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Abstract. A complexity measure is introduced which is the integral of the coarse-grained, scale

dependent entIopies. As an application We analyze a Gaussian distribution model for noise signals.
We find that among all powible distributions the one having the I/f power spectrum maximizes the

complexity measure.

Our experience in statistical mechanics gives us the impression that both regular and completely
disordered configurations are not really campier. Several recent studies [ii suggest that there

should exist a complexity measure which attains its maximum value for configurations between

me above two cases. However, there is so far no generally accepted definition of the complexity
measure.

The if f noise problem refers to the low frequency divergence of the power spectra. Noise

signals in many different scientific disciplines were found to have approximately the I/f power
spectrum [2]. Its ubiquity may suggest that there should exist some general principle which would

make the appearance of if f noise unavoidable. However most work in this field concentrate on

the search for specific mechanisms in specific systems.

In this work we introduce a complexity measure based on the entropy of various scales. It is a

thermal dynamical quantity and is uniquely defined whenever the entropy exists. The traditional

entropy characterizes the disorderness of the system. We generalhe this to consider the scale

dependent entropy which is defined on the coarse-grained variables of the original system. Our

complexity measure (compieri~y for short) is an integral of all these scale dependent entropies.
Below through a calculable model we show that the above two problems (complexity and I/f
noise) are closely related, with I/f noise in Nature being the most complex.

Let us consider a continuous stochastic signal z(t), in the time interval 0 < t < N. For most of

our purposes, it is sufficient to consider only the two point correlation function,

C(t t')
= < z(t)z (t') >> (1)
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from it one can obtain the power spectrum

D( I)
=

f'~ di cos 2~ tic(1). (2)

In this work we use the simpliJying assumption that a signal z(t) is completely specified by its

two point correlation function C(t). This means that we ignore all the higher correlations. We

introduce a Gaussian ansatz [3] for the distribution functional of z(t),

Fix (t)j
=

j
exp

f dtdt'z(t)z (t')
g (t t')

,

(3)

where the normalization factor is

Z
=

/
7lz exp

/ dtdt'z(t)z (t') g (t t')
,

(4)

and g(t) is related to C(t) through

/dt"g (t t") C (t" t')
=

6 (t t') (5)

Thus by constmction, equation (I) can be reproduced using the above distribution functional

P[z(f)] (distribution for short). For our phase space analysis we may treat a noise signal as a

purely geometric, static curve of length N, ignoring its dynamic origin. We can further assume

the periodic boundary condition and the kernel g(t) is taken to be symmetrical. The effects of

boundary conditions vanish when N
- cx>.

The Shannon-like entropy (entropy for short) of the distribution can be defined by the func-

tional integral

S
=

/
7lzP[z(t)] In P[z(t)]

=
N/2 + In Z. (6)

This entropy is simply related to the phase space volume Z in equation (4). Note that if z(t) takes

on continuous values, as in our case, the entropy is not positive definite.

Due to the simple Gaussian form, it is convenient to work in the Fourier space. Let us write

~[Z(I)j
"

j
~Xil

~j
~k Xi ~ fl /~ dZk ~XP

~ Xi (~)
~l ~l

~°'

~l

Without loss of generality, we consider g(t) being defined by gk through equation (7), gk thus

completely specifies the distribution P[z(t)]. We want now to compare different signal distribu-

tions characterized by different gk's 16 make such a comparison meaningful, we have to impose

a common normalization condition on the signal z(f), for all the distributions, We consider the

mean square fluctuation (or the amplitude),

W e

( /~
dt < z~(t) > =

( f
<

xl
> =

( f
I/gk Ci /~ D(f), (9)

