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Rksumk. Le diagramme de phase des m61anges K(CN)~Bri
r

est obtenu par une btude de

champ moyen d'un moddle ferrodlastique compressible anharmonique, albatoire et dilud.

L'intkgration des degrds de libertd dlastiques produit un moddle non lindaire de percolation. En

paralldle, une simple hypothdse lindaire est supposke pour introduire une densitk effective des

cyanures, afin de tenir compte de leur forme asymktrique par rapport ila forme sphkrique des

bromes. La percolation de site est ainsi diffbrencike de 1a percolation d'orientation correspon-

dante. Trois valeurs caractdristiques dans 1a concentration de cyanures x =

0,2, 0,5 et 0,6 sont

obtenues. Pour x ~
0,6 la transition ferroblastique est perdue. Dans l'intervalle 0,5

~ x ~
0,6, k

basses tempkratures les cyanures forment des domaines ferroblastiques avec des orientations

aldatoires. Quand 0,2
~ x ~

0,5 it y a un verre collectif dynamique. II se transforme dans un dtat

d'ions isolds pour x ~
0,2. II est ensuite montrb que le diagramme de phase correspondant, pour

les mdlanges K~(Naj _~)CN est d'une nature physique diffbrente. 11 estlib en pa~iculier k des

interactions compbtitives aldatoires. Une revue critique du moddle de champ albatoire orienta-

tionne1est prdsentbe. Los rdsultats fournissent un cadre unifib et consistant pour diffbrents

rbsultats expdrimentaux.

Abstract. The full phase diagram of K(CN)~Bri
_~

mixtures is obtained using a mean-field

treatment of a dilute random anharmonic compressible ferroelastic model. Integration of elastic

degrees of freedom leads to a non-linear percolating problem. No random competing interactions

are found. In parallel a simple linear hypothesis for an effective density of cyanides is assumed to

account for the asymmetric shape of the cyanide versus the spherical bromide shape. Site

percolation of cyanides is thus discriminated from the corresponding orientational percolation.
Three characteristic values of cyanide concentration x =

0.2, 0.5 and 0.6 are obtained. For

x <
0.6 the ferroelastic transition is lost. In the range 0.5

< x <
0.6, at low temperatures, cyanides

form ferroelastic domains with random orientations. When 0.2
< x <

0.5 a collective dynamical
glass is obtained. It tums to a single ion state for x <

0.2. It is then shown that the corresponding
phase diagram of K~(Naj ~)CN mixtures is of a different physical nature. It involves in particular

random competing interactions. A critical review of the orientational random field model is

presented. The results are found to provide a unified and consistent framework to various

experimental data.
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1. Inhoducfion.

The existence of an orientational glass state in K(CN)~Brj_~ mixtures which might be

connected to spin glasses has generated a great deal of experimental [1-6], numerical [7] and

theoretical work [8-10] in recent years.

Pure KCN undergoes a ferroelastic transition from cubic to orthorhombic symmetry. Site

dilution of cyanides with bromides makes the transition to disappear below some critical

cyanide concentration x~ =
0.6. In the range of concentrations x <

0.6 the system remains

cubic at low temperatures. Moreover the elastic shear constant exhibits a round minimum and

diffraction experiments reveal the appearance of a central peak at a so-called freezing

temperature ill. Molecular dynamics calculations have confirmed these results [7]. Although
these experimental features have been associated with a non-zero spin glass order parameter

[8], most experimental data have been interpreted in terms of a random field model [9]. The

associated phase diagram is shown in figure1 [2, 4, 9].
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Fig, I. -Phase diagram from references [2, 4, 9].

In parallel two characteristic values of cyanide concentration were found in different

experiments [3, 6]. Low frequency shear response measurements indicated an overlap of two

elastic loss peaks at x =

0.2 using the resonance of a torsion pendulum [3]. More recently
shear torque measurements suggested the existence of a peculiar glassy-regime in the range

0.5 <x <0.6 [6], thus introducing the particular value x =

0.5 in the phase diagram, in

addition to the values x =
0.2 and x

=

0.6.

