
HAL Id: jpa-00246395
https://hal.science/jpa-00246395v1

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A method of integration over matrix variables: IV
G. Mahoux, M. Mehta

To cite this version:
G. Mahoux, M. Mehta. A method of integration over matrix variables: IV. Journal de Physique I,
1991, 1 (8), pp.1093-1108. �10.1051/jp1:1991193�. �jpa-00246395�

https://hal.science/jpa-00246395v1
https://hal.archives-ouvertes.fr


J Phys. I France 1 (1991) 1093- l108 Aotrr1991, PAGE 1093

Classification

PhysicsAbstracts
0190

A method of integration over matrix variables: IV

G. Mahoux and M.L. Mehta (*)

s.Ph.T(** ), C.E.N. saclay, 91191 Gif-sur-Yvette Ccdex, Francc

(Received I Febma&1991, revised 7 A pi1991, accepted 12 April1991)

Abswact. The m-point correlation function

jj
p (q)

lfl
(q ~k (~ d~m+I...d~n,i=1

l<j<k<n

is calculated for the three values fl
=

1, 2 and 4, and integers m and n
with o < m < n. For some

applications one needs this integral when p(~)
=

exp[-V(~)], V(~) an even polynomial, specially
in the limit n - co keeping m finite. A conjecture for this limit in the case fl

=
2 is given when

V(~)
=

~~ + 7~~.

1. Introduction and results.

Integrals of the fornl

' IL ~~~~j
In

lz; z; flj dz~~~ d~
"'

(i 1)

~ ~~'~'~"

have often been encountered in various branches of mathematics and physics. The case fl
=

2 was

considered first in connection with the orthogonal polynomhls and some problems of electrostat-

ics iii. In some models of mathematical statistics concerning births, deaths, and life exl~ectancies,
mathematicians came across the integral (I.I) for the case [2] fl

=
I. In algebraic number the-

o1y to study the dbtribution of primes and of the zeros of the Riemann zeta function Selberg [3]
needed and evaluated the integral (I.I) with

m =
0 and arbitrary fl, when p(z)

=
z°(I z)~,

0 < z < I. lib "explain" the distribution of neutron resonances in nuclear physics Wigner intro-

duced the hypothesb that they are the eigenvalues of a random matrix [4]. Thb in tum needed
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the integral (I. I) for three values of fl, namely 1, 2 and 4 depending on the symmetries of the nu-

clear system, validity or non-validity of time reveml invariance, integral or half odd integral spin,
rotational symmetry or noL Following an argument of't Hooft [5j, certain aspects of some gauge

field theories and quantum gravity in two dimensions can be elucidated by studying the integral
(I.I) Wth p(~)

=
exp[-V(z)], V(z) a poJynomial~ and taking certain limits [10,11].

The case fl
=

2 b the oldest known and the easiest one; for its evaluation one needs to know

the properties of determinants and of orthogonal polynomials. For the other two cases fl
=

4 and

fl
=

I, one needs to know the properties of pfaflians and of anti-symmetric scalar products. The

treatment of these two cases can be made parallel to the more familhr case fl
=

2 done introduces

quaternions and one particular definition (due to Moore) of the determinant of matrices with

(non-commuting) quatemion elements. Thb b much simpler than the usual calculation through
the pfaflians.

The evaluation of the integral (1. I) where p(z) ha positive weight function with all its moments

finite, and fl
=

1, 2 or 4, depends on a few theorems given below, after recalling some elementary
facts about quaternions.

A quatemion a has the form

a =
aol + E-S + aol + aiei + a2e2 + a3e3, (1.2)

where ao, al, a2, a3 are real or complex numbers, the four units I, ei, e2, e3 satisfy the multipli-
cation rules

le;
=

e;I
= e;, e;e; =

-b;;I + e;;kek, I, j,k
=

1, 2,3, (1.3)

where b;;, the Kronecker symbol, is equal to I or 0 according as I
=

j or I # j, e;;k is the

completely antisymmetric tensor Wth e123 =
+1, and multiplication b associative. The scalar

part of a
is ao. The dual of

a
is b

=
aol I.S.

