
HAL Id: jpa-00246390
https://hal.science/jpa-00246390

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A theory of magnetoconductance in Anderson insulators
J. Bouchaud

To cite this version:
J. Bouchaud. A theory of magnetoconductance in Anderson insulators. Journal de Physique I, 1991,
1 (7), pp.985-991. �10.1051/jp1:1991181�. �jpa-00246390�

https://hal.science/jpa-00246390
https://hal.archives-ouvertes.fr


L Phys. I France 1 (1991) 985-991 JUILLET1991, PAGE 985

Classification

Physks Absmacts

05.60 7~108 72.15R 72.20M

Show Communication

A theory of magnetoconductance in Anderson insulators

J.P Bouchaud

Laboratoire de Physique Statistique(*) 24 rue Lhomond, 75231 Paris Cedex 05, France

(Received3Apfill99l;accepted25Apfill99l)

Abstract. We present a simple theory to understand the effect ofmagnetic field on the localisation

length f in Anderson insulators. For thin wires, we find that f is doubled, a result recently derived

through random matrix theories. For fi1nls or bulk samples, new results are obtained. In this case, the

localisation length is multiplied by a non universal factor. We discuss quantitatively the fttll dependence
off on the magnetic field.

Interest in quantum transport phenomena has soared during the past few years (see e-g- [1-3]).
Among other interesting progress, one may cite the discovery of persistent currents in mesoscopic
rings [4], the development of "Diflusing Wave Spectroscopy" [2] (which takes advantage of weak

localisation effects to probe in a new manner e-g- concentrated suspensions), or the unveiling of

the peculiar nature of conductance fluctuations in disordered metals (universal amplitude fig m

e2 /h, sensitivity to single impurity rearrangments [I,fl, relevance to I/ f noise [6]). The theoretical

understanding of these fluctuations was greatly improved after Imry, and Alt'shuler and Shklovskii

[7,8] suggested that the random matrix theory of Dyson and Mehta was the natural language to

describe these effects: the universal character of the conductance fluctuations is intimately related

to the spectral rigidity of random matrices. It was then realized that breaking of a basic sylnmetry
(e.g. imposing a magnetic field to break time reversal symmetry) simply changed the relevant

ensemble of random matrices, which ultimately leads to the following simple and spectacular
prediction [5,9,10,18]: when a magnetic field is imposed, the conductance fluctuations of a metallic

sample are reduced by a factor 2 (in absence of spin-orbit coupling) compared to the zero field

case. This prediction was confirmed experimentally [10].
Very recently, Pichard and collaborators ill] (see also [12]) pointed out that a similar phenomenon
also occurs in the highly disordered, insulating case. Again using random matrix theory, they
showed that at least for quasi I D wires the localisation length f should simply be multiplied by

2 when a sufficiently strong magnetic field B is applied (or divided by 2 if strong spin orbit scatter-

mg is present). This should have dramatic consequences on the conductivity of these insulating

samples lgiven, in the Mott r6gime, by
a « exp- (To/T)V~~+~~ with To «

f~d], or on the static
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dielectric constant e «
f2. Numerical simulations on ld strips and &Iott conductivity experiments

~ith 3d samples ill] are indeed in qualitative agreement with the prediction f(B)
=

2f(0).

In this Short Communication we develop an approximate theory which describes quantitatively
the effect on magnetic field on the localisation length in the insulating r£gime. Our discussion

is based on Sornette and Souillard's heuristic picture of localisation [13]- which is essentially a

simple physical w%y to recover @e results of the self consistent diagrammatic theory of Vollhardt

and Wolfle [14]. A similar approach for weak localisation effects was proposed in [15]. Our main

results are the following: while we indeed recover the factor 2 for quasi Id samples, we predict
tha~ at least for weak disorder, f(B) m

f2(0) lie in films (le is the mean free path), and that

f(B) If (0) may be anyth"ng between I and mJ in three dimensions, depending upon the distance

from the localisation transition. We furthermore provide a prediction for the full dependence of

f(B)
:

the crossover field B" is, as expected, B"f2(0)
m file. We obtain f(B) -f(0)

=
Ad (B /B")~

f(0) for R « B" (where Ad is a numerical factor depending upon dimensionality)~ For ld wires,

we find 2f(0) ((B)
«

B~l for large fields.