In this paper we first present a microscopic model to describe KCN-KBr mixtures [10]. A

dilute compressible ferroelastic system is considered. Random anharmonic elastic terms are
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added to the Hamiltonian to account for site fluctuations of bromides [I Ii. It is then shown

that integration of elastic degrees of freedom leads to an effective Hamiltonian of a dilute

system with a cyanide-cyanide coupling of the form Jo A (I x) where Jo is the bare initial

coupling and A is a constant. The problem is thus found to reduce to a non-linear site

percolation problem on a fcc lattice [10]. The associated mean field phase diagram has only

one ordered phase and the transition is lost at the percolation threshold given by
p~=0.2 [12].

We then suggest the idea of inhomogeneous steric hindrances in a percolating lattice to

introduce the effect of shape difference between cyanides and bromides which are

respectively dumbell-like and spherical. This means in particular to discriminate between

cyanide site percolation and the corresponding orientational percolation. It is indeed

consistent with the discrepancy between the percolation threshold p~=0.2 and the

experimental finding, x~=0.6, at which the ferroelastic transition is lost. On this basis a

simple linear formula is assumed for an effective density of free cyanides to implement the

phase diagram associated to the random anharmonic compressible model. A sketch of the full

phase diagram of K(CN)~Bri_~ mixtures is obtained and shown in figure 2. The three
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Fig. 2. -Phase diagram proposed in the present work.

experimental characteristic values of concentration, x =
0.2, 0.5 and 0.6, are found to be

related by this formula as thresholds in the phase diagram. Various experimental results [3, 6]

are thus interpreted in a unified and consistent framework. The connection to NaCN-KCN

mixtures is discussed. Random competing interactions are found to be instrumental in this

case while not existing for KCN-KBr mixtures.
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This paper is organized as follows. The random anharmonic compressible model used to

describe KCN-KBr mixtures is presented in section 2. A mean field treatment is performed in

part 3. Three possible phase diagrams resulting from this model are described in section 4.

The idea of broken percolation is introduced in part 5 to implement the full phase diagram of

KCN-KBr mixtures. The results are discussed with respect to the experimental situation.

Section 6 is devoted to the connection to the glassy phase of KCN-NaCN mixtures. A critical

review of the orientational random field model is presented in section 7. It is shown that this

model is indeed not allowed by symmetry. Its connection with some experimental results is

discussed. A summary of main results of the present work is given in part 8. Concluding
remarks are contained in the last part.

2. The random anharnaonic compressible model.

In pure KCN molecular crystals, cyanides form a fcc lattice. Dealing with site substitution of

CN with bromides only, we can ignore the interpenetrated alkali lattice. We thus consider a

fcc lattice to describe the low temperature part of the phase diagram of K(CN)~Bri
~

mixed

crystals. A variable et is associated with each site I. It is equal to either one or zero if the site is

occupied by respectively a cyanide or a bromide. The (e,) are quenched and randomly
distributed. The configurational average j is equal to the cyanide concentration

x.

Rotational degrees of freedom of asymmetric dumbell-shaped CN molecules are rep-
resented by classical Heisenberg spin variables (S;). Elastic vibrations are also introduced to

account for translation-rotation couplings.
On this basis we start with a diluted compressible ferromagnetic spin Hamiltonian

Ho
=

jj (~ e, e~ S; S~ + £
q~ it

(I)

(i.jJ ( i,jj

where Ii is a positive ferroelastic coupling between nearest neighbors S; and §.,
(I, j ) denotes a sum over nearest neighbors and

q~,~
is an harmonic elastic potential.

At this stage to make the calculations tractable we choose to consider a simple elastic

model. Lattice vibrations are introduced along decoupled one-dimensional chains. Then at

first order in the displacements u; of ion CN or Br at site I, with respect to the pure KCN

lattice, we have

(~
=

Jo (u; u~) J (2)

and

9'ij ~ (~< ~j)~

where Jo, J, and
q~ are positive constants, and (I,j) belong to the same chain. The

(u;) are scalars.

