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Abs«act. Consider a lattice spin system in which nearest neighbor spins are exchanged at rates

which weakly depend on the neighboring configuration. The system has the same symmetry of the

lattice except possibly for lattice rotations. We set up a perturbation expansion for the correlation

functions at time t around the simple symmetric exclusion process. Convergence is proven for

small t and the formal t
~ co limit reproduces the usual high temperature expansion in the case of

detailed balance. If the system is isotropic, then each term in the expansion is strictly local. If not,

then, generically, the two points function has the direction dependence of a quadrupole field and

decays only like a power r~~, where r is the spatial separation and dm 2 is the dimension.

1. Introduction.

Gibbs states at high temperatures have correlations decaying in the same sense as the

interaction potential. This well known fact from equilibrium statistical mechanics has been

established by various methods such as the cluster expansion [1-3], or a Dobrushin type
analysis [4-6], and is in last instance a consequence of the so called local Markov property of

Gibbs states : for a finite range interaction, given the configuration inside the appropriate
boundary layer surrounding a volume, the inside and outside are conditionally independent.
It allows to follow the interdependence of certain events in different regions in space via

intermediate points (or, «polymers») along which information is transported (and lost).
These « connections are explicitly constructed in the cluster expansion, starting from the

Boltzmann factor Z~ exp (- pH), p small, for an interaction H. For example, to first order

in p, for a lattice spin system, only the neighborhood of a site, as determined by H, can

influence the spin there. More probabilistic methods use the (quasi-) locality of the

conditional distributions to estimate the dependence of a spin on its neighboorhood. This

explains in fact why we expect that local interactions generically (that is, away from critical

points) give rise to a finite correlation length.
Tuming to real non-equilibrium situations, we cannot expect such methods to be applicable

by only considering the spatial structure. For a general lattice spin dynamics, we will not find a

simple local mechanism by which to describe the mutual influence of spins in different
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regions. The spatial structure of non-Gibbsian stationary states can best be studied by
embedding it in the spatio-temporal process. Simple examples for which one readily
recognizes the advantages of connecting spatially separated spins via their common history

are interacting particle systems or probabilistic cellular automata [7-8]. In fact, such an

analysis naturally arises for general non-equilibrium phenomena. This may seem obvious but

it has important consequences. If the stationary state is not Gibbsian, and the spatial
correlations must be thought off as intermediated via events in the past, then the spatial decay

will be related to the temporal correlations. In particular if the latter have a weak decay such

as for diffusive systems, then a similar behavior can be expected for the stationary
correlations.

This, in short, was the starting point of the analysis in [9] to study the phenomenon of long

range spatial correlations in conservative non-equilibrium dynamics. Here we wish to

investigate in more detail the associated perturbation expansion around an exactly solvable

lattice gas dynamics. The system consists of spins «(x)
=

± I, x e
Z(

on the d-dimensional

lattice. A dynamics is introduced in which nearest neighbor spins are exchanged with rates

which depend weakly on the configuration in a finite neighborhood. We are interested in the

behavior of the correlation functions fl «(x)
,

for some finite A
<

Z( in the stationary
xe

A

states. To study them, we make an expansion around the product state which is invariant for

the so-called symmetric simple exclusion [7]. It can be viewed as a system of random walkers

which interact via a hard core potential only. Although the stationary states are trivial for this

system, the temporal correlations decay weakly. Typically, fluctuations in the density of the

walkers decay diffusively in time like t~ ~'~. This decay enters in the perturbation expansion as

the zero mass of the free propagator. wl~ile this makes our analysis considerably more

complicated, it has the interesting feature to produce, for generic perturbations, also a weak

decay in space. Putting r~~
t as the usual space-time scaling for diffusive systems and

assuming that the spatial decay is intermediated via the temporal diffusive decay, we end up

with the prediction that there is some
bonstant Q such that («(0); «(r))

=
Q (r(-~,

jr
- co for the stationary two points function. wl~ile, a priori, this scenario is completely

general, the details of the dynamics enter in the prefactor Q. We will argue that generically
Q # 0 but there are special (non-generic) situations in which by symmetry Q »0. Those

situations can be divided into two (overlapping) classes.