We consider a wave (of velocity c, wavelength I) propagating in a random medium. The elastic

mean bee path is le and we suppose for simplicity isotropic scattering at each collbion. Adapting
f;dm [13], we examine the stationary situation schematized in figure I. An energy current Jo

is injected at O along Ox and eventually (since stationarity is assumed) leaves the sample far

from O. The loml "equilibrium" current J1m h bui~ by all "Feynman paths" reinjecting energy

at O along the initial direction Oz. Following [13], this initiatdirection is in fact, due to the wave

character of the problem we consider, not precisely defined: it lieK within a cone of solid angle
SD

=
(6@)d~l with (le IA) 6@ m I. Only the fraction 6Q/Q of the reitljected energy will thus be

coherent) backscattered. Jim is then obtained as:

Jim
=

Jo + R(6Q/Q)J~«
=

JOI(I -R(6Q IQ)] (1)
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Fig. 1. We consider the stationary siLuation where an energy flux Jo is injected at O, building through
closed paths the equilibrium local current J,~. Localisation occurs when J,~ # 0 even when Jo

=
0.



N°7 MAGNETOCONDUCTANCEINANDERSONINSULATORS 987

(see Fig. I). R is the total energy reinjection coefficien~ obtained as:

~

R=
~LW@/~~~'~ (2)

, c,

where P (C') is the weight of the t long path C' which is in fact precisely what we are looking
for, since the large scale transport of energy will be determined by those weights and

q~
(C,) the

phase acquired by the wave along this path. We then I) group together pairs of time reversed

paths C, and C-,, and it) suppose that the phases of two otherwise different paths are completely
deccrrelated (this of course would be completely false if the medium were periodic). Hence:

R m 1/2 ~j ~j P (C') (e'?l~'~ +
e'?l~-'~ ~

(3)

c<

In the presence of a magnetic field, one has:

9'(Cl<)
= 9~0 (Ci<i) + e/hBs (c,)

where S (Ct) is the algebraic area enclosed by the projection of C, in a plane orthogonal to B.

Thus (3) may be written

R m
~j P(O, t) < I + cos [2e/hBS (C,)] >c (4)

where P(O, t) is the probability of finding t steps closed paths and <...> denotes the average over

closed paths of length t. Let us suppose for a moment that energy diffuses classically, that is, the

weights P (C') are those pertaining to Brownian paths. Then R can be explicitly calculated, since:

a) One has, in d di~nensions:

P(O, t)
=

if (4xDot)~~/~ (5)

where Do
"

1)/2dre is the diffusion constant, and re =
l~/c is the mean free time. For one

dimensional strips or bars, one has rather:

p(o, i)
m

(i~/w)d-i (i~/4«Doi)1/2 (6)

where W is the width of the strip or bar.

b) the probability dhtribution of S (C,) is explicitly known in two dimensions [16,17j:

p(s, i)
=

xl (4Doi) «sh-2 j«s/2Doij (7)

We emphasize that thin result will be useful in three dimensions since only the projection of

the walks in a two dimensional plane orthogonal to B will matter. For quasi-ld geometries,
the total area b the sum oft /tw terms of order W2, distributed according to P (S,tw), with

tw
=

W2/2dDo. Hence (7) will be replaced by

AID(S,t)
=

(2xpW~Dot)~~~ exp- [S~/2pW~Dot) (8)

The validity of equation (8) and the exact value of p have in fact been very recently obtained by
A~ Comtet and J. Desbob, and h, for d

=
2

: p =
1/12.
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Let us first consider the case B
=