However Hamiltonian (I) includes only the non-orientational character of spherical
bromides. To account for the difference in volume II Ii between CN and Br molecules we first

consider a mean effect through a uniform anharmonic term,

Hu
=

£ 2 hL(I x)(U; Uj)
,

(3)

where h~ is associated with long range elastic interactions. On top of this homogeneous
dilatation we must a~~ dom anharmonic terms to equation (I) to account for the random
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distribution of bromides. At first approximation assuming a spherical shape for cyanides [9],

fluctuations in concentration of bromides produce static strains given by a term [I1],

HA
=

£ h~y(u~ u~) (4)

<>JJ

where

h~y =

hs((2 e; e~) 2(1 x)) (5)

and hs is the force resulting from the short range elastic effects due to the difference in volume

between assumed spherical CN and Br molecules. From equation (5) random static strains

can take the following values

2hs(x-I), hs(2x-1), 2hsx, (6)

with respective probabilities x~, 2x(1-x) and (I -x)~. The first and last values are,

respectively, negative and positive, the middle one being negative for x <
and positive for

2

~ ~

Considering the total Hamiltonian HT
=

Ho + Hu + HA it is possible to integrate out elastic

degrees of freedom in the pressure ensemble using the Hamiltonian

fl
=

HT + p £ (u~ u~
,

(7)

t,JJ

where p is an extemal pressure. Noticing that for decoupled one-dimensional chains the last

term of the right hand side of equation (7) is equal to the change in the chain length
AL, we have the partition function

Y
=

dL exp (- pp AL
ill

du~ Tr exp (- pH)
,

(8)
IS,1

where p
=

I/kB T, kB is the BoltzTnann constant and T the temperature. Performing a

Gaussian integral in (u;), and writing the partition function in the form

Y
=

Tr exp (- pHR)
,

(9)
js, j

we define an effective Hamiltonian HR. At zero external pressure we find

HR
=

£
G~y e; ey S; Sy

~
£ e~ ey S) S( (10)

( 1,J)
~ 9'

(i,J)

where some constant have been discarded, and

G;j
=

Jo
~ (2 h~(I x) hs(e; + ej 2 x)

,

(I1)
~

is a random site coupling. However in equation (10), the product G;y e, ey can be rewritten as

G,~ e; ej =
GE

; ey (12)



1200 JOURNAL DE PHYSIQUE I M 8

where

G=Jo-~"(i
-x), (13)

and h
=

h~ hs, To obtain equation (12) the properties El
= e, and (e~ + ey) e, e~ =

2 e, e~
have been used. From equation (13) it is seen that G is indeed not random.

It is worth noticing that integration of elastic degrees of freedom from Ho instead of

HT would also produce equation (10) with however G
=

Jo, I.e., h
=

0 in equation (13). It

shows that the net effect of the random distribution of volume differences is to renormalize

ferroelastic couplings (Eq. (13)). The random character of the problem reduces to a non-

linear site dilution problem. There exist no random competing interactions.

The harmonic compressible part of the model results in the last tern of equation (10). For

Ising variables this term is a constant and has no effect. However for other type of variables,
for instance spin one, it can turn the transition first order [13]. Moreover it is worth stressing
that a more realistic model of elasticity which includes shear forces produces an additional

tetralinear term which is long range. In that case the transition seems to be first order always,

even for Ising variables [14]. Therefore, to consider Ising variables to obtain the phase
diagram associated with equation (10) makes the analysis simple still preserving the main

physical features of the problem. A more realistic approach will only change the order of the

transition from continuous to first order. Our results should be then taken only qualitatively.
From now on we are considering Ising variable St to describe rotational degrees of freedom.

3. The bare phase diagram.

We now perform a mean field treatment of equation (10) to descrite the plastic-solid
transitions in KCN-KBr mixtures. The corresponding equation of state is given by

(S~)
=

xth (12 pG ($) (14)

where 12 is the coordination number on a fcc lattice and ($) is the orientational order

parameter.
From equation (14) it is found that there exists one ordered phase with a continuous

transition from the disordered phase at a line given by

kT~
=

12 x

Jo ~ ~~
l x)j

,

(15)
~

where k is the Boltzman constant. The phase diagram is shown in figure 3. Improvement of

the model would only make the transition first order and thus shift it towards lower

temperatures.
From equation (15) it is seen that to keep temperatures positive the phase diagram of

figure 3 holds only as long as q~Jo ~2 hJ. Otherwise the ordered phase disappears before

x =

0 at a critical concentration

q~Jo
R~ = -,

(16)

at which kT~
=

0 (Eq. (15)) as shown in figure 4.