The first important special case occurs when this « self-organized criticality disappears by
arranging the dynamics in such a way that it satisfies the condition of detailed balance, and the

appropriate Gibbs states become stationary. In that case we recover (in an unusual way) the

usual high-temperature expansion. In the light of the discussion that follows we emphasize
that this is as expected and is independent of the (an-)isotropy of the corresponding

Hamiltonian- the symmetry that we need is completely contained in the detailed balance

condition,

Secondly, as will become clear, an essential (necessary) ingredient in our analysis is the

anisotropy of the dynamics, All our arguments leading to long range correlations are based on

the fact that the systems we consider do not possess the full symmetry of the lattice.

Moreover, we will show that starting from the formal expansion for the stationary correlation

functions, any fully isotropic perturbation must have short range correlations. This is

consistent with the results of [10] for similar dynamics, but where it is not excluded to have

more than one particle per site.

Finally, it may still happen that by some other symmetry Q
"

0 even though the model does

not fit in one of the two classes described above. An example of this is presented at the end of

section 4 and it is found there that the correlations still have a power law decay with the
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direction dependence of an octopole field (instead of the quadrupole decay for the case

Q # 0).
The difference of our work with [9] lies in the details of the perturbation expansion, the

rigorous (but, admittedly, weak) results concerning the convergence and the thorough
analysis of the role of the anisotropy. We also add complete and explicit results for a specific
model and we find the possibility of octopole-like decay.

In the next section we define the model. Section 3 is devoted to the derivation of the

perturbation expansion. We can only show that it converges for small times, or, when the

perturbation is strictly finite, for all finite times. Still taking the formal t
- co limit, we discuss

in section 4 the presence of long range correlations in the stationary measure. The two points
function is studied term per term in the expamion, and we find that generically its decay is like

r~~, where r is the spatial separation, and dm 2. We emphasize the role of the anisotropy.
This behavior is explicitly calculated up to first order in the expansion for a specific
perturbation. In the Appendix we apply our formal expansion to the Kawasaki dynamics and

give this expansion more significance by recovering- without using the standard Gibbs

formalism- the well known high temperature expansion for the equilibrium correlation

functions.

2. The model.

We consider a stochastic time evolution for spins «(x)
=

± I, x e
Z~ in which the rates

c(x, y, «
) at which the spin at site x and y, ix y =

I are exchanged depend weakly on the

configuration at other sites in a finite neighboorhood of the bond (xy). For a finite volume

A
<

Z( the probability Pf(«) to find configuration
« e (- I, + ~ in A, say with periodic

boundary conditions, is govemed by the master equation

) PI(")
=

£ (c(x, y, «'YJ Pf("~~ c(x, y, «
) PI(«))

,

(2.I)

(xy)e A

where «~Y is the configuration obtained from
«

@fter exchanging the nearest neighbor sites

(xy) :

«~Y(z)
= « (z) if z # x

,
z # y

,

= « ~y) if z = x, (2.2)

=

«(x) if z = y.

The process «i, t m 0, in the infinite volume limit is conveniently defined via its generator L,

which on local functions f(«),
« e (- I, +1) ~ is defined by

Lf(«)
=

z c(x,Y, «) ~f(«~Y~ -f(«)) (2.3)

(.<y)

The sum in (2.3) is over nearest neighbor sites x, ye Z( ix y(
=

I, and of course

c(x, y, «)
=

c~y, x, «) m 0. Further assumptions on the rates must be imposed but their

formulation is postponed until after we have introduced some well known type of such

dynamics.
The simplest example corresponds to an infinite temperature Kawasaki dynamics, where

the rates satisfy the condition

~0(~, y, " )
" Co (X, y, W ~~ (2.4)
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Clearly, all Bemoulli measures with average spin («~)~
= m e [- I, + I ], are invariant for

this time evolution. Finite temperature Kawasaki dynamics have rates cp(x,y,«),
p m 0, satisfying the condition of detailed balance

cp (x, y, «
)

= cp (x, y, « ~Y~ exp (- p (H(«~Y~ H(«)))
,

(2.5)

where

H(«)
m

£ JA fl
«

(x) (2.6)

