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Rkswnk. Nous 6tudions la dynamique du front de croissance d'un corps pur en pr6sence de

cin6tique d'interface non instantan6e dans la limite de grandes surfusions. Le front plan est trouv6

itre stable au-dessus d'une surfusion critique A~ (m I ). Pour A
< A~ le front est instable vis-I-vis

des perturbations de petit vecteur d'onde, 0 <k
<

ko, off ko s'annule exactement I la valeur

critique A~. Nous montrons que la dynamique du front est d6crite dans la r6gion critique par une

Equation aux d6riv6es partielles de type Kuramoto-Sivashinsky [3, 4]. Nous avons trouv6 des

solutions stationnaires de cette kquation dans l'intervalle (0, ko) et btudib leur stabilitb vis-I-vis de

toute perturbation infinitbsimale. Il sort de notre analyse que parmi la famille continue de

solutions dans l'intervalle (0, ko), seule une bande trds 6troite est stable. Nos estimations laissent

penser que le cristal liquide n6matique [19] et/ou le cristal
« colonnaire » [20] devraient permettre

l'accds exp6rimental aux « grandes » surfusions. Ils devraient constituer par cons6quent de bons

candidats pour l'6tude expbrimentale de ce rbgime off une vari6t6 de comportements, tels que
l'ordre, le chaos temporel, et la turbulence... devrait se manifester.

Abstract. The front dynamics during the growth of a pure substance in the large undercooling
limit including interface kinetics is analy2ed. There exists a critical dimensionless undercooling

A~ (m I ) above which a planar front is linearly stable. For A
< A~ the planar front is unstable

against short wavenurnbers k's perturbations, 0 <k<ko, where ko vanishes at the critical

undercooling A~. Close to criticality the interface dynamics is govemed by a partial differential

equation of the Kuramoto-Sivashinsky [3, 4] type. We have investigated steady-state periodic
solutions of this equation in the range (0, k o) and analy2ed their full linear stability. It is found

that among the continuous family of solutions with wavenumbers lying in the interval

(0, ko), the stable ones exist only in a narrow region of this interval. From our estimates it seems

that the nematic crystal [19] and/or the columnar liquid crystal [20] should allow experimental

access to the « large supercooling regime. They should therefore constitute good candidates on

which to perform experiments in this regime where a rich dynamics, including order, temporal
chaos, and turbulence..., is expected.
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Place Jussieu, 75005 Pads, France.

(**) Permanem address I-P- Bardin Institute for Ferrous Metals, Moscow 107005, U.S.S.R.



586 JOURNAL DE PHYSIQUE I M 4

1. Introduction.

Crystal growth provides us with fascinating examples of free boundary pattern-forming
systems. This subject has known during the last decade an increasing amount of both

experimental and theoretical interest. One of the extensively studied issue is that of velocity
selection and side branching activity in dendritic growth ill. The problem tumed out to

involve a subtle solvability mechanism, associated with the singular nature of the capillary
perturbation. Most of the progress has been achieved in the small undercooling regime. There

the planar front is always unstable, the interfaci shape is dendritic. However as the

undercooling increases, surface kinetics can became of great importance. The question thus

arises of whether kinetics may become decisive at large dimensionless undercooling
(A

~
l ). It is known that in the absence of kinetics, for example, neither a planar front nor an

Ivantsov parabola (in the absence of capillary) constitutes a steady solution of the growth
equations when A

~
l.