Any quatemion can be represented by a 2 x 2 matrix with complex elements; for example

~
~ II

1
~~ ~ II

~l
~~ ~

~ II ~~ ~ II II ~~~~

Conversely, any 2 x 2 matrix with complex elements can be represented by a quaternion.
In any N x N matrix A

=
[a;;]~ with quaternion elements a;;, if we replace a;; by its 2 x 2

matrix representation, we get a 2N x 2N matrix with complex elements, wllich we denote B [Al.
When the a,;'s are complex, the multiplication is commutative, and there is no ambiguity about

the determinant of the N x N matrix la;;]~ defined in the usual way. However, when the elements

a;; are quatemions, the multiplication is no longer commutative, and there b no unique definition

of a determinant. We will adopt the following definition [6-9]

~~~ [iii]
"

~(~l)~ fl [fabfbc.. fdaj~~~
,

(1.5)

P cyd~

where the permutation P consists of the exclusive cycles (a
-

b
- c -

...d
-

a), (-1)~ is its

sign, and the sum b taken over all N! permutations. The superscript (°)
on each cycle means that

we take the scalar part of the producL
The dual of the quaternion matrix A

=
la;;] is the quaternion matrix A

=
[a;;] A self-dual

quaternion matrix b such that a;, =
b;,. Let ( be the antisymmetric matrix with elements

(2k,2k+1
"

~(2k+1,2k
"

1, (k
#

0,1.. ), (1.6)
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and all other elements vanbhing. Then

e jai
=

8jAf <~~ (l.7)

Consequenty, A is self-dual Wand only # ( e [Al b antisymmetric.
Theorem I.I.(Dyson) Let A

=
la;;]

~
be a N x N sef~ual quaternion mavir and e[A] be iti

represmwdbn by a 2N x 2N compldr mabic men

pf ( e[A]
=

det A. (1.8)

Here, pf denotes the pfaflian. A first consequence of thb theorem is the following formula

det e[A]
=

(det A)~. l.9)

A second consequence is the

Corollary. Let A
=

la;; ]~ be a N x N quaternion mavir A
=

[b;;]~ be iti dual and e[A] be as

defined above 7hen

det e[A]
=

det e [A] =
det (AA). (1.10)

Note that the determinants on the left-hand side of Eqs.(1.9) and (1.10) are of 2N x 2N matrices

with complex elements, while those on the right-hand sides of equations (1.8Q10) are of N x N

matrices with quatemion elements.

Theorem 1.2. Let f(z, y) be a Jknclion with real, compldr or quaternion values, such that

/(z, Y) =
f(Y, z), (I.ll)

where f
=

f if f is real 16 the campier conjugate of f ifit is campier and 16 the dual of f ifit is

quatemion. Assume that

/
I(z, y)I(y, z) dy

=
I(z, z) + >f(z, z) f(z, z)>, (i12)

with a constant quatemion. Let f(z;, z;)]~ denote the N x N mavit with iti (I, j) element equal
to f(z;, z; ). 7hen

/ detif(z;,z>)lN dzN
= (C N + I)detif(z;,z>)iN-i

,

(1.13)

where

c =
f(z,z)dz. (1.14)

Note that when f(z,y) is real or complex, vanishes. Conditions (I.ll) and (1.12) then mean

that the linear operator defined by the kernel f(z, y) is a projector, and the constant c is its trace

(hence a non negative integer).
Fbr a proof of these theorems, see for example reference 9. Fbr a proof of the corollaly, see

the appendix.
The evaluation of the integral (I.I) depends on expressing its integrand

fll~=I fi(Zk )) (An (Z) (~, Wltll

fi~(z) %
~ (Z; Z;)

,

(~'~~)

l<I<j<n
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as det fp(z;, z; )]~ where fp ix, y) sathfies equations (I.ll) and (1.12). The simplest cafe is fl
=

2,
the only one where no quatemions are needed. The next dflficult case is fl

=
4, where the constant

quaternion of theorem 1.2 vanishes, and the most dflficult one ~om the mathematical point of

view b the case fl
=

1. The case fl
=

2 b the most widely known and extensively used in the

study of matrix models. (1°- it Real symmetric matrices being more familiar than the self-dual

quaternion ones, the case fl
=

received more
attention(11) than the case fl

=
4. However, the

two theorems cited above and the compact form of correlation functions which can be derived

from them seems not to have been generally noticed.

The quantities of interest, to be calculated, are the m-point correlation functions given by

xlf)(zi,..
,

zm) +
zii

~~

'~~, f
iAn(z)ill In (z~)j

dzm+i.. ozn, (1.16)
j~

where the nornlafisation constant Zp is the partition function

zfl
=

f lAn(z)l~ (ij
(zk)ldzi.

dzn (1.17)

When fl
=

I, it is convenient to take 2n variables instead of n, and to replace the weight p(z) by
fir. So, in that case, we use the following definitions