0. Using (5), one sees immediately that R diverges in dimensions

d
=

I and 2 ~but b finite for d > 2). If 6Q/Q is not zero (I.e. for non zero wavelengths), ais is

clearly inconsistent with equation (I): in dimensions d < 2, energy cannot diffuse classically but

is rather expected to be localised in some finite volume. The assumption that P (C') b given by
the random walk theory is thus wrong. A simple way [13] to account for the appearance of an

exponential bound state of size f b to modify the diffusion (propagator) equation as 3P/3t
=

Do (AP f~~P) the weight of each path of length t b reduced by a factor exp (t IT), with

r = re (f/le)~ f must then be self consbtently estimated in such a way that R(f)(6Q IQ)
=

I

which is the condition for which J1m # 0 even if Jo
=

0 (see equation (I)). The results given
below would not be deeply affected if instead of the exponential cutoff exp (t.r) was replaced

by another rapidly decaying function of (t IT). Let us first focus on the one-dimensional case. f

must then satisfj the following equation (in the following, we shall use units such that re =
1) :

2
/~

dt t~U~ exp (t IT)
=

At (9)

where Al is a numerical constant and the factor two comes from equation (4) for B
=

0. The

lower bound of course corresponds to the mean free path. Hence in one dimensional strips or

bars of width W, one finds (using (6) and SD m
(I/le)~~~)

:

f(0)
=

N Ail (2/o le (10)

where N is the number of channels (N
=

(W/I)d~~) This is, up to numerical factors, precbe~y
the exact remk found e.g. in [18,11]. Note that f(0) diverges in the classical limit (1

=
0), as it

musL Now, in the presence of magnetic field, and in the limit f » W, (9) will read (using (8)):

fdt t~~/~ exp (t IT) +
/

dt t~V~ exp (t/@)
=

Al (11)i~ i~

with
=

r/ (1 + rb2)
,

b is the reduced field b
=

(p/d)U2e/hBwle.
From equation (11), one obtains the crossover field B"

=
(d/ p)U2 (h le) /Wf(0) by writing rb2

m

I, that is that one quantum flux is contained in a localhation area Wt. For B « B", (9) leads to:

f(B) f(°)
=

(1/4) (B/B")~f(°) (12)

For B » B*, one finds:

f(B)/2f(0)
=

1 b~~ (13)

The full curve f(B) /f(0) verms BIB" (corresponding to equation (11)) is plotted in figure 2 and

compared to the numerical results of ill]. The agreement is not very good, but this is probably
because f(0) h comparable to W in the numerical siJnulation. A much better fit is achieved Tone

argues that equation (8) only holds for t > tw and thus rather uses the two dimensional area

distribution (Eq. (7)) for P(S, t)
: see Fig. 2, inserL

Note that for Bl)
m file, transport is already affected by the magnetic field at scales < le ("Hofs-

tadter r6gime"), and our theory ceases to apply (it assumes that all relevant length scales are much

larger than l~).
Let us briefly describe the situation in higher dimensions. For d

=
2, one may write an equation

analogous to (11):

f~ dt t~~ exp (t IT) + b f~ dt exp (t IT) /sinh(br)
=

A2 (14)
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Fig. 2. Plot of f(B) /f(0) velsus BIB" in quasi one dimensional geometries (strips). Note that the limit

f (B"* f(0)
=

2 is slowly reached (as 1/B), while the behaviour at low fields is 82. To compare with the

numerical simulations of [11] (circles), we have arbitrarily imposed that the point indicated by an arrow

should lie on the theoretical curve. The agreement is poor, which is probably related to the fact that f is

not very large compared to W in reference ill]. The insert shows f(B)/f(0)
versus

BIB" using the two

dimensional area distribution, equation (7). The fit of the numerical results is much better. This allows us to

obtain from the data a value for the crossover field: B" m 4.6 x
10~~ (in units were B

=
corresponds to

one quantum flux per unit cell), which qualitatively agrees with the theoretical prediction B"
=

