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A theory of magnetoconductance in Anderson insulators
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Abstract. — We present a simple theory to understand the effect of magnetic field on the localisation
length ¢ in Anderson insulators. For thin wires, we find that £ is doubled, a result recently derived
through random matrix theories. For films or bulk samples, new results are obtained. In this case, the
localisation length is multiplied by a non universal factor. We discuss quantitatively the full dependence
of ¢ on the magnetic field.

Interest in quantum transport phenomena has soared during the past few years (see e.g. [1-3]).
Among other interesting progress, one may cite the discovery of persistent currents in mesoscopic
rings [4], the development of “Diffusing Wave Spectroscopy” [2] (which takes advantage of weak
localisation effects to probe in a new manner e.g. concentrated suspensions), or the unveiling of
the peculiar nature of conductance fluctuations in disordered metals (universal amplitude dg =~
e2/h, sensitivity to single impurity rearrangments [1,5), relevance to 1/ f noise [6]). The theoretical
understanding of these fluctuations was greatly improved after Imry, and Alt’shuler and Shklovskii
[7,8] suggested that the random matrix theory of Dyson and Mehta was the natural language to
describe these effects: the universal character of the conductance fluctuations is intimately related
1o the spectral rigidity of random matrices. It was then realized that breaking of a basic symmetry
(e.g. imposing a magnetic field to break time reversal symmetry) simply changed the relevant
ensemble of random matrices, which ultimately leads to the following simple and spectacular
prediction [5,9,10,18]: when a magnetic field is imposed, the conductance fluctuations of a metallic
sample are reduced by a factor 2 (in absence of spin-orbit coupling) compared to the zero field
case. This prediction was confirmed experimentally [10].

Very recently, Pichard and collaborators [11] (see also [12]) pointed out that a similar phenomenon
also occurs in the highly disordered, insulating case. Again using random matrix theory, they
showed that - at least for quasi 1 D wires - the localisation length £ should simply be multiplied by
2 when a sufficiently strong magnetic field B is applied (or divided by 2 if strong spin orbit scatter-
ing is present). This should have dramatic consequences on the conductivity of these insulating

samples [given, in the Mott régime, by o « exp— (TO/T)I/ (@+D) with Ty o« ¢ —4], or on the static
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dielectric constant ¢ o £2. Numerical simulations on 1d strips and Mott conductivity experiments
ith 3d samples [11] are indeed in qualitative agreement with the prediction £(B) = 2¢(0).

In this Short Communication we develop an approximate theory which describes quantitatively
the effect on magnetic field on the localisation length in the insulating régime. Our discussion
is based on Sornette and Souillard’s heuristic picture of localisation [13]- which is essentially a
simple physical way to recover the results of the self consistent diagrammatic theory of Vollhardt
and Wolfle [14]. A similar approach for weak localisation effects was proposed in [15]. Our main
results are the following: while we indeed recover the factor 2 for quasi 1d samples, we predict
that, at least for weak disorder, £(B) = ¢%(0)/I. in films (I, is the mean free path), and that
£(B)/£(0) may be anything between 1 and co in three dimensions, depending upon the distance
from the localisation transition. We furthermore provide a prediction for the full dependence of
&(B) : the crossover field B* is, as expected, B*¢%(0) = h/e. We obtain £(B)—£(0) = Aq (B /B")2
£(0) for B « B* (where A4 is a numerical factor depending upon dimensionality). For 1d wires,
we find 2£(0) — £(B) « B~ for large fields.

We consider a wave (of velocity ¢, wavelength A) propagating in a random medium. The elastic
mean free path is /. and we suppose for simplicity isotropic scattering at each collision. Adapting
from [13], we examine the stationary situation schematized in figure 1. An energy current Jgo
is injected at O along Oz and eventually (since stationarity is assumed) leaves the sample far
from O. The local “equilibrium” current Jy,. is built by all “Feynman paths” reinjecting energy
at O along the initial direction Oz. Following [13], this initial direction is in fact, due to the wave
character of the problem we consider, not precisely defined: it lies within a cone of solid angle
5Q = (68)%~! with (I¢/))é8 ~ 1. Only the fraction §Q/ of the reinjected energy will thus be
coherently backscattered. Ji, is then obtained as:

Jioe = Jo + R(62/Q)Jiee = Jo/[1 — R(6Q/Q)] (1)

Fig. 1. — We consider the stationary situation where an energy flux Jo is injected at O, building through
closed paths the equilibrium local current J).. Localisation occurs when Ji,e # 0 evenn when Jo = 0.
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(see Fig.1). R is the total energy reinjection coefficient, obtained as:
2

R= (2)

Z Z \/m eﬂ'(ﬁ(ct)
t Ct

where P (C*) is the weight of the ¢ long path C* - which is in fact precisely what we are looking
for, since the large scale transport of energy will be determined by those weights - and ¢ (C;) the
phase acquired by the wave along this path. We then i) group together pairs of time reversed
paths C; and C_., and ii) suppose that the phases of two otherwise different paths are completely
decorrelated (this of course would be completely false if the medium were periodic). Hence:

R~1/233 P (¢ Iew(co +eietc-n )
t Ct

In the presence of a magnetic field, one has:

¢ (Cx:) = po (Cpyy) £ €/RBS (C)

where S (C;) is the algebraic area enclosed by the projection of C, in a plane orthogonal to B.
Thus (3) may be written

R~ P(O,t) < 1+ cos[2¢/ABS (Cr)] >c (4)

where P(O, 1) is the probability of finding ¢ steps closed paths and <...> denotes the average over
closed paths of length ¢. Let us suppose for a moment that energy diffuses classically, that is, the
weights P (C*) are those pertaining to Brownian paths. Then R can be explicitly calculated, since:
a) One has, in d dimensions:

P(O,t) =18 (4nDot)~%? (5)

where Dg = l§/2dre is the diffusion constant, and 7. = [./c is the mean free time. For one
dimensional strips or bars, one has rather:

P(O,t) = (I./W)*~! (I, /4 Dot) /* (6)

where W is the width of the strip or bar.
b) the probability distribution of S (C;) is explicitly known in two dimensions [16,17}:

P(S,t) = n/ (4Dot) cosh™2 [xS/2Dot] (7)

We emphasize that this result will be useful in three dimensions since only the projection of
the walks in a two dimensional plane orthogonal to B will matter. For quasi-1d geometries,
the total area is the sum of t/ty terms of order W2, distributed according to P (S,tw), with
tw = W?/2dDg. Hence (7) will be replaced by

~1/2

Pip(S,t) = (2apW?Dot)” ' exp — [S?/2uW?Dot] (8)

The validity of equation (8) and the exact value of ¢ have in fact been very recently obtained by
A. Comtet and J. Desbois, and is, ford =2 : 4 = 1/12.
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Let us first consider the case B = 0. Using (5), one sees immediately that R diverges in dimensions
d = 1and 2 (but is finite for d > 2). If 6Q/Q is not zero (i.e. for non zero wavelengths), this is
clearly inconsistent with equation (1): in dimensions d < 2, energy cannot diffuse classically but
is rather expected to be localised in some finite volume. The assumption that P (C?) is given by
the random walk theory is thus wrong. A simple way [13] to account for the appearance of an
exponential bound state of size £ is to modify the diffusion (propagator) equation as 0P/dt =
Do [AP — ¢72P] : the weight of each path of length ¢ is reduced by a factor exp — (t/7), with
T = T (€ /le)2 £ must then be self consistently estimated in such a way that R(£)(6§2/Q2) = 1
which is the condition for which Ji,c # 0 even if Jo = 0 (see equation (1)). The results given
below would not be deeply affected if instead of the exponential cutoff exp — (¢.7) was replaced
by another rapidly decaying function of (¢/7). Let us first focus on the one-dimensional case. ¢
must then satisfy the following equation (in the following, we shall use units such that 7, = 1) :

2/°° dtt~Y2exp — (t/7) = A 9)
1

where A4; is a numerical constant and the factor two comes from equation (4) for B = 0. The
lower bound of course corresponds to the mean free path. Hence in one dimensional strips or

bars of width W, one finds (using (6) and 69 ~ (A/l)*™) :
£0) = N 41/ (2v/7) le (10)

where N is the number of channels (N = (W/A)4~!) . This is, up to numerical factors, precisely
the exact result found e.g. in [18,11). Note that £(0) diverges in the classical limit (A = 0), as it
must. Now, in the presence of magnetic field, and in the limit £ > W, (9) will read (using (8)):

/oo dt ¢-1/2 exp—(t/r)+/°° dtt=Y2 exp — (t/6) = A1 (11)
1 1

with @ = 7/ (1+ 7b?) , b is the reduced field b = (u/d)Y/%e/RBW .
From equation (11), one obtains the crossover field B* = (d/u)V/2 (h/e)/W€(0) by writing 7% ~
1, that is that one quantum flux is contained in a localisation area W¢. For B < B*, (9) leads to:

£(B) — £(0) = (1/4) (B/B*)*£(0) (12)

For B > B*, one finds:
§B)/2%(0)=1-b"" (13)

The full curve £(B)/£(0) versus B/B* (corresponding to equation (11)) is plotted in figure 2 and
compared to the numerical results of [11]. The agreement is not very good, but this is probably
because £(0) is comparable to W in the numerical simulation. A much better fit is achieved if one
argues that equation (8) only holds for ¢ > ¢y and thus rather uses the two dimensional area
distribution (Eq. (7)) for P(S,t) : see Fig. 2, insert.

Note that for BI2 ~ h/e, transport is already affected by the magnetic field at scales < I, (“Hofs-
tadter régime”), and our theory ceases to apply (it assumes that all relevant length scales are much
larger than [.).