When
q~ Jo

~
2 hJ, that is for i~

>
0, the present analysis shows that two phase diagrams are

indeed possible in the range x <
i~ :

(I) At x =
i~, the effect of random distribution of volume differences has canceled the
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T

DISORDER

ORDER

o t

interactions giving G=0. For x<R~ equation (15) is not valid and thus we assume

G stay equal to zero. Rotational degrees of freedom of cyanides behave then as free rotators.

In that region, there exists no ordered phase but only single ionic cyanides undergoing
individual dynamical freezing. We call this state a single-ion state (see Fig. 4).
(ii) The other possibility is to assume equation (13) holds as well when x <

i~. The random

distribution of volume differences has now turned the ferroelastic coupling into an

antiferroelastic coupling, I-e-, G <0 in equation (13). We thus obtain a new diluted

antiferroelastic phase. The transition line is given by -kT~ from equation (15) in the

concentration range 0
< x <

i~. The phase diagram associated with this situation is shown in

figure 5. Within the new ordered phase the ferroelastic order parameter is zero, I-e-

~

£ iii
=

o, (17)
N

i=1

with however at each site

(S;) # 0 (18)

since there exists an antiferroelastic long range order. It is worth stressing that dilution can be

misleading in making this ordered phase look like a glass. Here there exists no fnistration.

Moreover the associated transition is a true static phase transition. As a function of

x we have a re-entrant phenomenon at intermediate concentrations.
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Fig. 4. -Phase diagram for case B-(I).
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Fig. 5. Phase diagram for case B-(11).
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4. Three possible phase diagrams.

At this stage depending on physical characteristics of the system three phase diagrams are

possible. If i~
<

0, we have case A for which there exists one ordered ferroelastic phase.

Dilution makes the transition temperature to decrease and eventually vanish at x =

0 which is

the mean field percolation threshold (Fig. 3). On the contrary, when i~
~

0, we have case B

for which two possibilities exist. For the first one (I), the phase diagram is sinfilar to that of

case A. But now the transition vanishes at i~ thus creating a single-ion state (Fig. 4). On the

opposite, possibility (it) has an additional ordered phase in the range x<i~. The

corresponding ordering is antiferroelastic and the transition temperature vanishes also at

x =
0 like in case A (Fig. 5).

To select which phase diagram corresponds to KCN-KBr mixtures requires an evaluation of

numerical values of Jo, J, w and h. Due to the over-simplified character of our analysis, such

evaluation is out of the scope of the present qualitative description. In the following we

restrict the study to case A (Fig. 3), since up to now there exists no experimental support to

the existence on an additional static phase transition into an antiferroelastic phase directly
from the disordered phase.

5. The broken percoladon dressing.

In case A the transition disappears at x
=

0 due to dilution. It is worth stressing however that

equation (15) describes a non-linear percolation problem since G depend on x (Eq. (13)).
However cancellation of the critical temperature is produced by products e; e~ appearing in

equation (10). It is then natural to expect it to occur at the threshold of usual percolation.
Going beyond mean field treatment, the exact percolation threshold for an fcc lattice is

p~= 0.20 [12]. Using that result the phase transition is lost at p~= 0.20 instead of

p =

0 in figure 3. In contrast experiments on KNC-KBr mixtures found that the ferroelastic

transition is lost at x~ =
0.6 ill.

Differences between p~ and actual threshold concentrations have been already found in

other physical systems [15, 16]. Such a discrepancy indicates that some cyanides do not

participate in the propagation of long range order at low temperatures. It means that site

percolation of cyanides should be discriminated from the corresponding orientational

percolation. It is then natural to associate this effect with the presence of bromides and to

assume that on the average some cyanides get trapped along some orientation which prevent
them to participate in the propagation of long range orientational order. To account for such

an effect we make a simple linear hypothesis for cyanide concentration. We assume an

effective density of free cyanides with respect to orientational percolation

X'
= X £Y(I X) (19)

where
a

is the fraction of cyanides trapped on the average by a bromide.

