in random Sierpinski carpets [10]. In the Sierpinski
C(n, p), the six different states of local connectivity of a square are : isolated, with one

occupied neighbor, with two occupied neighbors which are opposite or not, with three

occupied neighbors and with four occupied neighbors, as shown in figure I. The analysis of

the evolution of these states of local connectivity during iteration by means of transfer matrix

defines eigenvalues and thus subdimensions which are useful to describe the probability of a

state of connectivity at a given step. This defines an intemal structuration of the fractal

C(n, p ) which is expected to be observed by diffraction methods. This is the second aim of

this paper. Since the result of the analysis of the connectivity is the evidence of a lower

threshold for percolation in C(n, p with di
=

3/2 [10, 12], it defines a third aim to this paper

namely what happens to diffraction patterns for C(n, p ) with di close to 3/2.

. -
&

-++
Fig.1. The six states of local connectivity of a unit square in a sierpinski carpet.

Practically a large variation of diffraction patterns for different p is observed in agreement
with theoretical arguments but the inherent fluctuations of C(n, p are rather strong and

make the estimations of the subdimensions difficult, even if self-similarity is well observed.

The experimental preparation of optical targets and optical diffraction is described in

section1, while section 2 deals with theoretical predictions. In section 3 the diffraction

patterns are shown and compared to predictions.

1. Experhnental process.

I. I GENERATION OF sETs OF SQUARES. Forgetting the inflation process in the definition of

random Sierpinski carpets, instead of a plane tiling, a decoration of the unit square is obtained
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Fig. 2.- Two sets of sierpinski diffracting pupils, with four steps of iteration C(4,p) with a)

p =

7, b) p =
13. The case a is typical of a localized dust while the case b exhibits percolation from one

edge to the opposite one.
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for each C(n, p ). For a given n, there are
n~-

n I choices of p which define a fractal

dimension of C(n, p ) in the range I to 2. Thus, the practical choice of n =
4, gives I I such

cases with di~p)

p 5 6 7 8 9 10 11 12 13 14 15 16

di 1.161 1.292 1.404 1.5 1.585 1.661 1.730 1.792 1.850 1.904 1.953 2

This rather regular sampling of fractal dimensionalities can approach each value within

0.06, which is correct for a first inspection. In a unit square of 6 inches by 6 inches, the result

of 4 steps of iteration is plotted down, I-e- the p~ retained small squares are drawn in full black

as shown in figure 2. There are 4~
=

65 536 such possible small squares. A photograph
reduces the size of this unit square up to the admitted size of a laser spot expanded by means

of usual optical means, while the reduced size of a small square remains large in front of the

size of grains in the photographic emulsion, in order to avoid any confusion between grain and

square effects.

1.2 OPTICAL DIFFRACTION. Fourier transforms of the random Sierpinski carpets produced
after 4 steps of iteration are obtained by classical Fraunhofer diffraction [I]. The sets of

squares as shown in figure 2 are photographed on high contrast CBS4 Dupont film. And these

films are lightened by the coherent spatially filtered beam of an He-Ne laser. The schema of

the experiment is given in figure 3. The image of the diffraction pattem (FT) is projected onto

a white screen (S) and then photographed. In order to avoid diffusion elTects, direct laser light
is eliminated by making an aperture in the screen.

~~~~

~
~ 1j3

~ CAMERA

P

Fig. 3. schema of the experiment of optical diffraction.

Some dilTraction patterns obtained for random Sierpinski carpets as shown in figure 2 are

shown in figure 4.

2. Theoretical predicfiotts.

In the plane of the slide, there are two axes Ox and Oy parallel to the sides of the squares,
while the incident laser beam of wavelength A has, uo for unit vector parallel to its

propagation direction and normal to the slide. The unit vector u parallel to the propagation
direction of the dilTracted beam makes an angle 9 with uo, and is weak in front of I rad

(@ ~10°) because of experimental geometry. Thus the amplitude A~ of the resulting plane
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wave which is dilTracted by the running subsquare located at M and of weight p (M) dx dy is

A~
=

Ii exp [2 igru OM/A p (M) dx dy (I)

This formula and the fractal character of the figure, I.e. of p (M) lead to the dilTraction

pattem. But two quite dilTerent approximate approaches can be used : either one can use the

symmetry of the square in order to factorize p(M) as pi (x) p~(y), with (because of the

symmetry between x and y axes) pi (x)
=

p~(x)
= u (x), or (because of the overall isotropy of

the fractal) one can use dx dy p(M)
=

v(r) 2 grr
dr. Both approaches are interesting as will

be seen later since, according to the observation, either the global axis of symmetry or the

local isotropy must be emphasized.
The first approach for a square S of side

a
gives :

la 2
~

p (M) dx dy
= u (x) dx

=
Ca ~ (2)

S

~0

and by differentiation :

~~

u (x)
=

c1/2(d~j2)
x

~ (3)

When u is perpendicular to Oy, as achieved in the experimental measurement of the

photomultiplier photocurrent, the dilTraction amplitude reads

a a

~f
i

A~
= exp [2 iv @x/A C (dbf/2)~ (xy) ~ dx dy (4)

o o

After integration over y, it reads :

~f
a

~f_
i

A
~

=
C (di12) a

~ exp [2 iv Rx IA x
~ dx (5)

0

or :

after a change in the integration variable. The regularity of the integrand in the Ivth quadrant
if di

~
0, and the large value of the upper bound (@a/A is of order 10~) enable us to write :

with the usual gamma function [13]. Thus the expected intensity I~ decreases with

as
9~~ In the second approach :

a/2
~

d~
~ ~

o
~~~~ ~ ~~