A xeA

is a local translation invariant Hamiltonian, I.e. (JA, AC Z~ finite are real numbers such

that JA
~ ~

=
JA, and J~

=
0 whenever the diameter of A is too large, say if diam (A ) m R. The

Gibbs-measures pp for (2.6) are then reversible measures for the dynamics, and we know

from equilibrium statistical mechanics how to express the correlation functions

( WA )
p m

fl «(x) dpp(«) (2.7)

as a convergent high temperature expansion around p
=

0. Of course, we may always add a

magnetic field term h3~«(x) to (2.6) and (2.5) remains verified. As in the case

p
=

0, there is at least a one parameter family of Gibbs measures corresponding to different

magnetizations, which are invariant for the dynamics. They are the so called canonical Gibbs

measures, see [11] for a further discussion.

We are interested in dynamics with rates not satisfying (2.5) for any local Hamiltonian. We

therefore look to generic perturbations of the infinite temperature dynamics, having constant

rates co(x, y, «
)

=
The perturbed process is then assumed to have rates

2

c (x, Y, « )
=

i + z qA (x, Y) «A
,

(2.8)

A

where WA m
fl «(x). The coefficients (qA(x, y)) must be taken so that the rates (2.8) are

xeA

non-negative, local and bounded functions of the configuration
«

(see (2.12) and (2.13)). We

also assume that the rates are even : qA(x, y)
=

0 whenever the number of elements in A,

(A (, is odd. Translation invariance is imposed by the condition that

~A(X, Y)
" ~A

+
a(X + ~, Y + ~) (2.~)

for any a e
Z~. Finally, we assume that the model is reflection symmetric over all d coordinate

axes, I.e. if (e~)~
are the unit vectors in Z( then

~0~ A(°, ea')
"

~A(°, ea') If
£Y # £Y'

,

and

qo~ A(0, ea)
=

qA(0, e«)
,

« =

i,
,

d, (2,io)

where

@~Am ((xi,..,-x~,..,x~):x= (xi,..,x~,..,x~)eA).

Let

q~Bm~ £ (q~xy~B(x,y)-q~AB(x,y)) (2.ii)

j.<y)
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with « A »
the symmetric difference between sets, and A~Y is obtained from A by exchanging

the labels of the sites (xy). We further require that

q~~ =
0 if diam (A AB )

m
R, (2.12)

and

q~~ w y for all A, B (2.13)

for certain constants R
~ co and y « I. There is no a priori information on the stationary

measures. We try therefore to use y as an expansion parameter and set up a formal

perturbation theory.
In order not to loose oneself in the notations for the most general model it is good to keep

in mind the following simple example which we will take up again at the end of section 4. The

model is two dimensional and the exchange rates are for
a =

1, 2 given by

C(x, x + e~, «
)

= exp
(- p~jH(«~'~~~~) H(«)j (2.14)

for « Hamiltonian »

H(«)
=

2 £ [Ki «(x) «(x + ei) + K~ «(x) «(x + e~)] (2.15)

x

Here pi, p
~ are small and if they are both equal to some p, then (2.14) satisfies the condition

of detailed balance (2.5). The main problem this paper investigates might be summarized by
the question, what happens to the stationary correlations if pi # p~.

3. The expansion.
The unperturbed process corresponds to the simple symmetric exclusion process. The main

tool in its analysis is the self-duality [7]. In this case, the generator (2.3) is

Lo f(«)=( £ jf(«xY~-f(«)j. (3.i)

(~y)

If we define for any finite A
<

Z( the function D (A,
«

)
m

fl
«

(x)
m WA, then it is easy to

xe A

check that Lo D is the same both when it acts on A and on «, I.e.

Lo D(A, « =

£ (D(A~(
« ) D (A, «

)) (3.2)

(<Y)

We therefore consider the so called dual process A(t), t m0, on the finite subsets of

Z( with generator

Lo f (A )
=

£ f (A
~Y~

f (A
,

(3. 3)
~

jxy)

and let pi(A,B) be the corresponding transition probability, I.e. the probability that a

collection of random walkers starting from the sites in A and subject only to a hard core

interaction, end up in the set B at time t. Obviously, pi (A, B ) is zero unless A
=

B (, and

formally,

~.

lmj
£ dt~Pi(A, B) -Pi(A~l B))

=
3~,B (3.4)

xy o
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is one if A
=

B and zero otherwise. From (3,2) one derives the duality relation :

Et(D(A, WA)
=

dP («) zPi(A, B D (B, « ), (3.5)

where Et denotes the expectation in the simple symmetric exclusion process started from the

measure p.