A physical argument to justify such anisotropic effect could be the fact that locally the

system is not cubic with spherical bromides not sitting at equal distance from their respective
twelve neighbors Ii?]. However as the system remains macroscopically cubic at low

temperatures, the pinning must be along random orientations to preserve overall cubic

symmetry in the ensemble average.
A justification of the linear form used in equation (19) for the effective density of cyanides

could be related to a recent experiment [4] which found a linear increase in x for the hindering
barriers of the orientational potential of cyanides.

Using equation (19) the ferroelastic transition is lost at a concentration x~ such that

p~
= x~ a (i x~) (20)
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giving

x~=~~", (21)

where p~ is the percolation threshold. At this stage a direct calculation of
a

is rather

complicated [17]. Here we will use the experimental value x~ =
0.6, to get from equation (21)

a =

' ~~
(22)

Xc

which gives a =

I when p~ =
0.2 and x~

=
0.6.

Therefore each bromide traps on the average one cyanide. Site substitution of a durnbell-

like shape cyanide with a spherical bromide results in local steric hindrances which pin at

random one cyanide by freezing its orientation.

Given a bromide there exists twelve neighbor sites on the fcc anion sublattice occupied by
CN or Br according to x

and (I x) respectively. In the present approach it is suggested that

not all present cyanides among the twelve neighbors participate to the propagation of long

range order. One of them will be blocked along a random orientation upon lowering

temperature, before nearest neighbor cyanides start to order. From equations (19) and (22)
the effective density of cyanides which participate in the establishment of orientational long

range order is x'
=

2 x I. Within such a picture a saturation mechanism occurs when all

cyanides get trapped by bronfides, which happens when x'
=

0 at

J~=
"

,

(23)

giving x~
=

0.5 for
a =1.

6. Phase diagram of KCN-KBr ndxtures.

We are now in a position to present a qualitative description of the effects of dilution on the

ferroelastic transition (see Fig. 2) as a function of cyanide concentration. The results are then

compared to various experimental findings.
Upon lowering temperature from the disordered phase where cyanides behave as free

rotators, there exists some temperature T~, associated with the activation energy of the

trapped cyanides, higher than the transition temperature. At T~, trapped cyanides get blocked

along random orientations while non-trapped cyanides are still free to reorient. However in

the vicinity of the transition temperature, blocked cyanides behave as local random walls with

respect to the establishment of long range orientation order among free cyanides. Never-

theless as long as there exists an infinite orientational cluster, I.e., for x ~
0.6, the ferroelastic

transition occurs.

On the other hand for x <
0.6 we can build the following picture. There is still a percolating

lattice with respect to site percolation but not with respect to orientational percolation.
Therefore, long range orientational order is not possible any longer and the ferroelastic

transition is lost. The net result of such a broken percolation should be the formation of

ferroelastic domains by free cyanides. These domains are expected to have a random

distribution of orientations according to the random domain walls created by the trapped
cyanides. Motion of domain walls is therefore expected in this description. With respect to the

experimental situation a primary elastic loss peak in torsion pendulum experiments [3] has

been indeed already interpreted in terns of ferroelastic domains. Moreover, the above

description implies existence of ferroelastic domains also in the ordered ferroelastic phase.
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Very recent shear torque experiments did find a well developed primary elastic loss peak
above x~ =

0.6, for x <
0.75, in agreement with our approach [6).

Shear torque experiments also found a lower value x~ =
0.5 for a well defined primary loss

peak [3], thus suggesting the existence of ferroelastic domains only in the range

x ~0.5. From equations (19) and (22) it is seen that ferroelastic domains created by free

cyanides will shrink with decreasing cyanide concentration to eventually disappear at

J~ =0.5 which is exactly the experimental finding. Existence of domains in the range

0
< x <

0.6 has been suggested previously using topological arguments [18].