~
~ 5 ~~~

leads to v (r)
=

(D/2
gr

) di r~~ ~ (9)
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a)

b)

Fig. 4.-Diffraction patterns obtained from pupils such as shown in figure2. a) p=6, b)

p =

8, c) p =

9, d) p =

10, e) p =

II, f~ p =

13, g) p =

14, h) p =

15.
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C)

d)

Fig. 4 (continued~.
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e)

o

Fig. 4 (continued~.
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g)

h)

Fig. 4 (continued~.
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The amplitude A~ in the same direction nornlal to Oy as before in equations (4, 5 and 6)
reads :

2
v

a/2
~

A
~

=
exp 2 I gr or cos 4 IA (D/2

gr
) di r dr d~ (10)

0 0

and integration over ~ [13] gives :

A~
=

Ddi
~~

Jo
~ "~~ r~~ dr

=
Ddi

~ ~ ~~~
Jo(t) t~~ dt (ll)

~
A we

~

As noticed before in the first approach a9 IA is large and the asymptotic behaviour of the

integral I(b) must be followed with interest :

1(b)
=

~
j(t) tdf- i dt. (12)

Since fiptotic form of the Bessel function Jo(t) is oscillatory [13]
Jo(t) (2/grt) cos (t gr/4), the asymptotic form of I(b) is dominated by Ii (b) :

b
~ ~~~Ii (b)

"
t ~ COSt dt ~j3~

0

Cutting the range of integration into intervals of length
gr

enables us to obtain

Ii (b) as an altemating series with for approximate general term u~, when n is large enough :

u~ =

n~~ ~'~(- l )~ (14)

E(bi
and Ii (b)

=
£ u~

n

where E(b ) is the integer part of b (b
~

E (b ) « b ). This series development demonstrates

that if di~ 3/2, Ii converges towards a firdte value whatever b may be increased. Then

A~ depends upon 9 with a power law 9
~~ quite dilTerent from that of the first approach. If

dim 3/2, considering the series v~ of general term v~ =u~~+u~~~i demonstrates that

Ii (b) behaves like u~~~~. Thus, in that case, A~ is well approximated by B~ with

B~
=

di fi D f ~(a)~ ~'~
~ ~~~

(l 5)
2 we

Here B~ depends on 9 with a power law independent of di, namely 3/2, and the intensity
I~ decreases as

~ Thus the two approaches lead to quite dilTerent results and, in the radial

approach, a threshold di
=

3/2 defines the transition from an intensity spectrum I(@ with a
9~~~

power law to a
9~~

power law. And it must be noticed that this same value

di
=

3/2 is an estimate of the percolation threshold in these random Sierpinski carpets [10].
Moreover, as said in the Introduction, the formalism of transfer matrix in fractals gives

evidence for correcting terms in the scaling of the structure [11]. In the case of random

Sierpinski carpets, the local connectivity defines 6 categories of sites as shown in figure I : the

isolated square, the square with one neighbour, the square with two neighbours where the

three squares define a bar, the square with two neighbours all of them defining a corner, the

square with three neighbours and the square with four neighbours. The transfer matrix
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M gives the evolution of the statistical average of the number of sites of each category. The

recurrent rules of construction of C(n, p ) do not depend upon the step of iteration, what

ensures the Markovian character of the process and the interest of the transfer matrix

M. Starting from a physical state V, which is described by the V;'s the statistical average of

the number of square I
-,

defines a column vector V in this 6d space. After a first step of

iteration, the vector MV has for element j : (MV)y
=

£ Jdjj V;, the statistical average of the

,

number of squares j obtained after one iteration. After h steps of iteration, similar results are

deduced from (AP V)y, which can be easily expressed when diagonalizing the M matrix.