Consider now the perturbed process with generator (2.3) L
=

Lo + Li and let I denote the

expectation with respect to the product of the Arprocess (with generator Lo) and the

«rprocess (with generator L). Lo commutes with L and since Lo D(A, « )
=

Lo D(A,
«

)

~ljD(Ai-w "s)I
"

ljLi D(Ai-s, "s)1 (3.6)

By integrating (3.6) overs s from 0 to t we get

E"lD(A,
«

Al
"

£pi(A, B ) p ID (B,
«

)j +

s

i

+ ds £ pi ~(A, B ) E"[Lj D (B, «~)]
,

(3.7)
o B

with E" the expectation in the perturbed «i-process with initial measure p.

Suppose the perturbed process with rates (2.8) has as initial state p the Bemoulli measure

with magnetization («~)~
=

0. Then, from (3.7), the time evolved spin-spin correlations

satisfy the equation

ii(«~)
=

3~ j + ds £ pi ~(A, B) v~(B) (3.8)
o B

with

v~(B)
m

(Lj D (B,
«

and from (2,8), (2,11),

Us(B)
=

,i («BXY- «B) lC(x, Y, «
)

~

=

z qBc I WC1~ (3.9)

c

Substituting (3.9) into (3.8) we can iterate to obtain

(«Al
i

=

z VI (t)
,

(3. lo)

where V$(t) WE AJ,
and

VI (t)
=

ids z Pi -s(A, B qBc Vt~
,

n » (3.I1)

B,c

The first question is to see when (3.10), (3.ll) defines a convergent expansion for

~"A)1'
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PROPOSITION I. If tyR
<

I, then (3.10)-(3. II) 4bfines a convergent expansion for the time

evolved correlations. For fixed time t, («~ ) is of the order y
~ 'i

y small.

Proof: By locality, see (2.12),

£ pj(A, B ) q~c =

0 if A
m

C + R (3.12)

B

Therefore, by induction from (3.ll)

V( (t)
=

0 whenever A
m

nR (3.13)

On the other hand, from (2.13) :

[Vj(t)[ «ty if (A] «R. (3.14)

Assuming that for some n m1

V(~~(s)[
«

y~~~ R~~~s~~~, (3.15)

we have from (3.13) that

iii'~(~)
~

~S(N~l') (l'~ ~~ ~ S~ ~) ~
l'~ ~~ ~~ (~.l~)

0

so that (3.10) converges for yRt
<

I.

By construction this series satisfies the evolution equations (3.8).

PROPOSITION 2. If

sup £ (q~~
m x < co

,

(3.17)
A B

then (3.10)-(3.ll) converges for all times t < co.

Proof: Since the perturbation is finite, it follows from sinfilar estimates as above that

and we are done.
Note

that ondition
(3.17)

requires
the to be trictly finite in the sense that

c(x, y, «) #1/2 for only a finite number of bonds

invariance and we do not consider this case
ere any further.

(«~)
=

(
V$ (3.19)

"

n=o

where V$
w

3 ~j,

Vi
m

£ G (A, B ) q ~c
V)~

,
n m (3.20)

s, c

and

i£ G (A, B ) f(B)
m

lim £ p~(A, B ) f(B) ds. (3.21)

s
itm 0 s
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There are of course many problems with (3.19)-(3.21). Since we cannot control the

expansion (3,10) for every finite time, not only is the 1ilnit t I
co purely formal, but we have

no convergence result for (3.19). On the other hand, we have two additional results that may
indicate that (3.19) is meaningful at least in some respects.