In the concentration range 0.2 <x <0.5 we have an infinite site percolating cluster of

cyanides. However each cyanide is pinned by bromides upon lowering temperature, which

gives rise to a dynamical freezing. There exists indeed a competition between local steric

fiindrances which freeze individual cyanides and exchange interactions which favor collective

freezing. The result at low temperature is what we call a collective classical glass. It is worth

stressing that this glass has no connection to spin-glasses. In the present case there exists no

phase transition, no frustration, and the freezing is a dynamical effect (see Fig. 2).
Below the percolation threshold p~ =

0.2 we have single ionic cyanides which undergo
individual dynamical freezing, producing a single-ion state.

7. Comment on KCN-NaCN ndxtures.

While KCN-KBr mixtures have attracted much experimental work [1-6], less effort has been

devoted to the study of KCN-NaCN mixtures [5, 19]. The corresponding phase diagram is also

expected to exhibit a glassy phase but only at intermediate range of alloying. Random strains

generated by volume differences between cations K and Na are believed to be instrumental in

the establishment of the glassy phase in a similar fashion as for KCN-KBr mixtures. However

we can already from the present study show that the glassy state in KCN-NaCN mixtures is

indeed of a different physical nature than for the corresponding glassy state found in KCN-

KBr mixtures.

Effects of volume differences can be accounted for as in part 2 with random strains given by
equations (4), (5) and (6). The main difference is that now the e~ ) variables are not attached

to rotational degrees of freedom but to cations K and Na on the interpenetrated fcc lattice.

We have e; =

I for K and e, =

0 for Na. Since there exists no dilution of cyanides the

Hamiltonian corresponding to H~ (Eq. (10)) is here

j2
RR

=

£ G;y S; S~ £ S) S(, (24)

t,J>
~ ~

i.J>

where G;j given still by equation (11), but not by equation (13), takes the values

2h~J 2hsJ
Jo- (I -X)+ (I-X), (25)

2~~J hs$
Jo-~(l -X)+-(1-2X), (26)

2~~J 2~sJ
Jo ( I x) x

,

(27)
~ ~

with respective probabilities, x~, 2 x(I x), and (I x)~. From equations (25), (26) and (27)
it is seen that random competing exchange interactions may now be obtained, depending on

values of Jo, h~, hs, J and w. At this stage it appears that the nature of an eventual glass state

in KCN-NaCN could be indeed related to spin glass ordering on the contrary of KCN-KBr

case where couplings were found to be uniform (Eq. (13)).
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A detailed study of KCN-NaCN mixtures is left for future work [20]. We can nevertheless

conclude that the glassj phase is of a different physical nature in respectively KCN-KBr and

KCN-NaCN mixtures. A connection to spin-glasses may exist for the last case, but not for the

first one.

8. Critical review of the RF model.

The orientational random field model (ORFM) [9] is based on the use of random static strains

generated by site fluctuations in the concentration of bronddes. We first formulate the main

features of the ORFM in the spirit of the Ising like language used in this paper. A critical

analysis is then presented. The experimental support for the ORFM is discussed.

8. I PRESENTATION oF THE ORFM. The frame of the ORFM is a Hamiltonian of the form

~ORFM"~£~i~i~~ £~iEi~i+j~ £U/ (28)

I

where is a constant and

h,
=

h (e, x) (29)

First and last terms of HOR~M are similar to those used in our model. The difference is the

middle term which represents a bilinear displacement-rotation coupling. In reference [9] the

Hamiltonian is cast in a more complicated form, but main features are identical. After various

manipulations a coupling term is obtained in the form

~c"~i~i~i~", (30)

where,

i~
=

z h~y(ej x) (31)

with h~j being a complicated function. From equation (31) it is found that

I;
=

0, (32)

and

ii
cc x( i x)

,

(33)

where the bar denotes a configurational average on the (e; ). From equations (32) and (33) it

is then stated [9] that the rotational problem can be mapped onto the well studied random

field problem in magnetic systems [21]. It is then assumed that f; (Eq. (31)) has a Gaussian

distribution [9] in analogy to the magnetic case [21].

