
HAL Id: jpa-00246396
https://hal.science/jpa-00246396

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Storage capacity of a Potts-perceptron
Jean-Pierre Nadal, Albrecht Rau

To cite this version:
Jean-Pierre Nadal, Albrecht Rau. Storage capacity of a Potts-perceptron. Journal de Physique I,
1991, 1 (8), pp.1109-1121. �10.1051/jp1:1991104�. �jpa-00246396�

https://hal.science/jpa-00246396
https://hal.archives-ouvertes.fr


J. Phys. I France 1 (1991) l109-l121 AOOT 1991, PAGE l109

Classification

Physics Abstracts

05.20 87.30

Storage capacity of a Potts-perceptron

Jean-Pierre Nadal (') and AJbrecht Rau f)

(') Lab. de Physique Statistique (*), Ecole Normale Supdrieure, 24 rue Lhomond, F-75231 Paris

Cedex 05, France

f) Dept. of Theoretical Physics, University of Oxford, I Keble Rd., GB-OxfordoXl 3NP,
G-B-

(Received 22 January 1991, accepted in final form 30 April 1991)

Abstract. We consider the properties of « Potts »
neural networks where each neuron can be in

Q different states. For a «Potts-perceptron» with N Q-states input neurons and one

Q' states output neuron, we compute the maximal storage capacity for unbiased pattems. In the

large N limit the maximal number of pattems that can be stored is found to be proportional to

N(Q I f(Q'), where f(Q') is of order 1.

1. Pom-perceptrons, linear machines and winner take all systems.

The Hopfield model [I] Of a formal neural network used neurons having two possible states,

and was based on an analogy with spin glass systems. A natural extension of this model of

associative memory is to consider neurons taking more than two states : instead of having
neuronal state described by an Ising like variable, one has a Potts [2] like variable. One then

obtains a Potts neural network [3], which is to the Potts Glass [4] what the Hopfield model

is to the Spin Glass model. The statistical physics of Potts neural networks has been studied

for attractor neural networks with Hebbian leaming rules ([3, 5-7]). In these studies, one is

considering a Potts-Attractor Neural Network ~PANN) : each neuron, whose activity can

take Q different values, is connected to every other neuron, and the response to a stimulus (a
given initial configuration of activities) is the attractor to which the natural dynamics of the

net leads. Clearly one can also consider non Hebbian learning rules and in particular non

symmetric couplings- as for the case of binary neurons. One can also consider Potts-

Perceptrons (PP), that is ~possibly multilayer) feedforward networks. In that case, the

number of possible states may dirtier from layer to layer. In the following we will consider only
the simplest case, that is one input layer with Q-states neurons and one output layer with

Q' states neurons (and no hidden layer). Such systems are well known in data analysis
literature under the name of «linear machines» [8]. The binary perceptron [9] is one

particular case. In fact the perceptron algorithm, as well as its variants, is easily adapted to

multistates neurons ([8, 10]).

(*) Laboratoire associd au CNRS (URA1306) et aux Ulfiversitds Paris VI et PaHs VII.



II10 JOURNAL DE PHYSIQUE I lNf 8

The motivations for considering such systems are manifolds. I) Consider the case of a

feedforward network. As just mentioned~ such system allows to deal with multiclass

classification tasks, and with strings of data made of N items~ each one taking Q possible
different values. Here are few examples. In image processing, Q

=

Q' would be the number

of grey levels. In the analj,sis of DNA sequences~ each input node would be in one of the

Q
=

4 letters~ A, T~ G or C and the output might be binary for codon versus exxon see

e.g. [I I]). In the analysis of proteins, if one is interested in predicting the secondary structure

from the sequence of amino acids, Q would be 20, the number of different amino acids, and

Q' would be 3, the number of different possible structures (a helix, p sheet or randomj iii
Consider a feedforward network with N inputs and one Q'-state output neuron. One can

consider the output neurons as Q' binary neurons, with a winner take all » updating rule,

and only the neuron receiving the highest input field will fire. Such systems are commonly

found in the literature, both for biological modeling and engineering applications. There are

in particular models of self-organisation based on the competition between neurons (see e-g-

[l2]). iii) We have already mentioned the fact that such system are a natural extension of

binary neural networks from the physicist point of view. In addition, for a multidass

classification task (including the two class, binary neuron casej, the use of a Potts perceptron

(as precisely defined in the next section) can be justified in Bayes decision theory (see e-g [8]
p.16 and [11]). iv) Lastly we note that, on the biological side, there are indications that

cortical columns behave coherently, having a small number of possible coherent states [13].