The M matrix reads [10, 12] :

M=(TT+PT+2PT+2P+QT+3P+2QT+4P+4Q (16)

where T is a 6-vector whose coordinates are the mean number of isolated squares and squares

with respectively 1, 2 non adjacent, 2 adjacent, 3 and 4 occupied neighboring squares which

come from the segmentation of one isolated square. The elements on the six-vector

P are the corrections induced by the existence of a connected edge at the previous step and

the elements of the four vector Q are the corrections induced by the existence of a connected

apex between two adjacent connected edges at the previous step. A simple and general
calculation gives the eigenvalues of M

= p, p~/n~, ~p/n~)~ and 0 thrice degenerate [10] and the

calculation or AP roiiows :

(JP);,j
=

a;,jP"
+ fl;,j ~~ + Y,,j ~~ ('7)

~ "

n

~"

Thus the mean number of squares of category I obtained after h steps of iteration from a

given configuration is

N;(h)
=

La;,
«

S$ ('8)

«

where s~ means a running non-null eigenvalue of M, I-e- here, p, p~/n~ or ~p/n~)~, while the

side a~ of a small square measures

a~ =

an~~ (19)

where
a is the measure of the side of the initial squares.

The area s~ of a small square is

Sh ~

~~
~

~ ~ (2°)

Thus the average density p;(h) of squares I after h steps of iteration is

N;(h) a,
~

a
da

P;(h)
"

~
"

£ § (21)
a

~

a ah

where the subdbnension d~ is classically defined [9] as

d~
=

Ln (s~)/Ln (n) (22)

Such a formula introduces these correction dimensions d~ to the fractal density as introduced

in equations (2) and (8) for the two approaches. The meaning of equation (21) can be

outlined by a «dilTerential» or «marginal» approach achieved when comparing the
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evolution of two systems. Assuming a given starting state V, an isolated square for instance,

there is a finite probability to find a similar state after one step of iteration. The location of

this similar state defines what will be called the center of the structure. Then after

(h + I steps of iteration from the beginning in the center everything happens as if it were

only the h-th step of iteration, of an isolated square in the previous example. Thus the

peripheral density comes from the dilTerence between N; (h + 1) and N;(h ), and occurs at an