8.2 CRITICAL REVIEW oF THE ORMF.- We now proceed on a critical analy~is of the

ORFM. First it should be stressed that from equation (30) the fields coupled to rotational

degrees of freedom are indeed (e~ f;) and not (f;). It is of importance since f~ is a function

of e; (Eq. (31)). We thus have in particular the property

o,
=

h,, x(i x)
,

(34)
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where the value of h;; is basic to determine the symmetry property of the fields which couple

to rotations. A non-zero value of h~, would make the fields (e; f;) symmetry-breaking fields

with respect to the ($ ). Such fields would be then forbidden by the symmetry of KCN-KBr

mixtures which do exhibit a disordered phase at high temperatures. However a numerical

calculation of
h~~

is difficult. It has been claimed that h;~ is indeed zero using both general

symmetry arguments [22] and poor numerical estimates [23]. It is still an open question.
Moreover even if h;j was indeed zero, the hypothesis of a Gaussian distribution made in

reference [9] for the (f~) is not proven. At this stage in contradistinction to that Gaussian

assumption, we argue that the distribution of the (f~) cannot be symmetric.
The starting physical ingredient of the problem is the random distribution of (e;) where

e~ =

I with probability x and e; =
0 with probability (I -x). This distribution is not

symmetric expect at the special case x =

1/2. Therefore within the present framework any
manipulation must preserve the non-symmetric character of the quenched random disorder

making a Gaussian distribution not compatible with the problem. To conclude, the
(f;) within the ORFM must have a non-symmetric distribution.

Moreover a non-symmetric distribution of the (f;) would indeed break the symmetry of

rotational degrees of freedom, thus suppressing the transition to a disordered phase at high

temperatures. However from experiment the existence of a disordered phase high tempera-

tures is well established, as well as a transition into it, for I
< x <

0.6.

On this basis we conclude that the ORFM [9] is not allowed by the symmetry of KCN-KBr

mixtures.

8.3 EXPERIMENTAL SUPPORT FOR THE ORFM. The most detailed analysis of experimental
results in tern of the ORFM was done in a study of static-shear elasticity in RbCN-RbBr

mixtures [24]. However in reference [24] all the formalism used comes from the magnetic
random field problem [21] which does have a symmetric distribution, although the physical
motivation is based on the ORFM model of reference [9]. The difficulty is thus twofold :

(I) The ORFM [9] does not describe the same physical situation as the magnetic RFM [21].
Although both models have a random field distribution with a zero configurational average,
the first one [9] has symmetry-breaking fields, while the second one uses non-symmetry-
breaking fields [21].

(ii) A magnetic RFM seems to fit some experimental data [24]. However, it is a totally ad-

hoc model. There exists no physical justification to the use of random fields with a symmetric
distribution. Along these lines it can be noticed that ad-hoc random fields have already been

used to describe pure plastic crystals like KCN [25]. At this stage the problem is to find a

physical mechanism to explain the existence of these random fields, if any.

9. Conclusion.

We have been able to build a sketch of the full phase diagram of KCN-KBr mixtures (Fig. 2).
The idea of broken percolation which results from the discrimination of site percolation from

orientational percolation, has been instrumental to derive our results. In case A (see part 3),

two regions were found. For 0.6
< x <

I, a phase transition occurs into a ferroelastic phase.
On the opposite, for x <

0.6, a glass phase is found with no static phase transition. The glass
has a domain structure for 0.5 <x<0.6. It then tums to a collective glass when

0.2
< x <

0.5, to finally end as a single ion state for x <
0.2. Our findings are consistent with

various experiments and suggest a unified explanation of the complex phase diagram of KCN-

KBR mixtures.

It is worth noticing that the present approach holds for KCN-KCI mixtures as well. In that

case we get a =
3 from equation (23). The phase diagram is identical to figure 2, with now
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J~ =

0.8, x~
=

0.75 and p~
=

0.2. The domain region is reduced by a factor 2 in the cyanide
concentration.

While neither competing interactions nor orientational random fields were found for KCN-

KBr mixtures, it was shown that the glass state of KCN-NaCN mixtures may be associated to

random competing interactions.

At the present stage, more experimental and numerical investigations would be helpful to

further clarify our theoretical proposal.

Note added in proofs

A recent Preprint by A. Loidl reported on a phase diagram, similar to figure 2, constructed

from single crystal neutron diffraction experiments.
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