Hence a Potts-attractor neural network may give some insight on the behavior of a network of

cortical columns.

Here we will be concerned with Potts neural networks for associative memory jPANNj or

classification tasks (PP), without specifying the leaming algorithm. In- particular we will

follow the approach initiated by Gardner [14] for computing the maximal storage capacity of a

Potts neural network. Namely, we will compute the fractional volume of the weights which

realize the learning of a set of randomly chosen patterns. We will limit our study to unbiased

pattems~ although the computation can be extended to biased patterns. In section ? we

present the model and discuss gauge invariance properties. We will show its relevance to the

dynamics of the network. In section 3 we present the storage capacity results. The details of

the computation will be given in the Appendix.

2. Gauge invariances, encoding and dynamics.

Let us first define the model for the simplest feedforward case, the Potts perceptron with

N inputs (Q-state neurons) and one Q'-state output neuron. The local field at state

v' is given bv

h~
=

jj (js',s) 3~~ (lj

J.~

'

The synaptic matrix ((s', s) indicates the weight of a signal coming from node j, which is in

state s~ on the state s' of the processing unit. Unless otherwise indicated j ~ ii.. N ),

.v~ ii..Q) and s'~ (I.. Q'). A pattern of input activities will be denoted

jn~,j
=

I... N), with
n~ ~ il. Q ). The probabilist decision rule at a «temperature»

T
=

lip, is defined by

exp p (h~, H~,
s[~~

=

s' with probability (2j
jj exp p (fi,. 0, j

~
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where the by are the thresholds. At zero temperature, the decision rule is

s[~~ =
(s( h~~ @~,) h~, 0~, Vs' # s() (3)

o

This is a « winner-takes-all » rule : one can consider the Q' state output neuron as

Q' binary neurons neuron s' receives the input field h~, defined by (I), and only the neuron

with the highest local field will become active. The generalization to N' output neurons or to a

fully connected net (PANIQ~ for which N'
=

N and Q
=

Q' is straightforward. Indeed,

as for the case of binary neurons, for the basic properties considered in this section as well for

the storage analysis in the next section, one can always focus on one particular (output)

neuron, which is equivalent to consider a perceptron with only one output neuron.

Updating rules (2) and (3) are invariant under the following translations

( (S', S )
-

( (S', S ) + U
j

(S)

@~, - 0~, + uo (4)

and under

((S', S)
-

((S', S) + vj (S') (5)

@y - @y £ uj(s') (6)

where uo, the uj(s) and the vj(s') are arbitrary real numbers. The first transformation (4) add

to each local field a term which, although a function of the input pattem, is independent of the

output states. The second set of translations on the couplings (5) modifies the local fields by a

term independent of the input pattern, which then can be absorbed in the redefinition (6) of

the thresholds. In addition the updating rule is invariant under a global rescaling :

j(s',s)-AJj(s',s), @~,-A@~,, j3-p/A (7)

for any strictly positive real number A.

These gauge invariances allows to reduce the number of parameters by fixing the gauge ».

One possible choice is to pick one particular input state so and one particular output state

s(, and to set to zero all the couplings ( (s(, s) and ( (s', so). This is a choice made by several

authors ([8, iii). It is clear however that any gauge choice will do. In the next section we will

make another choice namely :

Z((s', s )
=

o ; vs' (8)

s

Z((s', s)
=

o ; vs (9)

~.

which, as we argue now by considering the dynamics, is more natural.