°
k=i k=i

I/N
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where < > denotes the average using P[z(t)] in equation (8), < z(t) >= 0, the approximation
in the last step is due to the replacement of the discrete sum by an integral. We require that W

remains constant for all distrAutions,

W
"

f
Wk "

coast, Wk %
(10)

k=1
~~~

Other normalization condition can be likewise considered. The above condition is particularly
attractive if we identiJy z(t) as the current fluctuation in a circui~ W has the meaning of the

average power of the circuit. We may regard the amplitude W as the energy needed to create the

signal z(t).
The Gaussian integrals in equation (8) can be easily carried out, from equations (6,8) we obtain

the entropy,
~

S
=

+
L In 2~NWk. ii)

k=I

For what dhtribution does the above entropy attains its maximal value? It is straight-forward to

see that the white noise solution wk =
WIN (wk

~-
D( f)) is optimal, when S

=

( (I + In 2~W).
The conclusion is hardly surprising that white noise has the largest entropy.

It is instructive to see how correlation reduces the entropy. For this purpose we consider the

power-law ansatz

gk =
qk~,

« > 0, (12)

which corresponds to the power spectrum D( f) cs I / f~ («
=

0: white noise), and C(f) m
t~-I,

and q is a normalization constant, The condition equation (10) becomes,

N N

W
=

£
~ ~~ =

gbN(~), oN(~) e
£

p (13)

k=1
~ ~

k=i

We find q =
@N(~)/NW, thus wk =

WI (@N(~)k"). Substituting the latter into equation (it),
and taking the asymptotic forms of bN(~) for various ~, we obtain

S
=

N/2[1 + In 2~W + In(1 ~) + ~
/2], for 0 < ~ < l (14)

S
=

N/2[3/2 + In 2~W In In N], for
~ =

l (15)

S
=

N/2[1+ In 2~W In((~) + ~/2 (~ l)lnN], for
~ > l, (16)

where ((~) is the Riemann function. Note that in all cases the entropy is smaller than that ofwhite

noise. For weak correlation 0 < ~ < l, (C(t)
-

0, t
- cx>), we see that there ha constant entropy

per unit length, ~ =
l is the borderline case and for ~ > l, let us call it the strong correlation region,

me entropy is no longer additive. There is a lo gar1tllmic reduction for the entropy per unit length.
This fact has been noted previously in other model systems [4].

The Shannon-Eke entropy is traditionally regarded as the information content of the signal
z(t). However, this view implicitly assumes that the resolution of our measurement is sufficient

to reveal all the information. It does not give indications about how much information one can

obtain if the resolution length is not so good.
Suppose that our measurement can only reveal structures of length (time) scales

r or larger.
We want to know how much entropy the system has. Let us take I < r < N, where the lower

bound I should coincide the original resolution length. We consider the coarse-grained variable

i t+T/2

Y(t)
" p

/
dt'Z (t') (17)

t-T/2
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y(t) is the signal z(t) with its fluctuations on scales smaller than
r

eliminated.

Repeating the previous steps we obtain the entropy of resolution scale r, denoted by S(r), from

the effective distribution for y(f). Z in equation (8) now becomes

z(T)
=

fl /
dvk exP L rgkvl (18)~~~ -~ ~~~

~ ~
jN/rj

S(r)
= p + In Z(r)

= p + j
£ In (2~Nwk/r), (19)

~ ~
k=i

where the ratio [NIT] is the integer part of NIT. S(r) can be regarded as the total information

content if the resolution length is
r.

S(r) bears resemblance to the Komolgorov entropy. Note

that S(r) is a strickly decreasing function of
r. By definition, we have S(I)

=
S.

It is useful to consider the per unit length quantity.

I(r)
=

s(r)r/N. (20)

By varying r, I(r) can be regarded as the distribution spectrum of the information content, in

analogy to the much more familar power spectmm D(f). Since I(r) is scale independent, we

want to plot it against the scaleless quantity In
r.

A generic curve is shown in figure I. It can be

easily shown that for wllite noise, we have I(r)
=

)(I + In 2~W In r), so in figure I it would be

a straight line with the slope la. Tl1is implies that white noise loses rapidly information upon
coarse-graining. For a random walker (~

=
2), on the other hand, we can likewise show that it

should be represented by a straight line of the slope IQ. The borderline case I /f noise (~
=

l)
would be represented by a horizontal line in figure 1.

In«

Fig. I. A generic curve of the information distribution spectrum.

16 measure the information content on different resolution scales, it calls for a quantity that

comprises entropy of all the resolution scales. We introduce the quantity complerifl/ $ which is

the integral of all the scale dependent entropies

It
=

/
drs(r). (21)i~
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In a sense our complexity K reflects the disordemess on all scales, very much in the same sense that

the entropy does on the smallest resolution scale. In principle there should be an arbitrary mea-

sure in the above integral. Our choice is based on the purely dimensional consideration: we want

It to have the same dimensional dependence of the Shannon-like entropy S, thb uniquely fixes

the measure in (21) (up to logarithmic factors). Therefore the above two considerations uniquely
define the complexity measure: I) it should contain entropy on different resolution scales; 2) it

should be an extensive quantity (having dimension of N) just as the entropy itself. Note however

K is not additive, due to logarithmic contn~utions. Had we chosen K to be proportional to an-

other power of N, K would be maximized by a different type of noise than I/ f. Our complexity
is a legitimate thermal dynamical quantity, which is built on top of the entropy and has the same

dimension. K has also the meaning of the area beneath the I(r) curve in figure I.

Substituting S(r) of equation (19) into equation (21), we obtain

It
=

~lnN +
/~ dr £ In (2xNwk/r) (22)

1