~~~~~~' '~m) % Z[ ~~~)~ 2n
~~~ ~~~

~~~~~~~~

i

~~
~~m+I d~~~, ~~ ~~~

with

ZI
"

(A2n(~)[ l~j fi dZl.. dZ2n. (1.19)

k=1

Define three series of monic polynomials, Ck(~), Qk(z), and Rk(z), of degree k. Recall that

a polynomial is called monic when the coefficient of the highest power, Le. z~, is one. Let these

polynomials satisfy the orthogonality relations

(Ck> Ci)~
#

hk~kl> (~.~0)

(Qk> Ql)q
" ~[k/2](kl> (I.~l)

(Rk, Ri)R
"

'ik/2](kl, (1.~~)

where hk, qjk/2j and ~k/2j are nornlalisation constants, [xi is the largest integer not greater than

z, and where the scalar product f, g)c and the two skew scalar products f, g)q and if, g)R of

the functions f(~) and g(~) are defined by

lf,gic +

/)
f(zig(z)»l~)d~, (1.23)

if,g)q +

f)
lflz)g'lz) f'(z)g(z)i »(z) dz, (1.24)

lf,giR +

f f~~ fl~)glY) -Sly ~) d~dY, 11.25)
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with e(z) equal to 1/2 or -1/2 according as z > 0 or z < 0.

Define the quatemions xk(z) and pk(z), the 2 x 2 matrix representations of which are

8[Xk(Z)) %

$(~)~~ (~~~)~~l,
(1.26)

+

e li~k(Z)I + ((l~)(( (l~~~)((I, (1.27)
2k ?k+1

vith

4~~ (z) + /~°'e(z y) R~(y) /Rdy. (1.28)

Define the real f2(z, y) and the two quaternions f4(z, y) and fi (z, y)

n-1

f2(z, Y) +
fiW £ jck(z)Ck(Y), (1.29)

n-1

f4(z, y) e
MW L px~(z)i~(y), (130)

fi(z,Y) +

I
~wk(z)#k(Y)