The dynamics of the network, whether it is an attractor neural net or a feedforward net,

should only depend on gauge invariant quantities. This can be easily shown for the one step
dynamics. For simplicity, consider a perceptron with NQ-states inputs and one binary output
(Q'= 2). In that case one can write the updating rule (3) as

" "
sgn (h) h

=
£ w~(n~) @o (10)

with w~(s)
=

((2, s) ((I, s) and @o = @~ j,
and

« =
± I is the binary output. Suppose
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now that the presented input pattern is a noisy version of a teamed pattern, say pattern

n~ = n~'
with probability f

n~ = s # n~' with probability
~

(l j
Q

As for the binary perceptron [15] one can show that~ for large N, the input field is a Gaussian

variable~ so that here the probability f' for getting the correct output is~'"lfij
~~~~

where

m

H(x)
=

Dy, i13)

~

the Gaussian measure being indicated by

Dy
=

exp (- y~/2 if,.'2
ar j14)

The two first cumulants of h, (h) and (h~)~ (the averages being over all possible initial

conditions with the same bias fi, are given by

(h) =m jj ((n~')-0
J

lh~l~
=

tn(i tn) I li(nj')l~
+ (i tn)

j I li(.I)l~ list

, , ~

and the renormalized couplings and threshold are given by

j(s)ww~(s) zw~(i)
Q

,

0
w

Ho jjw.,(t). (16)Q~,

The parameter Hi which appears above characterize the correlation between the pattern and

the noisy version

(Q3~
~

l
=

m(Q3~i
~

II, (17)
; ,,

and takes the value

m
=

~~ ~
(18)

Q

It is the natural generalization of the usual « overlap between the input string and the

pattern in the case of binary neurons IQ
=

2 ). It takes the value if there is no noise in the

input, and 0 if the input is uncorrelated with the pattern. It is important to notice that all the

dependance in the initial conditions is concentrated in this parameter. The above formula j12)

can easily be generalized to finite temperature. Note also that, in the case of an attractor
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neural network, (12) fully characterizes the dynamics in the case of a highly diluted

network [15].
To conclude, it is thus more natural to define the local fields as

hy
=

£ ((s', s) (Q3~,~~ l) (19)

and to explicitly fixe the gauges by (8) and (9). This choice, in the case of the binary

perceptron, that is for Q
=

Q'
=

2, corresponds to the standard choice of representing the

neuron activity by a spin like variable, )
=

± I. With these choices, the case « without

threshold» is the only situation which preserves the symmetry between the Q states : in

particular, when leaming random, unbiased patterns, the optimal thresholds will be zero.

At this point it is useful to make some comments on the encoding problem, that is on the

way data are represented in the input layer. The definition (I) of the local field can be

understood as the field for a neural net with NQ entries for each j, the activity is encoded as

a string of Q nodes. The direct interpretation of (I) is that the s-th state is represented by a

Q-bit string with only the nj-th bit on. In that case ((s',s) is the coupling from node

s at site j. This is the most common choice of encoding found in the literature. But one can

also consider other representations. In the general case, state n is defined by a given
configuration of the Q nodes

xn=(g,s=i. Q),

with the Q vectors (xf,n
=

I. Q ) forming a base of RQ. A typical example is the

« thermometric » representation, where xi
=

I for
s =

I to nj, and 0 otherwise. If we note

((s') the vector whose
s component is the coupling coming from node s at site

j, then ((s',n)= ((s').x". Otherwise stated, all what matters is that there are

Q different values for a given s' and a given j. What we have just shown is that all possible
choices are equivalent, via a reinterpretation of the couplings and of the thresholds. Note that

these considerations apply as well for the first layer of any feedforward neural network for

which the input data are strings of letters ». The choice, that we adopt in the following, thus

corresponds to take the updating rule (3) with the definition (19) for the local fieldi, and the

gauge choices (8) and (9).

3. Storage capacity of a Pom-perceptron.

We now consider the storage capacity of a Potts perceptron with N inputs, each one having
Q possible states, and one Q' state output neuron. We will compute the maximal number of

random input-output pairs (n~P, j
=

I N ), n'~ ), p =
I p, for which there exists a set

of couplings such that, for every p (p
=

I,... p ), (3) is true with s[w
=

n'~ if the input is

pattern number p. All Potts states occur in the set of pattems with the same probability,
which is equivalent to

lQ8~~»-1) =0.
J f

Here the pattern average is indicated by (... )
~.

Since the pattems are unbiased, we can set all

the thresholds to zero.

The translational freedom of the local field is fixed by

£ ((s', s)
=

0 Vs'
=

I Q' (20)
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Z((s', s)
=

o vs
=

i Q' (21)

~.

It should be noted that the constraint of (20) for s'
=

Q' is included in (21). We will consider

only the case when the scalar degree of freedom is fixed independently for each

.v' by

£ ((s', s))~
=

Ny (22)

j,s

The constant y is of course arbitrary, but for later convenience we take

y =

(Q i (Q'- i )/Q' (23J

From the gauge invariance we see that there are only N(Q I IQ' I ) free parameters.
For each pattem there are (Q'- I inequalities which need to be satisfied. Thus one can

expect that the maximal number p~~~ of patterns that can be stored will be of order

N(Q i ) (Q' i )/(Q' i ), that iS

p~~~ = a
(Q I N (24)

We will see that this is the case~ with
a a slowly varying, bounded, function of

Q' only.
We follow Gardner's [14] maximum entropy method, and we define the partition function

of the s,;rem as

Z
=

dp (J) fl fl &[h~(n'" ) h " is')
x

,~) (25)

» ~j~~.~j
Here h"(s') is the local field when the input is pattern p~

h"(s')
=

jj ((s', s) (Q3~_~~ l ),

and dp (J) is the natural measure in the space of interactions which is compatible with (?0)-
(22). As in [14], we are asking for a minimal stability

x. (In the case of Q
=

Q'
=

2~ the

stability
x as defined in (25) differs by a factor / from the standard stability parameter

introduced by Gardner [14]). In order to evaluate the quenched average over the distribution

of patterns of the entropy S (ln Z) we use the replica trick. Assuming the validity of a

replica symmetric solution and shrinking the volume of interactions to zero we find for the

maximum storage capacity
a

(as defined by (24))

_,
H~

~
(l Ho)Q'-

+ Q'Ho (Ho)~ Q'(Q'- j,'2
"

~~
2

~ ~~~~~~ ~° ~~~
Q'(Q'- (Ho)~