First, we argue that the series is well defined termwise due to the special form of the

coefficients q~c. They reflect the symmetry and the conservation law present in the dynamics.
More generally, the question is whether the limit (3.21) exists for functions f of the form

f(B)
=

£ qBc Kc (3.22)

c

If we assume that the coefficients Kc in (3.22) are such that for all numbers N
=

1, 2,..,

Q~(N, f)
m

£ £ xl f(B)
< co

,
a =

I,
,

d (3.23)

B: is =N xe s

then, f(B) is a « quadrupole » ;

£ f(B)
=

0

B is =N

£ £ x~ f(B)
=

0

B; B =N xeB

£ £ x~ x~> f(B)
=

Q~(N, f) 3~,
~,

(3.24)
B-18 =N xes

Properties (3.23), (3.24) are probably sufficient for Gf to be defined by Gf(A)m
£ G (A, B f(B) but we have no proof for general sets A. We now show how it can be done

s

in the case where A
=

(0,x) consists of at most two sites. From (3.4) Gf((0,x) )m
V(x) can be found as the unique solution of the equation

£ (Gf ( (0, x)Y~) Gf ( (0, x ))
=

f (0, x)
,

(3.25)

or,

~~

~

z da (v(x) + 3x,ov(ea))
= p (x), (3.26)

with boundary conditions V(x)
-

0 as (x(
- co, In (3,26), A~g (x)

w
g(x + e~) +

g(x e~) 2 g(x) is the discrete Laplacian in the direction
a

and p (x)
=

f( (0, x) is a

quadrupole. Using the properties (3,23), (3.24), we have that

P (X)
=

~ ~~ ~

dk e'~~ z I cos k~ X
«

(k)

for some x~ (k) bounded at k
=

0. This will be derived explicitly in section 4, equation (4.7).
Here, it suffices to note that substituting the above expression in (3.26) allows to find a well

defined solution V(x).
A second argument yielding substance to the formal expansion (3.17)-(3.19) is that it is

meaningful for certain dynamics on which we have detailed information about the stationary

measures. We tum therefore to the Kawasaki dynamics defined in (2.5) for which the Gibbs

measures are reversible. In the Appendix we derive the usual high temperature expansion for
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the equilibrium correlations without using any properties of the corresponding Gibbs

measures but fully relying on our formal expansion (3.19). We thus find how to use the

dynamical « syInmetry » (2.5) to simplify each term in the expansion to get a strictly local

function.

4. Long range correlations.

In the Appendix we show that the formal perturbation expansion around the infinite

temperature dynamics reproduces the strictly local high temperature expansion in the case of

detailed balance dynamics. Generic perturbations are not expected to satisfy such a condition.

Here we investigate what the behavior is of the two points function as predicted from each

term in the expansion, for such a generic perturbation. Each term V(o,~j, nml,

x e
Z( in the expansion (3.19) satisfies the equation (3.26) with

P (x)
m

z ( Q j
o, xi

(Y, z ) Q j
o, xi Y~

(Y, z ) (4. i )
(Yzi

and

Q~ (Y, Z)
"

£ ~A AB
(Y, Z ) i'~

B

The translation invariance of the model, (2.9), implies that

Qi (Y, Z )
"

Qi
+

a(Y + ~, Z + ~ ) (4.2)

for any as
Z( and by reflection summetry (2.10),

Qi (°,
e a)

"
Qi

A
(°, e~ (4.3)

As a consequence, (4.I) can be rewritten as

P(~)
"

i
(Q(0,-xj (0,~a)~ Q)0,x+e~j(0,~a)+Q(0,xj (0,~a) ~Q)0,-x+e~j(0,~a))~

d

£ A~ 3~ oQ)0
e

j (0, e~) (4.4)

a =1
' ~

The behavior of Q( o,~j
(0, e~) as (x(

- co depends on the (n I )-th order correlation

functions Vii
~j,

for fixed sets A around the origin. Indeed, if (x(
m

R, then

Q
o, xi

(0, ea =

£ qj oj ~~
(0, ea ) VI I(

xi
(4.5)

~

First consider the situation where the V$j(
~j are quasi-local in the sense that they decay at

least exponentially fast to zero as ix
- co. That is certainly verified for n =

I. Then, this also

holds for p (x). Taking Fourier transforms, k
=

(kj,..
,

k
~,..,

k ~) e [- gr, gr ]~,

4a (k)
"

£ Q(
0, xi

(0, ~a ) C'~~, (4.6)

x

WC get

d

> (k)
=

z P (X) e'~
=

z ( I cos k~ ) Xa (k) (4.7)
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where