2 (le /f)~
m

4.8 x
10~~ (using the numerically determined localisation length f m20.5 lattice spacings [11], and assuming

since disorder is strong that le is equal to the lattice spacing).

with b
=

BIB"" and B**
=

d(rile)/I). For b
=

0, one finds:

In jf(0)/lej
=

A2/2 (le/1) (15)

and one recovers the fact that all states are localised in two dimensions with an exponentially large
localhation length for small wavelengths, which again is the exact result. Equation (14) shows that

the localisation length changes when br m I, I-e- at the crossover field B"
=

d(rile) /f~ (ml T for

f=30 nm), we find, for B < B" equation (12) with 1/6 replacing I/4, while for B" « B « B"",

one obtains

f(B) lie m (tanh b/2)V~ [f(0) /le]~ (16)

Thus we find that the effect of a magnetic field is quite dramatic in weakly disordered films; we

predict in particular that the localisation length increases as the square root of the field in quite a

large range of fields. This dependence h stronger than that observed experimentally on dhordered

films of In203-« (19]. However our assumption that Brownian stathtics holds for I < f is probably
incorrect if disorder is not weak: as shown in e. g. [20], the wave function becomes "fractal" in this

regime, with a fiactal dimension decreasing from 2 as the disorder increases [20]. It can be argued
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that this fiactal dimension plays the role of an effective dimensionality for the problem, and thus

that the effect of a magnetic field becomes weaker, and simflar to the one dimensional case for

sufficiently strong disorder.

Finally, in three dimensions, one finds [13,14] a critical value of the wavelength (or the disorder)
above which states are localised, given by the Iofle-Regel condition: I" m le. For I > I", the

localisation length is given by f(0) lie
=

A312/ (12 -1"2)
,

thus predicting a critical exponent

v =
I in 3d (and more generally v =

(d 2)~ ). This exponent is however not expected to be exact

[21], since thin argument completely discards the possibflity of a non trivial (fractal) support of the

wave function just at threshold.

Applying a strong magnetic field B m B" " is found to change the localisation length according to:

f(B)/f(0)
= 1>~ >"~) / l>~ 2>"~) (17)

which means that

I) the first localised wavelength h multiplied by vi in the presence of a magnetic field and

it) the resulting ratio of localhation lengths can be either very large if I m
vii

" (mobility edge)

or very close to I if I » vii" (strong dhorder). Note that for all I > vii",
one has B" m B"",

since in this case f(0)
m le.

For B « B", one obtains f(B) -f(0)=(1/24) (B/B")~ f(0). Experimentally ill], the ratio

f B " If (0) has been found equal to m2.5 for samples rather close to the mobility edge and to ml.7

for more strongly dhordered samples, which qualitatively agrees with equation (16). It would be

extremely interesting to observe the field-driven delocalisation transition predicted by equation
(16).

As a conclusion, we have presented a very simple theory to understand the effect of a magnetic
field on an Anderson blsulator. The r61e of closed loops is crucial in our approach, at variance with

theories focussing on "directed paths" only [22,2fl. While our results corroborate those obtained

through the random matrix theory in ld, they quite strongly differ from it in higher dimension-

at least when f » le (It would be very interesting to find the preche relation between these two

theories). We are also able to predict the furl dependence of the localisation length on magnetic
field-which could perhaps be obtained within the random matrix approach (see e-g- [23]). We find

in particular that the localhation length should vary as
82 for weak fields. We suggest that more

experiments should be done, in particular in films where quite strong effects are expected (see Eq.
(13)).
Finally, the effect of spin-orbit scattering (see ill] or of an extemal electric field may be treated

along similar lines. For the former problem, we recover [24] the results of ill] in the one dimen-

sional case, that h f(B) /f(0)
=

1/2 for strong magnetic fields and in the li~nit of strong spin orbit

coupling, which contrasts with the recent results of [25j.
In the latter case, one finds strong distortions of the localhation length when Efm(Bandwidth),
where E is the electric field.
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