~~~~

Here Dy is the Gaussian measure (14) and we have introduced the functions

~ «

H, (_i')
m

Dt(t + j' + x
I' ; I

=

0, 1, 2 (27)

x i

Details of the derivation of (26) is given in the Appendix. The justification for restricting to

the replica symmetric calculation is the same as for the usual, Q
=

Q'
=

2, case. Indeed, any

solution can be continuously transformed into any other solution, as can be seen from the

geometrical picture (one particular solution is a set of Q' vectors with well defined angles
between them, and one go through any solution by global rotations).
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For Q'= 2 one recovers the critical capacity found by Gardner, with in particular

a
(x

=
0)

=

2. For
K =

0 and Q'
=

3 one can evaluate the storage capacity analytically, and

one finds :

,

/ -1

~
~~

~
~

~

~ $ ~
~'~~~' ~~~~

In the large Q' limit one gets

«
(Q, » 1)

=
DyiH~ (H~)2/Hoi

»
3.850. (29)

a

3

-0 2 4 6 8 lo

,

Q'
Fig. I. Maximal capacity for

x =
0 as a function of Q"

The results for solving the integral in (26) numerically for
K =

0 are shown in figure I and

table I. In figure 2 is shown the maximal capacity as a function of
K

for Q'= 2, 3 and 4.

Table I. Maximal storage capacity at K =
0.

o' a(Q')

2 2.000

3 2.320

4 2.546

5 2.714

6 2.844

co
j.850

The critical capacity as measured by
a

is thus an increasing function of Q', saturating at a

value of about 3.85. However, the information content I(Q'), in nat per (free) parameters,
that is

I(Q')
= «

(Q') in Q'/(Q'-1), (30)
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25
~j

>

~~

io

0

~
os io is lo is

K

Fig. 2. Maximal capacity as a function of the stability parameter K
for Q' 2. 3 and 4

is a decreasing function of Q', going to zero when Q' goes to infinity. Hence we find that~

qualitatively, the optimal behavior with Q' is similar to the one found by Kanter in the case of

a Hebb rule. It is important to note that, as mentioned in the introduction~ there are

perceptron type algorithms which allow to find a set of couplings whenever there exists at

least one solution ([8, 10]). Moreover, such algorithms allow to respect any particular gauge

choice. To see this~ let us give the perceptron algorithm for the choice of the gauges (20) and

(21). One starts with zero couplings. Then, the following is repeated until convergence

Pick a pattern p at random. For any s'# ii'" such that hf
~

hf~, make a learning step for

every j and every s by

/(n'", s)
-

i(n'", s) + (Q3 nj i

((s', s j
-

j(s', s (Q3s,n/ 1) (3'

It is clear that at each time step the current couplings will satisfy (20) and (?1).