~
~~~j

~j
(131)

Then, these three quantities satisfy both conditions (I.ll) and (1.12) of theorem 1.2~ and our final

result b the general formula

Xe)(zi;.
,

zm)
=

det jfp(z;, z;)j~ (1.32)

valid for the three values of fl.
We recover the known expressions [12] of the partition functions Zp

n-I n-I n-1

22
#

n! ~ hk, 24
"

n! ~
qk, Zi

=
2"(2n)1 fl

rk. (1.33)

k=0 k=0 k=0

From the positivity of these functions for evely n, we deduce that hk, qk and rk are positive num-

bers for every k.

All these results are valid for any positive weight p(z), provided that, as we already said, all its

moments are finite, I.e.

d p(z) dz < oo, j
=

0, 1, 2, (1.34)

In particular, the weight p(z)
=

exp(-z2) was extensively studied in connection Wth the theory
of random matrices [13], while the cases p(z)

=
I (-I < z < I), and p(z)

=
e-~ (0 < z < oo),

were worked out as examples in an appendix of reference [9].

In section 3, we study the large n behaviour of the correlation functions X$f~(zi,
,

zm), with

a weight of the fornl

p(z)
=

e~(~~+"'), (-oo < z < +oo). (1.35)
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From a reasonable conjecture on the large n behaviour of Cn (~), we deduce that

i Sin (fl )~~~ 7~/~(~ y)j
f2(z, Y) ~~~ p

~ ~ ,

(l .36)

which together with equation (1.32) gives the asymptotic behaviour of Xi~(zi,
,

~m for every

m.

For some applications a different large n limit is of interest [10, 11, 16]; one takes 7 = g In, so

that the weight function p(z and hence the three sets of po1yliomials depend on n.
If we know the

limiting form of fp(z, y), we know the same for all the correlation functions. In the case fl
=

2,
fp(~, y) b also the two point function, but for fl

=
4 or I thin b not so. Little is known about the

limiting correlation functions except for the one point function or the level density [lfl

xl~~(z)
e «p(z)

=

~$ ii + g

j
+ 2g

j jj 11
~~,

(137)

where c~ In is given by

c~
= n

@
(l.38)

g

This limit will not be considered here.

Another important point not considered here is the following. Knowing the m-point correlation

function for each m what observable consequences, if any, can be deduced from the lattice gauge
theories, quantum gravity or the superstrings.

2. Proofofequations (1.20.32).

2. I CASE fl=2 We write An (~) as a n x n determinant

An(z)
=

det (zj-~j =
det [C;-i(z;)]~

,

(2.1)

where the C; (zl's are monic polynomials of degree j. Then

Al(~)
"

d~~

I
Ck (Xi )ck(~j

j

k=0
n

=
(fl ~)

den
(f c~(z;)c~(z;)j

(2.2)
k=0 k=0

n

where ho, hi,
,

hn-
i are non zero constants. Now choose the Ck (z l's as the orthogonal polyno-

mia1s

/~~ Ck(z)ci(z) p(z)d~
=

hkbki, (2.3)

and set

f~(z, y) +
WW f

)Ck(z)Ck(y). (2.4)
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Then

f2(z,Y)
=

f2(Y, z)
=

fi(~, Y), (2.5)

and from the orthogonality relation (~3) one has

/~°° f2(~, Y)f2(Y, z)dy
=

f~(z, z). (2.6)

Thus f~(z, y) satisfies both conditions (I.ll) and (1.12) of theorem 1.2. The constant c
defined by

equation (1.14) is equal to n, so that equation (1.12) writes

f+oo den lf2 (xi, Y; )lp+i dzp+i
=

(n P)den lf2(z,, Y; )lp (2.7)
-oo

The m-point correlation function takes the fornl

X()(zi,
,

zm)
=

Zp~
~"

,

lfl hk
/

dzm+i.. dzndet f2(z;, y; )]~ (2.8)
~~ ~~'

=~

Successive applications of equation (2.7) allow us to perform the integrations over the variables

zm+ i