In this paper We analyze interface dynamics in the large superc@oling limit. It is known that

for A
~

l the growth equations support a planar front solution moving steadily at a velocity

u
=

W(A I ), Where W is a constant which is proportional to the kinetic coefficient (see
below). The transition from a dendritic to a planar front structure was discussed in a recent

work by Brener and Temkin [2]. Specifically it was shown that dendritic solutions exist below

a supercooling A~ (~ l). The planar front solution, which exists at A
~

l becomes stable

above a critical undercooling A~ ~ A~. It has been conjectured [2] that the solidification front

should assume a periodic structure for undercoolings A such that A~ <
A

< A~. Our goal is to

focus on the planar front transition. We analyze the stability of the front and find that it

undergoes a morphological instability at a critical wavenumb£t ko which vanishes exactly at

the undercooling A~. Following Sivashinsky [3] we extract from the full growth equations, a

partial differential equation that govems the front dynamics close to A
= A~. Our equation is

of the Kuramoto-Sivashinsky [3, 4] type. We should mention that this is not the first time that

a such treatment is used in the context of crystal growth. The first application can be traced

back to Sivashinsky [5] who considered the interface instability in directional solidification of

a binary alloy in the limit o_f a small partition coefficient. This limit provides, indeed, a small

value (compared to the characteristic scale which is the inverse of the diffusion length) for the

bifurcation wavenumber, which is the generic situation where one should resort to an

expansion I la Sivashinsky [4]. In the small partition coefficient [5] limit the front dynamics is

described by an equation somehow similar to the Kuramoto-Sivashinsky (KS) equation with a

damping term ~proportional to the interface position). A similar situation is obtained near

the so-called absolute stability limit (the planar front is stable above this limit even for a

vanishingly small thermal gradient) predicted by Mullins and Sekerka [6] where the

bifurcation wavenumber becomes small (note that by definition near the absolute limit the

thermal gradie>j is small). Novick-Cohen [7] included interface kinetics and a nonequilibrium
partition coef6cient in the analysis. Her equation is of Kuramoto-Sivashinsky type with a

« damping » term, due to the thermal gradient, which reduces to a pure KS equation in the

zero gradient limit. This is the limit of free growth we are considering here (in fact we assume

a constant miscibility gap while Novick-Cohen [7] considered a non constant and a

nonequilibrium gap).
Up to this point we will be largely repeating previous analyses [5, 7J by putting them in the

context of the growth from a supercooled melt. The KS equation has also been derived in

other contexts and numerous analytical and numerical investigations were devoted to it [8].
This equation admits [8], among other solutions, two stationary solutions which are called the

« cellular » and strange solutions (see below). These stationary solutions were computed
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by a forward time-dependent scheme [8]. We will compute them here using a stationary
scheme. The stability of the « cellular » solution was first reported by Cohen et al. [9] using a

direct integration of the KS equation. This solution is found to be unstable against large
wavelength fluctuations [9]. The domain of stability of the cellular solution is very narrow.

Using a multiscale analysis Frisch et al. [10] have extracted the soft » modes from the KS

equation. They brought out the viscoelastic character of the instability and confirmed (with a

better accuracy) the result reported by Cohen et al. [9]. Here we will perform a systematic
stability analysis based on the Floquet-Bloch theorem. This method is powerfull if one is only

interested in the stability of stationary solutions against all types of perturbations. We have

confirmed the Cohen et al. [9] result with an accuracy as good as that of Frisch et al. [10].
A result found here for the first time, to our knowledge, is that the strange » solution is

also unstable against large wavelength fluctuations. The domain of stability of this solution is

extremely narrow (much narrower than that of the cellular solution) so that it provides a

quasi-perfect wavelength selection. This is an unusual example where the stability leads to a

collapse of the band of possible wavelengths to, practically, a unique solution. Note that

besides the above mentioned solutions the KS equation admits other solution as for example
oscillatory solutions [8]. It seems to us natural, as a first step, to pay attention to stationary
solutions. This should not be taken to mean, however, that these are the only relevant

solutions in real experiments.
Another result to be reported here is that the solution which moves with the maximum

speed is marginally stable. Similar results were found in other contexts [11] and where

selection was postulated (or sometimes found by a direct computation of some model

equations [12]) to obey a marginal stability criterion.