average distance a from the center

~
d~

~
l ~~

~',h+1~~~ i ~j~
) ~ /

2

~~~

"
~ l

"
ah

,

In thfis formula two singular values of d~ appear :

d~
=

2, this is the dimension of a plane filing, and the segmentation ratio a~
~

jla~ plays

no part at all, and

d~
=

0, there is no peripheral density. Moreover, when dv~ 0, the peripheral density
becomes negative. This is the sign of a transition towards localization. It must be noted that

the existence of a subdimension d~
=

0 has been demonstrated to be a criterion of threshold

of percolation for a random Sierpinski carpet [10]. This is the same transition between

localization and infinite extension which occurs here.

In equations (5) and (10) the diffraction amplitude is directly linked to the surface density

p~ and not to the square density p,, with obviously :

~S~~~
"

~'~~~~
=

p,a~n~2*= s~~'° a
~«~2

~
if G~ ~h

(~4)

Assuming that this local surface density does not depend on the direction 9 as in the second

approach gives

p~(r, 9 )
=

jj b,
~

r~" ~~ (25)

exactly as in equation (9), &N>hich proves that the subdimensions d~ generalize the fractal

dimension di. The normalized amplitudes A, of the diffraction pattem in direction

fl v/1th wavevector amplitude k are [Ii :

A;~~~ = exp [ikr cos (9 fl )]
r

dr
~~

p~(r, 9 ) (26)
2 gr

Using series of Bessel functions of integer order to write the exponent [13] gives :

CDS lz CDS (9 fl )I
=

Jo(z) + 2
(

(- 1y j~(z) CDs j2p (o p )j (27)

sin jz cos (9 p )j
=

2
(

(-1y J~~~
j

(z) cos j(2 p + 1) (9 p )j. (27 bis)

After integration over 9, the normalized amplitude is isotropic and reads

A,(k)
= j~ jj Jo(kr) b;

~

r~" ' dr (28)
u

«
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which generalizes equation (11) and when using the series development of Bessel function in

powers of its argument [13] :

m

(- I1'(
( ~

Jo(kr)
=

z
~

(29)

,=o
(t1)

the dilTraction amplitude A;~~~ can be broken into several components with :

~i (k)
~

i ~i,
a

(k) hi,
a

(3°)

«

~
(

( )<

k ~' l l
~2 +

d~j a (~~ ~~~)""~~~

,_~

2 (tl)~ 2t+d~ ~

When performing the integration over r, it has been assumed that 2 t + d~ is larger than zero ;

if not, a cut-olT must be introduced for small r and logarithmic singularities appear when :

d~
=

o

d~
=

-2, d~
=

-2n. (31)

Such singularities occur for

~ _~( P )~_ j) ~
~3 (P~~1)

n~ ' 2 n~ '

~
4 p

j3 ~
2 p

j33 n~ n~ '
~ 3 n~ n~

di= ~~= ~
and di=0 ~~ =

l
2

n~

n

~~n
~

And we meet again the singularity for di
=

3/2, here for C (4, 8), where, as shown in the

convergence argument, the dilTraction profile changes. The singularities for t =0 are

uniformly observed in the k space as shown in equation (30bis). In other cases the

singularities are obtained for d~ + 2
=

0 or d~ + 4
=

0 Then decreasing di from 2 the first

singularity is obtained when di
=

4/3, here p =

4~'~
=

6.35. Thus in the whole observed range

from p =
9 to IS there is no such singularity and the components of the dilTraction amplitude

take the form :

A,,
~

(k)
=

f;,
~

(ka) a~" (32)

f,
~

(x)
=

(
(- I I' l~

~'

~ ~ ~
(32 bis)

<=o

~ (t!) t+
«

Equation (32) means that the self similarity of the dilTraction pattern is weighted by powers

d~ of the size a. Tills gives a measurable meaning to d~. For instance, if the size

a is increased up to a', the same dilTraction pattern as for k, will be observed for a reduced

wavevector k' such as k'a'
=

ka, but the resulting dilTraction amplitude A will be a sum of

a~~ f~(ka) over the dilTerent d~ defined from the eigenvalues s~ of the transfer matrix. This

analysis for different
a must be done for each spot of the dilTraction pattern, and can reveal

the spectrum of d~.
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3. Experhnental results.

Three kinds of dilTraction experiments have been done : comparison of dilTraction pattems
for C(4, p) with p varying from 6 to 15, at the fourth step of iteration comparison of

dilTraction patterns obtained for dilTerent levels of iteration 2, 3 and 4 for C(4, 13) and

numerical analysis of the intensity ratios along one axis for C (4, 13 at the steps of iteration 2,

3 and 4. The purposes of these dilTerent experiments are to check the dependence of the

dilTraction pattern upon the fractal dimension, the sensitivity to the level of fractability I-e- to

the number of steps of iteration and the evidence for fractal subdimensions and self-similarity-

3.I DEPENDENCE uPoN FRACTAL DIMENSION. Figure 4 shows the diffraction patterns
produced by the random Sierpinski carpets with p=6 (a), p=8 (b), p=9 (c),

p =

10 (d), p =11 (e), p
=

13 (o, p =
14 (g) and p

=

15 (h), where the letter labels the

photograph. There are numerous photographs near the theoretical threshold which occurs for

p=8. There are quite less dilTracting pupils for low p than for high values of

p, what explains the low interest of diffraction pattems for p =
5 and p =

7. DilTerent

features can be noticed. The four external points observed in each pattem correspond to the

diffraction of the lattice of small squares which is the framework of these random Sierpinski
carpets. Secondly there is a structuration of the pattern inside these 4 points especially for

high p, this structuration corresponds to the existence of blocks of several adjacent squares.

Moreover, when p is rather large, two perpendicular lines appear, as expected for parallel slits

[I] this occurs when percolation is expected to occur, I-e- p ~
8. And on these lines, there

are some bright spots regularly spaced. Such spots are expected to be due to the presence of

numerous blocks of a few adjacent squares as observed by previous authors [2] for different

cluster profiles.