to zn. The calculation of the normalization constant 22 along the same lines is straightfor-

ward, and the final result is equation (1.32) for fl
=

2.

2.2 CASE fl=4 We write A( (~) as a confluent alternant [9]

(I
=

1, 2,
,

n; I
=

1, 2,..
,

2n),

where the Q; (~l's are monic polynomials of degree j, and prime denotes the derivation. Define

the quaternion xk(~), which for short we identify with its 2 x 2 matrix representation

~ ~~~j
(2.10)Xk(~)

" ((([)() Q(((i(Z)

Its dualis
~i (~) Q~~~i(z)j

(2.ll)Xk(Z)
" -((~(Z) Q2k(Z)

Then At (~) can be written as follows

Aj(~)
=

det 81Qi (2.12)

=
det (Qo), (2.13)

where Q is the n x n quaternion matrix with elements

Qi;
=

x;-i(z;). (2.14)
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16 write equation (2.13), use has been made of the corollary of theorem I. I. Let us set

f41z,v) -
fill L )ykiz) xkivi, 12.isi

where the qk's are non zero constants. Then

n n-ifl p(zk) det(QQ)
=

fl
qk det [f4(z,, ~j )]~ (2 16)

k=1

k=0

Obviously f4(z, y) satisfies the first condition, equation (I. ll), of theorem 1.2. Let us now see for

the second condition, equation (1.12). From equations (2.10) and (2. I I) one readily obtains

/~°~ x~iz),<iz)»iz)dz
= [ljj~j~ojjjjo ljj~jjjjjjjjoj

,

1217)
-n~

where
we have used the skew

(Q2k> Q21+1)q " Qk~kl (~ 18)

(Q2k Q21)q " (Q2<+1> Q2k+1)q
"

0. (2. IQ)

Equation (2.17) then becomes

/+cc kk(z)_,,(z)11(z) dz
=

qkbk<1, (2 20)
-m

(recall that 1 designates the quaternion unity, or the unit 2 x 2 matrix). As a consequence

/+c~ f4(z, y)f4(v, z) dy
=

f4(z, z) (2 21)

-c~

The end of the calculation goes exactly as in the case fl
=

2. Here again the constant c dcfined by
equation (1.14) b equal to n, and the final result is equation (1.32) for fl

=
4.

2.3 CASE fl=1 As already noted, it is convenient in this case to take 2n variables instead of

n, and to change 11(z) into fi. The integrand we have to deal with is thus:

2n
~ ll fi (/~2n(Z)( (~ ~~)

k=1

We first note that the sign of the Vandermonde determinant A2n ix) is given [14] by the pfaffian
of the 2n x 2n matrix [sgn(zj z, )]~~, so that we can write

2n
X

=
2~ fl fi A2n(z) pf [£(zj z,)]~~, (2 23)

k=1
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where e(z), defined in the previous section, is half the sign function.

Second, we replace the Vandermonde determinant A2n (z) by the determinant of the 2n x 2n

matrix [Rj-
i
(z; )]~~

,

where the Rk (zl's are monic polynomials of degree k. Define the quaternion

pk (z), which for short we identify with its 2 x 2 matrix representation

where

4lk(Z)
"
/~~ 6(Z Y)

/RRk(Y) dY. (2.25)

Define also the two self-dual quaternions

n-1

g(z>Y)
=

[
~i~k(z)#k(Y)> (2.26)

fi(z, v)
=

g(z, v) (( ~~~j
~j

(2.27)

where the rk's are non zero constants. Obviously, the first condition (I.ll) of theorem 1.2 is

satisfied by both g(z, y) and fi (z, y).
From the above definitions, one readily obtains

where we have used the skew scalar product
,

)R defined by equation (1.25). Now choose the

Rk (z l's as the skew orthogonal polynomials satisfying

(R2k> R21+1)R "
rk~kl (2.29)

(1~2k R21)R " (1~21+1, R2k+1)R
"

°. (~.3°)

Equation (2.28) becomes

+m/
#k(z)~ai(z) dz

=
2rkbki1, (2.31)

-m

which entails that g(z, y) satisfies equation (1.12), up to a factor 2

~i~~ g(z,Y)g(v, z)dv
=

2g(z, z). (2.32)

Furthermore, a straightforward calculation shows that

f(~
~~~j