Up to now [7] kinetic effects were considered as academic exercises. The main reason was

that we, somehow, naively believed that kinetics would be important only, say, for growth
velocities comparable to molecular speeds (in the rough part of the interface). This would,
accordingly, have implied huge supercoolings, far beyond any experimental scope. Of course

the absence of a complete microscopic description constitutes a major handicap for precise
information on kinetics. Recently, however, directional solidification experiments [13] on

impure CBr~ have revealed an important recession of the planar front as a function of the

growth speed even for growth speeds as small as a few ~Lm/s. This is a signature of a non

instantaneous kinetic effect. It is not obvious (at least to us) to have a clear argument on the

domain of parameters where kinetics is decisive. Instead, we take measured values for the

kinetic coefficient (from planar front recessions) and test directly their importance. There is

also some numerical evidence [14] for the decisive Pole of kinetics in real experiments. In

particular dendrites in impure CBr~ are likely selected by kinetics anisotropy [14] rather than

by interface energy anisotropy.
We will comment here on pattem selection and discuss the plausibility of experimental

access to the large supercooling limit. From interface recessions measurements we evaluate an

effective kinetic coefficient. Our estimates indicate that transparent materials should give

access to this regime. They should therefore offer interesting examples of free boundary
pattern-forming systems on which to study the large variety of front dynamics, going from

order to turbulence.

2. Basic equations.

We consider the following situation a pure solid is growing at the expense of its melt in the z-

direction. The temperature far ahead of the solidification front is maintained at a constant

value T~
<

T~, where T~ is the melting temperature. We consider the one sided model. This

corresponds to a situation where diffusion in the solid phase is negligibly small. Of course a
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one sided model is quantitatively accurate only when the solid grows from a supersaturated
solution. But it is easy to show that the main conclusions are not at all altered by the one sided

diffusion assumption. We will come back to this point in the last section. We consider one

dimensional deformations only and assume that the system is infinite in the x-direction (on the

scale of all wavelengths of interest). Let f denote the temperature field in the liquid phase
(tilded variables refer to the physical ones). In the frame moving at a constant speed u,

undetermined for the moment, the heat diffusion equation reads

DV~f=-uf~+ fi, (la)

with the condition

f
"

Tw at f
"

W ('b)

Differentiations are subscripted and D is the heat diffusivity of the liquid. At the liquid-solid
interface the energy conservation equation takes the form

Lu~
= x

~~, (2)
@fi

where L is the latent heat of fusion per unit volume, x the thermal conductivity, connected to

the diffusivity D by the relation CD
= x, where c is the heat capacity per unit volume. Finally

u~ is the normal interface velocity. We assume that u~ is linear in the departure from

equilibrium so that the modified Gibbs-Thomson equation reads

f=T~(I+d -~,
(3)

L p

where y is the surface tension and p a phenomenological kinetic coefficient (y and p are taken

to be isotropic), and k is the interface curvature taken to be positive for a concave solid

i~
K =

,(i + fi)~~~

where f
=

I(I, I) is the instantaneous front position. Equations (1)-(3) support a planar front

solution characterized by

I(f)
=

T~ +
L e~i

,

(4)

where u represents the growth velocity of the planar front, and is defined as

u
=

w(a -1), (5)