Conclusion.

In this article we analysed the storage capacity of a Potts perceptron. We have obtained that

the maximal number of pattern that can be stored is proportional to N Q I ), the prefactor

a
being a slowly increasing and bounded function of Q'. Our calculation can easily be

generalized to other cases~ e-g- the case of biased patterns. More generally, it is clear that

most of the analysis done for the binary perceptron (Q
=

Q'
=

2 could be generalized to the

Potts perceptron. In particular it would be interesting to consider other cost function than the

number of errors, as considered here, and to consider the properties above saturation. (We

note that very recently ([19]) a method, simpler than the replica techniques, has been derived

in order to study binary perceptrons at and above criticality, for any choice of cost function.

We have checked that it can be easily applied to Potts-perceptrons.) In practical applications
of neural networks, winnner take all systems are currently used. This is presently the main

reason for pursuing the analytical study of such systems.
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Appendix.

In order to evaluate (In Z)
~

we use the identity

( Z" ) I

till z)
~ =

lim / (I)

n ~
0

We thus consider

,~
js~

z"
=

dP (J~) fl fl d4a dA(a x exP I la fi Ala (it)

p.a ~,j,n,~~ «
mm N

where a =

I n and we introduced

A(~
m

£ ( ((n'~, s ) (f(s', s )) (Q3~,
~
~ l ) (iii)

The measure on the couplings is defined by

Q~ '

dP (J~)
m

fl d (f(s', s ) fl £ ((s', s ) fl £ /f(s', s ) x

pass' ~jS' S ~jS S'

jj /f(S', S)~

~ § ~ ~~

Ny
~~' ~~~~

~

where V is a normalization constant and y is the constant fixing the normalization (22). We

will compute (Z"),, the average of Z" over the pattem distribution, in the small

n limit :

exp nN (Q I f
=

jZ"j
~

(vj

Since the patterns are unbiased one has :

(Q3~
~~

l
#

0 (vi)
J f

((Q8~
~~

l ) (Q8
f ~~

l ))
~

Q3
~ f

l (vii)
J ' J ~

Then performing the average over the
n~P one gets

exp nN (Q I ) f
=

fl fl ldq()~'exp (G~ + Gj) (viii)
a.b v. <>
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with

«

exp G~
=

fl fl d,~(~ dA j~ exp (- I,;[~ A j~)
x

~
~

~~~
~

x
$fi

x exP £ I -~(a x)b lqli~ ~'~ qli~ qli"'~ + qlfi"I fix)

ah,~, ~~~,

and

exp G
j =

ill dp (J~) x

~

ZJ~(S' SlJf(t' S)

',' ~~

~

~ ~, ~ ~~
Ny

a ~ <'

i ~~~" ~~ ~~~" ~

~
fl ~

~ll~'~ ~~

~y
a~$~

z ia(s,~ si jb(1,~ s)

~ U#§<' ~

~~'
~~

~~
~~~