~j
i'k(Y)dY"

~ j
i'k(z), (2.33)

f~~#k(Y)(~ ~~~j~~jdY=#k(z)
~

~j. (2.34)
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Putting together all these results, one obtains

/~~ fi(z, Y)fi(Y, z) dY
=

fi(z, z) + fi(z, z) fi(z, z) A, (2.35)

where b the constant quatemion
~~

)~ l. Thb is the second condition (1.12) of theorem

1.2. The constant c
of the same theorem is easily calculated with the help of Eq.(2.31), and found

to be equal to 2n.

Consider now the 2n x 2n self-dual quatemion matrix fi4 with elements

fi4i,
=

fi(z;, z;). (2.36)

Note that [g(z,, z, )]~~ is the product of two rectangular 2n x n and n x 2n quaternion matrices,

with (I, j) elements equal to
rj/(

~a;- i
(xi and r)/( @;-

i
(z; ). Its 4n x 4n matrix representation is

a rank 2n matrix with a vanishing determinant.

Let us be more specific. fi4 being self-dual, ( 8 [fi4] is antisymmetric. It is convenient to reorder

the rows and columns of ( 8 [fill by writing first the 2n odd rows (and columns) before the 2n even

rows (and columns). Let us call E [fill the new antisymmetric matrix thus obtained. It takes the

form
~

~~~~ $
tYfi~~

l
'

~~'~~~

where M, £ and a are 2n x 2n matrices. M and E are antisymmetric

~i"I
"

~~~ ~~ (Zi) (k< ~~(Zi ), (2.38)

k,1=0
~~~/~~

Ei; =
e(z; z;), (2.39)

and
a

is defined, for almost all z,'s by

2n

4lk(z,)
=

~j
a,j 4l[(zj), ii

=
1, 2,..

,

2n; k
=

0,1,..
,

2n -1). (2.40)
j=1

One easily finds that

det 81fi4i =det Ejfi4i, (2.41)

det fi4
=

pf (81fi4i
=

(-1)" pf Ejfi4i. j2.42)

Obviously, if we forget the matrix E, the 2n last rows (columns) of the matrix (2.37) are linear

combinations of the 2n first rows (columns). As a result, the determinant of E[fi4] is independent
of

a

det E[fi4]
=

(det M) (det £). (2.43)

Its pfaflian, linear function of the elements of a, indeed b also independent of a, since squared it

coincides with the determinant. Thus

Pf E1fi4l
=

(-1)" (Pf M) (Pf £). 12.44)
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Nex~ we reInark that the matrix M appears in equation (2.38) as the product N ( NT, where N is

the 2n x 2n mat» with (I, k) element equal to rj )(( 4l[(z;). Its pfaflian is thus given by

pf M =(det N) (pf (), (2.45)

n-1 2n

=

fl fl fi det [R;-i(z;)]~~ (2.46)
k

=o
~~

k=1

Finally, from equations (2.23, 36, 42, 44, 46), we obtain

~

"-

~ ~ ~k dot lfi (z;, z; )j
~ "

(2.47)

Now, the constant Zi defined by equation (1.19) can be calculated easily by applying 2n times

theorem I.I

n- I +o~

Zi
"

2" fl
rk

/
det [fi(z;, z;)]~~ dzi. dz2n

k=0 ~°'

n-1
=

2"(2n)! fl
rk (2.48)

k=0

The correlation functions defined by equation (1.18) are then given by

X~~I(Xl, Z2n)
"

~~~ [fl (Xi'Xi ))2n
'