with W
=

~~
and A

=

~~~~ ~~~
is the dimensionless undercooling. Before studying the

c L

linear stability of this solution we would like first to rewrite the basic equations in a

dimensionless form. For that purpose we rescale the lengths and time by
~~

and
u

4 D c( T T~)

j
respectively, while the dimensionless temperature is defined as u =

In terms

u
L

of the new variables equation (I) becomes

V~u
=

2 u
~

+ ui
,

(6)
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and at the boundary (z
=

f(x, t)) the mass conservation equation and the Gibbs-Thomson

condition (Eqs. (2), (3)) transform into

2 +
f

=
(uz f~u~) (7)

u =
A + dK $ (2 +

I )(I +
fj)~ ~'~ (8)

d=cT~yu/2DL~ is the dimensionless capillary length. Here f(x,t) represents the

dimensionless front position measured from z =

0 in the frame of reference moving at a

velocity u given by equation (5) as a function of the undercooling. The linear stability analysis
of the planar front is performed by looking for perturbations of the planar interface in the

form f(x, t) e"~+~~~, k is the wavenumber of the fluctuation and
w

is the amplification
(attenuation) rate that we want to determine. A linearization of the growth equations (6)-(8)

leads to a set of two homogeneous linear algebraic equations for the interface and the

temperature field amplitudej~ If this set is to have a non trivial solution its determinant should

vanish. This condition results in the following dispersion relation :

(2-dk~-I )(1+ ~)=w
+4. (9)

2W

It is easy to show that setting Re (w)
=

0 in equation (9) implies automatically that

Im (w) =0. This means that when looking for neutral modes we can simply set

w =

0 in equation (9). Let ko denote the wavenumber of a neutral mode, w(ko)
=

0. It

follows from equation (9) that

(I) For d< there exist two solutions, namely
2

ko
=

~
(l

fi)) ~~~ (10a)

and

ko
=

0. (10b)

(it) For d
~

there exists only one solution, ko
=

0.
2

In other words w <0 for all k's when d~l/2, whereas w~0 in the interval

0
<

k
<

ko when d <1/2. The critical situation occurs at d
=

1/2. Using the definitions of d

and u we obtain that this happens at a critical dimensionless undercooling A~ given by

~~ ~~p~)y ~~~~

Note that A~ depends on the material parameters only and is always greater that unity.

A~ defines a critical undercooling above which the planar front is stable. Note that for

p
- w (no kinetics) A~ -

I, which expresses the energy conservation in the free kinetics case.

When the undercooling A decreases down to A~ the planar front becomes first unstable at a

critical wavenumber ko
=

0. We will take advantage of this fact to extract from the full

equations of growth the only part that is relevant to the front dynamics in the vicinity of the

critical undercooling A~. This can be accomplished by means of the Sivashinsky [3] singular
expansion.
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3. Derivation of the front equation near A
= A~.

Let e
be a small parameter measuring the deviation from the critical undercooling

A~, and defined as :

A
= A~ (A~ I )

e. (12)

The linear theory is a first step in a stability analysis. Moreover it is a necessary starting point
for the definition of the nonlinear problem. The first essential step in the development of the

nonlinear analysis consists in specifying the characteristic time and length scales in the vicinity
of threshold. This can be done by investigating the dispersion relation (Eq. (9)) in the critical

region. Close to A~ equation (6) yields :

w =

~
(l ~( lk~+ higher orders. (13)

ko

It follows from equation (10a) that ko~ /. Using this result we immediately see from

equation (13) that
w ~

e~. This dictates us that the characteristic length and time scale as

e~ ~'~ and e~ ~ respectively. Our analysis follows now that of Sivashinsky. We rescale the space

and time variables as follows

X=x/, T=e~t, Z=z, f(x,t)=eH(X,T), (14)

where H(X, T) is of order e°. The functions H and
u are expanded in powers of

e

u =
uo(Z) + euj(X, Z, T ) + (lsa)

H
=

Ho (X, T) + eHj (X, T) + (lsb)

Now the scheme is to insert (15) together with (14) into the basic equations (6)-(8) and deduce

successively higher contributions in an expansion in powers of
e.

From now on the boundary
conditions at the liquid-solid interface are understood to be evaluated at Z

=

0.

(I) Order e°:

To order e° equation (9) provides

uozz+2uoz= 0, (16a)

where No is subject to the boundary conditions (Eqs. (7)-(8)) at Z
=

0

uoz =
2 (16b)

No =1. (16c)

These equations are solved by

uo(Z)
=

e~~~, (17)

where use has been made of the condition uo(Z
=

w )
=

0. Expression (17) is nothing but the

planar front solution (Eq. (4)).

(it) Order
e

To order
e

equations (6)-(8) read

uizz+2ujz=0 (18a)

Uiz+2HoUozz= ° (18b)

ui+Houoz=0. (18c)
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The solution of this system is found to be :

ui =
2 Ho e~~~ (19)

Ho(X, T) is undetermined at this order.

(iii) Ordkr e~.

To this order u~ satisfies the inhomogeneous bulk equation (6)

u~ zz + 2 u2 z = u i xx
~~~~~