The central part of the diffraction pattem is isotropic and thus deserves the application of

the second approach which is finked to the local isotropy of the fractal figures. Thus the

profiles are the same for all patterns with pm 8 they obey a
9~~ law as expected from

equation (15). The only difference in this central part comes from the intensity of the

diffraction patterns since the diffracting area is proportional to p~ for this 4th step of iteration,

and thus to e~~~

3.2 INFLUENCE oF THE NUMBER oF STEPS oF ITERATION.- In figure 5 we plot the

diffraction pattems of (4, 13) at the steps of iteration : 2 (Fig. 5a), 3 (Fig. 5b) and 4 (Fig. 5c).
Of course the 0 step of iteration is a full square which gives rise to a cross for diffraction

pattern as is well known [1, 2]. The transition from a bi-axial symmetry, with this cross as a

distinctive feature, as is obvious in figure 5a, to a nearly isotropic syrnmetry with a full disc as

diffraction pattem, as is obvious in figure 5c, is well observed in figure 5b. The appearance of

numerous points in the diffraction pattern is linked to the appearance of periodicity or nearly
periodicity in the pupil and increases when the order of the step of iteration is increased, and

more distant points appear, revealing shorter periodicities as obvious in the framework.

Besides these points, larger and larger nearly continuous bright areas appear in the diffraction

pattern as expected from fractal figures with a high level of randomness.

3.3 NUMERICAL ANALYSIS OF THE DIFFRACTION PATTERN. Along the axis Ox the Slit of a

photomultiplier detector is put and is moved with a uniform speed which enables to obtain

numerically the diffracted intensity I as a function of 9. The experiments have been done for

typical Sierpinski carpets C(4, p ) with p
=

I1, 12, 13 and 14, at different levels of iteration.

Firstly, the central profiles I-e- the continuous part of diffraction pattems at the fourth step of

iteration have been observed for C (4, p with p =
I I, 12, 13 and 14 as shown in figure 6. The
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a)

b)

C)

Fig. 5.-Diffraction pattems obtained from C (4, 13) at different levels k of iteration. a)
k

=

2, b) k
=

3 and c) k
=

4. The transition from the cross which is the diffraction pattem of a square to

a nearly continuous profile as expected for fractal is quite obvious.
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a

4~

b

c

d

Fig. 6. The central profiles of diffraction pattems at the fourth step of iteration for C(4, p with a)

p =

II, b) p =
12, c) p =

13, d) p =
14.

intensity I~~~ decreases from the center of the line with a quite similar power law where the

exponent is nearly 3(± 0.5 ) in all cases. But the fluctuations are quite important. Since the

basis formula (15) is well verified and fluctuations are rather strong, the observation of

correction scaling dimensions seems to be out of scope. More exactly, it is interesting to

directly analyze the distribution of connectivity for different samplings C(n,p and to

compute the amplitude of statistical fluctuations. The results are shown in table I for

C(4,12) at the fourth step of iteration for a statistics of14 different trials.

From these results its appears that the observation of correction scaling dimensions requires

a high level of statistics in order to reduce the relative size of statistic fluctuations to be lower

than the correction of the scaling law. Here this is not realized, since for a rather low step of

iteration 2 for instance the statistics are poor, there are only a small number of sites and for a
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Table I. Percentages of squares which are isolated t;, with one neighbour ti, with two

opposite neighbours t~, with two non-opposite neighbours t~~ with three neighbours

t~
and with four neighbours. On the second line, the standard deviation fit is given.

t; ti t~ t~~ t~ t~

t 0.0077 0.0756 0.0920 0.2027 0.4268 0.1950

fit 0.0009 0.0027 0.0016 0.0031 0.0034 0.0022

A
,

e

B

Fig. 7. The profiles for diffraction points for C(4, 13 ) at k 3 in a) and k
=

4 in b).
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large step of iteration k
~

4, the weight of correction scaling dimensions is weak in front of

that of the main fractal dimension. Thus numerical diffraction with a high level of statistics is

recommended to check these parameters.
The self similarity of diffraction pattems is well observed at different levels of iteration and

instead of directly determining the correction scaling dimensions, it is of interest to compare
the profiles for diffraction points observed for C (4, 13 at k

=

3 and 4 as shown in figure 7. It

must be noticed that both profiles follow a power law I~~~
=n~~, with as exponent

d, 1.3 for k
=

3 and 1.5 for k
=

4. From equations (32) which generalize equations (11) and

(15) the expected exponent is 2 di
=

3.7 or 3 while the other exponents of the series are

3 di 3
=

2.55, 4 di 6
=

1.4, 5 di 9
=

0.25, 6 di 12
=

0.9. Moreover the large real

exponent 2 di is only expected for a large number of steps of iteration, which is in agreement
with the increase of d with k. Thus this result confirms the role of correction scaling terms,

which can be fitted.

Finally, even if the correction scaling exponents are not found precisely, there are

numerous proofs of their existence and it is clearly suggested that when improving the

statistics by means of computing the diffraction pattem an accurate measurement of these

exponents can be achieved. And the threshold di
=

3/2 is well estimated to define a transition

in diffraction pattems.
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