~~~

ci

( ln
N(I + In 2x) + 1/2(In N)~ +

f () ()
in

kj
,

(23)

~~~

where the approximation is caused by the interchange between the integrals and the sums. We

may ask what distribution maximizes the complexity K. It follows from the Kullback inequality in

information theory [5] that among all the functions wk subject to the condition (10),

wk ~ W/k In N (24)

is the optimal solution, for asymptotically large N. Therefore we conclude that the distribution

which has the I / f power spectrum maximizes the complexity K.

As an example let us consider the power law distribution characterized by a in equation (12).
Using equation (19) we obtain the complexity for the power law case

It
=

~ ) ~
ll +

)
+ In 2xW +

~

'ln
N In RN

a)j
(25)

We plot the per unit length quantity KIN against
a

in figure 2. We see that for the power law

parametrization the complexity is a well defined smooth function of a with the extremum attained

at the point a =
I. Note that K(a) is not a symmetrical function of a, in a sense we may say that

a random walker carries more information than white noise.

It is also instructive to consider constant complexity K attained by different power law distri-

butions. The energy expenditure W is now taken to be a variable. We solve In W from equation
(25), plot it against

a
and keep It constan~ it is also shown in figure 2. We interprete that I / f

noise requires the least energy input to achieve the same amount of complexity.
The complexity measure introduced in this work can be easily extended to higher dimensions

and discrete systems. Firstly we construct the scale dependent entropy S(r) from the coarse-

grained variable in the volume rd,
as that done in equation (17), then on dimensional grounds the

complexity measure for a d-dimensional system is

It
=

/~ rd~~dr S( r). (26)
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0 o-S t t-S 2

Fig. ~ The upper curve is the complexity K, the lower curve is the energy expenditure In W, on arbitrary
scales. The horizontal axis is a. The quantities are for a chain of N

=

10~ units.

d
=

2 is a case of special interest, where the complex configurations have direct visual effects.

We mention in passing another application of the complexity: take the Boltzmann factor of the

2d nearest neighbor ferromagnetic Ising model, in place of equation (3). One can show that the

complexity measure b a function of the temperature K(T), with its maximal value attained at Tc.
Elsewhere we will address this and similar problems.

The main point of this work'is to introduce a complexity measure K for probabilistic and statis-

tic mechanical models. Under two rather weak conditions I) K being a linear superposition
of the resolution scale dependent entropies, 2) being an extensive thermal dynamic variable

we arrive at a unique expression. For the ld Gaussian model we have analyzed in details we find

that K reaches its maximum for I/ f noise. From practical point of view, we can say that we find

an attractive quantity which can characterize complex systems, and one may draw tantalizing in-

terpretations. However, from conceptual point of view, we cannot yet explain why and when It

in a system shmhi be maximized. One feels that the approach presented in this work might be

elevated into some sort of first principle for strongly constrained, self-organized [fl and open sys-

tems, like many sub-systems in Nature. Should we postulate that, for some of these systems, the

intrinsic spatial temporal fluctuations are characterized by a maximal complexity principle, and

I / f nobe is just one of its consequences?
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