Let us briefly describe the situation in higher dimensions. For d = 2, one may write an equation
analogous to (11):

/oo dtt~lexp — (t/7) + b/oo dt exp — (t/7)/sinh(b7) = A; (14)
1 1
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Fig. 2. — Plot of £(B)/¢(0) versus B/B* in quasi one dimensional geometries (strips). Note that the limit

£ (B**)¢(0) = 2 is slowly reached (as 1/B), while the behaviour at low fields is B2. To compare with the
numerical simulations of [11] (circles), we have arbitrarily imposed that the point indicated by an arrow
should lie on the theoretical curve. The agreement is poor, which is probably related to the fact that £ is
not very large compared to W in reference [11]. The insert shows £(B)/¢(0) versus B/B* using the two
dimensional area distribution, equation (7). The fit of the numerical results is much better. This allows us to

obtain from the data a value for the crossover field: B* x 4.6 x 10~3 (in units were B = 1 corresponds to
one quantum flux per unit cell), which qualitatively agrees with the theoretical prediction B* = 2 (le/ 6)2 ~

48x%1073 (using the numerically determined localisation length & ~20.5 lattice spacings [11], and assuming
- since disorder is strong - that le is equal to the lattice spacing).

with b = B/B** and B** = d(h/e)/i2. For b = 0, one finds:
In[£(0)/1e] = A2/2(le/2) (15)

and one recovers the fact that all states are localised in two dimensions with an exponentially large
localisation length for small wavelengths, which again is the exact result. Equation (14) shows that
the localisation length changes when br = 1, i.e. at the crossover field B* = d(h/e)/¢%(~1 T for
£=30 nm), we find, for B « B* equation (12) with 1/6 replacing 1/4, while for B* <« B « B**,
one obtains

£(B)/Ie ~ (tanh b/2)"/* [€(0) /L) (16)

Thus we find that the effect of a magnetic field is quite dramatic in weakly disordered films; we
predict in particular that the localisation length increases as the square root of the field in quite a
large range of fields. This dependence is stronger than that observed experimentally on disordered
films of InyOs_, (19]. However our assumption that Brownian statistics holds for ! < £ is probably
incorrect if disorder is not weak: as shown in e.g. [20], the wave function becomes “fractal” in this
regime, with a fractal dimension decreasing from 2 as the disorder increases [20]. It can be argued
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that this fractal dimension plays the role of an effective dimensionality for the problem, and thus
that the effect of a magnetic field becomes weaker, and similar to the one dimensional case for
sufficiently strong disorder.

Finally, in three dimensions, one finds [13,14] a critical value of the wavelength (or the disorder)
above which states are localised, given by the Ioffe-Regel condition: A* =~ Il.. For A > }*| the
localisation length is given by £(0)/le = A3)?/ (32 — X*2), thus predicting a critical exponent
v=1in 3d (and more generally » = (d—2)~!). This exponent is however not expected to be exact
[21), since this argument completely discards the possibility of a non trivial (fractal) support of the
wave function just at threshold.

Applying a strong magnetic field B ~ B** is found to change the localisation length according to:

EB)/E0) = (A2 = x2) / (A2 - 223 17)

which means that

i) the first localised wavelength is multiplied by +/2 in the presence of a magnetic field and

ii) the resulting ratio of localisation lengths can be either very large if A ~ +/2)* (mobility edge)
or very close to 1 if X 3> +/2)* (strong disorder). Note that for all A > v/2X*, one has B* ~ B**,
since in this case £(0) ~ l.
For B <« B*, one obtains £(B) —£(0)=(1/24) (B/ B*‘)2 £(0). Experimentally [11], the ratio
& (B*) /€(0) has been found equal to 2.5 for samples rather close to the mobility edge and to =~1.7
for more strongly disordered samples, which qualitatively agrees with equation (16). It would be
extremely interesting to observe the field-driven delocalisation transition predicted by equation

(16).

As a conclusion, we have presented a very simple theory to understand the effect of a magnetic
field on an Anderson insulator. The rdle of closed logps is crucial in our approach, at variance with
theories focussing on “directed paths” only [22,25). While our results corroborate those obtained
through the random matrix theory in 1d, they quite strongly differ from it in higher dimension-
at least when £ > [ (It would be very interesting to find the precise relation between these two
theories). We are also able to predict the full dependence of the localisation length on magnetic
field-which could perhaps be obtained within the random matrix approach (see e.g. [23]). We find
in particular that the localisation length should vary as B2 for weak fields. We suggest that more
experiments should be done, in particular in films where quite strong effects are expected (see Eq.
(13)).

Finally, the effect of spin-orbit scattering (see [11]) or of an external electric field may be treated
along similar lines. For the former problem, we recover [24] the results of [11] in the one dimen-
sional case, that is £(B)/£(0) = 1/2 for strong magnetic fields and in the limit of strong spin orbit
coupling, which contrasts with the recent results of [25].

In the latter case, one finds strong distortions of the localisation length when E¢=(Bandwidth),
where E is the electric field.
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