(1 e~'~~) 4a(k) + (i e'~~) 4a(- k)
~ ~~ ~~ ~~ ~~'~« " (i cos k~)

+ i°'ear '~"

is analytic at k
=

0. One can first find the nearest neighbor correlation functions to equal

V)o,
~ j =

£ (T~ ~)~~ M~
,

(4.9)
~

y i

Where T~ is the inverse of the matrix T given by

I _;~
(l cos k~)

T~~
«

3~~ +
~

Me ~ (4.10)
(2 gr) £ (I cos k~,)

and

£ (1 cos k~) X« (k)

M~
m ~

dk e~'~~ ~ (4. II)
(2

gr ) 2 £ (cos k~ 1)

Equation (3.26) is then solved by putting ia(k)
m

Xa(k) V)o
~

j to obtain the n-th
2

a

order structure function as

£ (1 cos k~) g~(k)

S~(k)
=

£ Vj
o,xj

e'~~
=

~ ~4 i~~

x

£ (I cos k~)

Hence, if the system is isotropic, I«(k)=I(k) for all
a =

I, .,d, then S~(k)
=

f(k) is analytic at k=0, and the two points function V(o,~j decays to zero as

ix
- co at least exponentially fast. We thus see that the locality of the correlation functions

at order
n I in the expansion, is reproduced, at least for the two points functions, at order n,

f we assume that the system has the full summetry of the lattice. In particular this is true in

d
=

I. This is consistent with [10], where it is also the case that an isotropic perturbation of an

infinite temperature dynamics still gives rise to short range spatial correlations in the

stationary state. If however the x~(k) are not equal, then S~(k) is not analytic at

k
=

0. So, even if at order n I the correlations are strictly local, e-g- n =

I, anisotropic
perturbations may lead to long range stationary correlations at order n. From (4.12), the two

points function then decays as

~2
V(o~j m£b]

~,
(x( -co, (4.13)

a

(X( ~

for some constants b].

Note that anisotropy is certainly not sufficient to produce this weak decay. It may for

example happen that x~(k)
=

2 S~(k) 2 V)o
~ j.

As an illustration, suppose that

Qj
o,~j =

J(x e~ ) J(x) + J(e~)13~,~~ 30, ~j
,

(4.14)
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with J(x) strictly local, reflection symmetric, J(0) =0, and having Fourier transform

)(k). Then, x~(k)
=

4 )(k) 4J(e~) and V(o,~j
=

2 J(x), no matter whether J(x) is

isotropic or not. This in fact is the scenario for a detailed balance dynamics, see (A24).
However, generic anisotropy does not satisfy such relations. The simplest example is the

multiple temperature model of [9] which we announced in (2.14). Choose p~ close to zero,

a =

I,.., d, and let the exchange rates be given by

c(x,x + ea, «) w( (i -(paiH(«~'~+~a) H(«)1) (4.15)

The « energy »

H(«)
m

£ J(x y) «(x) «~y) (4.16)

is parametrized by the local functions J(x) as in (4.14). If all p~
=

p, then (4.16) is the

expansion of the detailed balance exchange rates (2.5), (2.14) or (Al), up to first order in p.

Now, (4.14) has to be replaced for n =
I by

Q[ 0,x) " ~( 0,x)
(°, ~a)

"

pa iJ(X ea) J(X)i + pa J(~a)(3x,e~ 3x,0) (4.1?)

As a consequence, X« (k)
=

4 p
~

[)(k)
+ J(e~ )] and correspondingly f~ (k) in (4.12) must

depend on a
whenever the p~ are not all equal. In d

=
2 with nearest neighbor coupling

J(x)
=

Kj(3~
~,

+ 3~
~~

+ K~(3~
~~

+ 3~
~~) ,

(4.18)

we find, after doing the integrals (4.9)-(4.ll),

)o~j =(pi+P2)Kj+~~ ~~((4gr-18+~~)Ki+
'' W-2

gr

+
(-2gr+12- ~~

K~) mvi
ar

V)o ~~j =
(pi + P2) K~ +

~~ ~~
(2 ar

12 +
~~

Kj +
W-2 gr

+
(-4

gr +18
~~

K~) m
V~. (4.19)