Here we have introduced the generalization of the Edwards-Anderson order parameter

~~~"
~

/
~j f(S"

S /~(I" S) (Xl)

s>

Assuming a replica symmetric saddle point we write

qlfi"
~

3a,b(3s',1'+ (1~ 3~',<') «2J + (1~ 3a,h) (3,',> «1+ (' 3~',t') q3) (Xii)

The first~ diagonal, term corresponds to the normalization condition (22). The physical
interpretation of the order parameters qj~ q~ and q~ is the following

~'
~ ~ ~~~~" ~~~~~f ~~"'~

3J

~~
~ i ~~~~'~ ~~ ~~~'~ ~~~ ~~

f
~~"

3J

~~
~ i l~~~" ~llTl~~~" ~JIT)< ~~~J

3J

where [.]~ denotes the «thermal» average as defined from the partition function

Z.

To compute the (-independent part~ G~~ one first note that expG~ is a product of

p independent random variables, and using the fact that the n'" are equally distributed, one

arrives at

Q' ' n m j
exp G~

=
exp p In fl fl dx( dA] exp ix( ] QYA

=1 ,, K

Sfi 2
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where

~
"

(~ ~l + ~3 ~2) (£ £ (X~')~ + £ (£ 4'j ~l+
5' a a

5'

, ,

1
+ (~l ~3) £ £ X~ )~ + £ £ X~ (XVI)~s'~a

a

s'

To perform the integration over the x's one has to decouple the replicas by introducing
Gaussian additional variables. Then, in the small n

linfit, one finally gets

lot -' j j 2

exP GP exP Pn ~o D~~ w exP m I1 ~~ x

Ql m j 2

x In fl Dty exp _
£ t~, (xvii)3'=

'

Xv
~ ~

s'

where

~s'
~

~'~~~'
~ ~ ~' ~3

N~~ ~2 ~ l + q3

(Xvlll)

Now we perform the integration over the /f. Introducing integral representations of the

3 distributions and using the fact that n is small, one arrives at the following expression for

(x) :

expGj=exp (n(Q<-i) (Q-i) i-in (E+4j+4~-4~)+E+q,411+

+
~ ~

f' j (~ (Q~ i ) q~ 4~ + (Q~ i ) q~

~)
(xix)

qj q~- q~

Here #~, i
=

1, 2, 3 are the conjugate momenta of q~ and E is the momentum introduced to

enforce the normalization(22). Note that Gj is of order Nn(Q-I)(Q'- I) and

G~ of order pn (Q'- I ), which is consistent with the scaling (24) for p.

The order parameters q~, #~ and E are determined by the saddle point equations. One can

first express all the parameters as functions of qj using the following saddle point equations

~~
l '

~~ Q'- ~~~~

4' <3
=

~i

li~2
; E + 41 + 42 <3

=1
(xx»

The relations (xx) were to be expected from geometrical considerations: the couplings
associated with each output state s' form a vector in a N(Q I ) dimensional space (20)

means that the sum of all these Q' vectors is zero, and all these vectors have the same norm

(22). Thus their two by two scalar products are fixed to
,Q I

Inserting (xx) and (xxi) in (xvii) and (xix), one gets

X~,=fi
~~~~~~

-q,
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and (omitting non essential constants)

f
=

+ in Ii qj + £Y
fl'( K, q (XXIII)2~l-qj

~(" ~l) ~fl ~

~~~
& l~~ ~

~

~

'~

"
~'~

~
s~i ~~' ~~~

2

j'
~~

(xxiv)

Here Qi is the solution of the saddle point equation.

~'
=-2a

~
P(x,qj). (xxvi

(I-qj)~ 3qi

The maximal capacity
a

will be obtained by taking the limit qj -
I. In the asymptotic

behaviour of (xxiv) one can see that there will be a non trivial contribution from the

integration on the =~, on any sector such that at least one X~. is positive, and thus going to plus
infinity. If k of them- say s'

=
to k- go to infinity, we find the following asymptotic

expression » qj -
for the argument of the logarithm in (xx>v)

-

~~~
l1~'~~

~ 2(k 1)
~~'~ ~l

~,,;i~

H' (X, (3' X~.j
t +

The primed sums and products are taken from s'= I. k. One has to sum over all the

possible choices of such sectors, which gives

Q.->
Q'-1

~ ~ Q.->
-~P(K,qj)~~~~ jj fl DZ~. fl DC,- x

i=i k

s'=i~-K s=1+>
~-~

x

~~~
~

~'
~~~

~~~

lln
/ ~ ~~~

~'~~
~ ~

~~ ~'~'~' ~~

(x~,»j

'
Q' ~

H'(X~. (Z' X~
k +

~'
(Q'

with
=

,

From this we get the following express>on for the

k
k (Q l k

critical storage capacity

N~Q i1
~

i Qj'
Q'~ i j

j« ~~~, Qj' ~

~~~ ~

Pmax Q'-1
~_j k

~
=i ~-~ ,

-i~i -~

Q -> 2

x

~~~
~ ~'

~~~ '~

jj z) jj ~.~
(~X'lll)

,'Q'
~ ~~

k+
,

~~
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Introducing a Gaussian variable in order to decouple the ~~,, and using the identities

~~ ~
~~ (~~~~)

'

K(
kA~

=
KA (I +

A)~~' (xxix)

k i k

one can sum over k and arrives finally at the expression (26) for the critical storage capacity.
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