~~ ~~~

x()
~~ ~~ =

~~~~~ /
det fl (Z;, Z; )]~ dZm+1.. dZ2n

(2n m)I "

=
d~~ f~ (z;, z;)j (2.50)

m

This is equation (1.32) for fl
=

1.

3. Imrge n asyToptotics.

It is of particular interest to find the limits, when n - oo, of the correlation functions

X$f~ (xi,
...,

zm).
We first note that the completeness relations of the orthogonal or skew-orthogonal polynomials

Cn(z), Qn (z) and lln (z), imply the followng large
n

limits of the fp (z, yl's

l~m f~(z, y)
= &(z y), (3.1)

~~ ~~~~ ~~
i b(z v) 6(z v)

~~ ~~
n-m

' 2 b'(z y) b(z y) '

u~ ~~~~ ~~
b(z Y) 0 j~ ~~

n-m
' b'(z Y) b(z Y)

(Note in the third formula the vanishing of one matrix element: the last ternl in the right;hand
side of equation (1.31), proportional to e(z y), exactly cancels one of the contributions of the

previous terms, in the limit
n -

oo).
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These formulae tell us that the X~$~(zi,
...,

zml's diverge when n - oo, as expected. lb

know how they diverge, we need more information, which could be provided for example by the

large n asymptotic expansions of the polynomials Cn(z), Qn(z) and lln(z). lvhen the support
of the weight function p(z) is compac~ such expansions are explicitely known [lsj, at least for

the Cn(zl's. V/hen the support is non compact, the situation is much less comfortable. lb our

knowledge, explicit fornlulae are available in the literature only for the classical Laguerre and

Hennite polynomials, that is to saj respectively, for p(~)
=

e-~ on the positive real ads, and for

p(z)
=

e-~~
on the whole real axis. Indeed, in thb last section, we derive as a by-product the

leading term of the large n asymptotic expansion of Cn (z), in a non classical case (see Eq.(3.27)).
Here, we are interested in weights of the fornl

p(~)
=

e~~(~), (-cx> < ~ < +cx>), (3.4)

where the "potential" V(z) is an even polynomial. The simplest weight beyond the Gaussian one

is given by a quartic potential with a positive "coupling constant" 7,

V(z)
=

z2 + iz~. (3.5)

Since the asymptotic expansions of the corresponding orthogonal polynomials are not available,

we shall proceed as follows. It is well known that the functions X$f~(zi,
...,

zm) are indeed the

correlation functions ofa classical statistical ensemble of n
electrically charged particles (Coulomb

gas) in a two dimensional space, constrained to move on a straight line, in the external potenthl
V(z). These functions are calculable in the large

n
limit by the saddle point method [I(. The

corresponding action is

n

W
=

£ V(z;) fl £ In lx; z;(. (3.6)
I=I I<I<j<n

The static equilkrium configuration minimizes this action

v'(z;) Pi
~, ~

=
o. (3.7)

;#; >

In the large
n

limi~ and with a regular potential as described above, it turns out that the charge
dbtribution goes to a continuous function on a finite interval, say ap(z) on j-c, +c], and the above

equation becomes

~~

V'(z) flpv
/ '~~~~

dy
=

0. (3.8)
-c

z

Here pv means that the integral b a principal value integral. Of course, ap(~) is normalized

according to

+c/
ap(z)d~

= n.
(3.9)

-c

Wth the quartic potential (3.5), the unique solution of the last two equations is found to be

ap(~)
=

$ (i + ic~ + 21z~) (c~ ~~) ~~~

,

(3.10)

with
c

given by
37c~ + 2c~ 2fln

=
0. (3.I1)
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When 7 =
0, one recovers We "semi~ircle" law of Wigner [17~, with an extension c of the charge

dbtribution of order nl/~ The situation b radically different when 7 > 0 : the dbtrwution (3.10)
is no longer a setni~ircle, its extension has shrunk and is now of order nl/4

c m (~~
~~

(3.12)
"~" 7

As expected, the electric charges pack mutually closer in a quartic potential than in a harmonic

potential. lit large n, the quartic terms in the action W dominate the quadratic ones. Thb b no

longer so, if the coupling constant 7 is itself a function of n.
Wth 7 = g In, the quartic terms are

damped at large n, and the extension c remains [lfl of order nl/~

c =

nl/~
(~@ j

(3.13)
g

~~~

Now, ap(z) is indeed the first term of the large n saddle point expansion of the function Xf~(z)

Xf~(z)
=

~p(z) ii + o(1)]. (3.14)

Let us stick to the case fl
=

2. Then, thanks to the Christoflel-Darboux [18] formula, the expression
of X)~~ (xl as given by equations (1,29) and (1.32) takes a compact form

x(2)~~~ ~-V(z) ~ ~J(~)
l

~

~, i

;_~ i

=

e-v~~)£ lcn-i(z)ci(z) ci-i(z)Cn(z)1 (3.15)