W

Therefore, the

f~(k)
=

4 p ~[Kj cos ki + K~ cos k~] + 2 p
~

K~ V~, a =

1, 2 (4.20)

are explicitly determined. Inverse Fourier transforming (4.12) gives

p K V
V)o~j =2p~J(x)+ £ ~fi-4

A~I(x)+

«=1,2
~ ~

+

~ ~
~ [Kj hi (I (x ej ) + I (x + ei )) + K~ hi (I(x e~) + I (x + e~))] (4.21)

2

where

1(x)
« ~

dk ~°~ ~ ~ (4.22)
(2 gr

) l (1/2) [cos kj + cos k~]
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is the potential kernel for simple random walk on the plane. We immediately verify from

(4.21) that if pi
=

p~
=

p, then V) o,~j =
2 pJ(x). If pi # p~, then the asymptotic behavior

can be derived from

~
jxj xii

~~~~~~ ~~~~~~ ? (xj
+ x])2 '

~~ ~ " ~~'~~~

Hence, as (x(
- co,

i ( ii (0) f~(0) ) (xl xi)
~'( °, Xl ~ g~ (~2 ~ ~2)2

~~'~~~

l 2

and

ii (0) i~(0)
=

~)-/
(P

i
P~)(Ki + K~) (4.25)

(4.24) is the typical quadrupole field-like decay predicted in (4.14). Note that if

Kj
=

K~
m

K, then (4.25) is zero but the two points function still decays as a power : in this

case,

i')0,x) "2fl21°(3x,el~ ~x,-el~~x,e2~~x,-e2)

+ (PI fl2) l°hi~(X) ~(fll fl2) l°hl~x,0

12
xl

+
xl 6 xl xi

m--(pi-p~)K
,

(x(-co, (4.26)
'~

(4+X~)~

has the long distance behavior of an octopole field. We thus get always long range correlations

for this two temperature model provided that pi # p~.
Summarizing, we find that the correct induction hypotheses on the V(jj,

n m I must be

that their decay, as (x(
- co, is not slower than described in (4.14). flu (k) is no longer

necessarily analytic at k
=

0 but the derivation of (4.13) remains meaningful since the

corresponding f~ (k) are then still bounded near k
=

0. Generic anisotropy then gives rise to

the power law decay (4.14) also for the next order in the expansion.
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Appendix.

Derivation of the high temperature expansion da Kawasaki dynandcs.

We choose the rates c(x, y, «) of the form

c(x, y, « )
=

~P (p (H(«x~ H(«))) (Al)

with

*(z)
=

e~~'~ +(z), + (z)
=

+(- z) (A2)
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We can assume that P(0)
=

and that P(z) is analytic around z =
0

P (z)
=

bi z~ (A3)I
f o, even

Other cases, as for the Metropolis rates where P(z)
=

e~ ~' '~, can be treated via uniform

approximation.
We then have that the derivatives of 4l(z) at z =

0 satisfy the following relations : if

~P ~~)(0)
m a~, then

(~ i )~ ~n "

(
~n k

(A4)

and

(~ l)~ £ an-k (~)
"

i an-k (~ ~~
,

0 Sm Sn (2~5)
~~ ~~

(A4) is an immediate consequence of ~P(z)
=

e~~ ~P(- z). As for (A5), we note that from

(A2) and (A3)

~f
ak ~

z hi ~ (Z~)iz
1<2

(A6)

so that (A5) is equivalent to

(_ i )n
d~ (

~n k (m
d~ ("f ~n k (n m ~~~~

k o

~
z 1/2

~
k 0

~
z 1<2

for all f
even and 0 mm « n. But this is obvious because the function

~

i n-m i m i m i n-m£(z)
m

(- I) (z (z + (z (z + (A8)
2 2 2 2

is odd.

Since we want to obtain an expansion in p, we have to separate the different orders in p as

they appear in the rates and define

~~ (X, Y)
"

~
~i I fl (~A~ ~A)Y) (2~~)IR.AAf=Ar~l

qic
m

z (qixy~c (x, y) qi~c (x, y))
,

f
=

1, 2, (Rio)

xy)

so that

c(x, Y, «
)

=

i + £ £ q( (x, y) «~ l. (Al i)
~

i A

The expansion (3.19) now has the form

(«A)~
"

(
V$ (A12)

n=o

with

V$
m

~£ £ G (A, B ) qjB~ VI,
n m I (Al 3)

=~

B,c

and V$
=

3~j.



682 JOURNAL DE PHYSIQUE I M 5

We start by computing the first order term

Vj
=

£ G (A, B ) q j~
s

=

£ G (A, B ) £ (J~ J~xy) (A14)

s (~y)

so that by (3.4) Lo V(
=

Lo JA. Using the boundary condition V(
-

0 as diam (A
- co, we

conclude that V( =J~. We will repeatedly use this argument in the derivation of the

following.

PROPOSITION 3
~

V$
=

~/ £ fl J~ (Al 5)
~'

At A. AA
n

A r

~

It is clear that we thus get a converging high temperature expansion for fl small, with

exponential decay of spin-spin correlations.

Proof.- By induction, assume that

pk kV(=~ £ flJ~, lwkwn-1. (A16)
~'

AIR.. AAk=A r=1
~

k
=

I was computed above. A straightforward calculation gives

~
n-f

_~ ~ p~~ £ jjJ~ £ I (n~~
)]

~~
£ G (A, B qic VC

~ i ~ ~

Aj, An r =1
~

oYl f ~

( Al 7)

'~

x (g~i(Ai,
,

A n~ ~~~
~~ ~~~' '~ ~~~

~

where, for m =
0,.., n,

gy~ (Aj,
,

A ~)
m

G (A, A (YA.. AA (YAA~~
j

A.. AA ~) (A18)

Hence,

p n )n n

~~
~

~~
~~

Al,
~A

n

~l ~~ ~) ~~~~ ~~
~~ ~

~ ~~ ~~~ ~~
~~ ~

~
~

+ z (, an -k

() £ fl JA, £ (gin (Al,
,

A n) g10 (Al,
,

A n))
=~

AI,

nr~l

jay>

~
p ~ n n -1 ~~

~ ~~
Aj,

A

n
r I

~'m~j m! (n m )I
I g im (A

j, ,

A )

xyj

~

X ((-1)~ £ (~) an-k i (~ ~'~
~n-kl(l~l~)~o =~

and we use (A4) and (A5) to conclude that

pn n pn n

V$
= ~

(- l)~ a~ £ fl JA + q
[I (-1)~ an] I fl JA

~'
AjA AAn"Ar=1

' ~'
AIR..AAn"Ar=1

~

p n n

= q
£ fl JA (A20)

~'
AI A.. AA

n
A r

~
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The local character of each of the terms Vi can be understood directly from the detailed

balance condition. It implies that for each bond (xy) separately, we must have that

(c(x, y, «
)(«Axy- WA))

=

0 (A21)

or, using (Al I), for each order n m I,

n £ £ (~~~Y~B(X, Y) ~~ h~(X, y)) V~
"

~A ~1°A'Y (2~22)

k o B

for some (K~ ). Assume inductively that Vi
=

0 whenever the diameter of the set B is larger

than kR, 0
w n I, as we know is certainly the case for k

=
0, 1. Then (A.22) has the unique

solution K~
=

V$ by imposing the boundary condition KA
-

0 as diam (A)
- co. (A22)

implies that V$
=

0 whenever diam (A) mnR. In fact, put

n -1

Q~ (X, Y)
"

£ £ ~~ h~(X, Y) i'~, (2~2~)

k o B

so that

QixY(X, Y) Qi(X, Y)
"

Vi VixY, (3.48)

and let (x(I),..,x (r)) be a sequence of nearest neighbor sites (x(s)x(s+ I)),

s
=

I,
,

r I, such that x(I) e A, x(s) J A for s =
2,..

,
r I, and diam (A~(~~~~~~) m

nR.

Then

Vi
=

VI V$x~i)x~2)+ V(x(1)x~2) V$x<i)x<3) + + V$x~i)x<r-i) V$x<i)x<r)

=
Q (x~i)x<2)(x(I ), x(2)) Q (x(I ), x(2) + Q (x<1)x~3)(x(I), x(3)) Q (x~i)x<2)

+ + Q $x<i)x~r)(x(r I ), x(r)) Q(x~i)x<r- i)(x(r I ), x(r)) (A24)

gives the solution of (A22).
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