By analogy with the well known asymptotic formula of Hilb's type for Hermite polynomials (see
Eq. (8.22.7) in Ref. [lsj), we conjecture that for z finite and n large

e~(~~+~~')/~Cn(z)
= an jars(bnz n~/2) + O(I)I (3.16)

Because Cn(z) is monic, has the parity of n, and all its zeros are simple, an and bn are positive.
At large n, its density of zeros bn /~ should coincide with the charge density a2(z)

m 7c~ /~. Wth

equation (3.12), thb gives
~~~

bn
=

~"
71H (3.17)

3

The above conjecture and this value of bn are corroborated by the fact that e- ~(~)/ 2 Cn (z) satisfies

a differential equation [19], which can be shown to take the following form at large
n

~~~
+ O (n~~/2)

~
+ b( (I + O (n~~/2)j e~~(~)/2Cn (z)

=
0, (3.18)

z z

with precbely the same bn as in equation (3.17),
Nex~ we get the expression of an by comparing (3.14) and (3.15) at z =

0. This gives

anan-i #
hn-1/~, (3.19)
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or, if we define pn =
hn /hn-

i,

an " Pn-I an-2. (3.20)

Now, the pm's satisfy the recurrence relation [12]

pn Ii + 21(pn+i + pn + pn-i)I
=

n/2, (3.21)

from which we deduce their large n behaviour

Pn -

liexP I- %
+ O In-~/~l1 (3.22)

Then, by using Equations (3.20) and (3.22), straightforward calculations lead to

an =
f(7) ~~)~~~~-@$

127e '

(3.23)

where f(7) is an unknown function of the coupling constant (which cannot be determined by the

method used here). Moreover, equation (3.19) gives us the asymptotic behaviour of hn

n "~~~~~~ n/(3y) (3.24)hn m
~e~/~ f(7)~ @ ~

We are now in a position to get the first term of the large
n

expansion of f2(~, Y) at z and y fixed.

Thanks to the Christoflel-Darboux [18] formula and equation (3.16), we obtain successively

f2(z, Y) =

~~~~~~+~~~~~/~j
lcn-1(~)Cn(Y) Cn-i(v)Cn(~)l (3.25)

G3

~~~ ~~~ ~~ ~~~ (3.26)
n~" ~ ~ Y

Thh last formula (which is in agreement with equation (3.I)), enables us to find the asymptotic
behaviour at large

n
of any correlation function X~/~ (~i,

.,
~m given by equation (1.32).

Note that this formula h independent of the unknown function f(7). So h the asymptotic ex-

pression of the normalized polynomial hi ~/~Cn (~)

hj~/~e~(~~+~~~l/~Cn(~) m ~~(
~~~ cos ~~")~~~ i~/~~

~j
+

il)).
(3.27)

n-m n~ 3 2

Unfortunately, for the cases fl
=

4 and 1, there seems to be no compact form of the sums

~ Xk(Z)Xk(Y)
~~d

~
)i'k(Z)i'k(Y),

k=0 k=0

analogous to the Christoflel-Darboux formula. So, we cannot reproduce in these cases thb above

calculation. Use has to be made of the relations [12] between the polynomials Cn(z), Qn ix and

Rn lx
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Appendtc

Proof of the corollary of theorem it.1).

Let Abe a N x N uatemion matrix, and d be its dual. The 2N x 2N complex matrix represen-
tations e IA] and e A] of A and A

are related by equation (1.7). Thus

det e[A]
=

det e [A]
,

(Al)

and

(det e[A])2
=

det e[A] e [A] =
det e [AA] (A2)

=
[det (AA)] ~

,

(A3)

16 write the last equality, we have used theorem I.I, taking advantage of the self-duality of the

matrix AA. Then

det e[A]
=

+det (AA). (A4)

Nex~ we remark that both sides of this equality are continuous functions of the elements of e[A],
which excludes one of the two signs +. It suffices now to take a diagonal matrix A to exclude the

minus sign~ and thb ends the proof of the corollary.
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