The contributions coming from the interface boundary conditions (7)-(8) are

££2

"2 Z + ~f0 "1ZZ + ~fl "0 ZZ + "0 ZZZ "

° (2°b)

"2+H~u~~~~f~
H( ~f

102+-u
OXX

2 ~~~~i (20~

The solution of this system consists of a sum of a homogeneous and a particular solution

u~ = (2 H(
+ 2 Hi +'~°~~ e~~~

+ ZHoxx e~~~ (21)
2

Still at this order neither Ho nor Hi are known. The really interesting result appears in the

next order of the expansion. The solvability condition becomes a constraint for Ho(X, T)
which is nothing but the nonlinear equation for Ho that we want to determine.

(iv) Order e~:

To this order the bulk equation (Eq. (6)) takes the form

u3zz+2u~z=uj~-u~xx. (22a)

Expanding the mass conservation equation (Eq. (7)) at the liquid-solid interface we obtain

~f2 ~f3

"3 Z + ~f0 U2 ZZ + ~fI "I ZZ + ~f2 "0 ZZ + U I ZZZ + ~f0 ~fl "0 ZZZ +
~

"0 ZZZZ ~

=
Ho

x ui x
H~

~
(22b)

Doing the same with the Gibbs-Thomson condition we find

~£2 ~£3
"3+1f0"22+lfl"IZ+1f2"02+@"IZZ+1f01fl"OZZ+~"OZZZ"

The solution of equation (22a) contains a contribution of the form C (X, T ) e~ ~ ~ obtained by
solving the homogeneous equation, plus a particular solution. Inserting this solution into

equations (22b, c), we obtain two equations for the unknowns Ho, Hi, H~ and C. One of this

equation serves to express, for example, C as a function of the other unknowns. To obtain the

sought equation for Ho we proceed as follows. We multiply equation (22c) by 2 and add it to

equation (22b). After this operation the terms proportional to C, Hi, H~ cancell exactly. The

remaining part is a nonlinear equation for the interface profile

F~
=

Fxx Fxxxx +
Fi, (23)
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where F and
r are rescaled variables, related to the original ones by

F
=

~Ho,
T =

T (24)

Equation (23j is free of any parameter. It is known as the Kuramoto-Sivashinsky [3, 4]
equation. We may mention that in the usual Kuramoto-Sivashinsky equation the coefficient

multiplying F( is negative. This is not relevant since equation (23) reduces to the standard

form by simply replacing F by F. Note that the equation derived by Novick-Cohen [7] near

the absolute stability limit reduces formally to equation (23) if one takes the limit of a

vanishing thermal gradient. This result is a direct consequence of the Novick-Cohen [7J study.
Note that the linear dispersion relation which follows from equation (23) takes now the

form 11
=

K~(I K~/2), which is simply the on~~fven
in equation (13), where 11 and K are

related to w
and k by 11

=
uw Is ~ Wand K

=

k/
e respectively. In terms of the new variables

(11,K) the unstable domain of wavenumbers belongs to (0, Kom /). The Kuramoto-

Sivashinsky (KS) equation has been extensively studied in the last few years [8]. As stated

above this equation is free of any parameter and plays a role similar to the complex amplitude
equation at the lower critical velocity for a slowly moving flat interface to become unstable in

directional solidification. The linear stability result indicates that the characteristic

wavenumber is given by K
=

Ko
=

/. The associated wavelength is Ao
= or

/. The KS

equation has been investigated as a function of r
=

L/Ao, where L is the system size. r is the

so-called «aspect ratio» (a denomination having likely its origin from Rayleigh-Bbnard
problem). As r increases the dynamics may evolve from order to low dimensional temporal
chaos and to an increasingly complex dynamics [8].

Here we are interested in ordered solutions in an extended system. As a first step we will

concentrate on steady-solutions only. The periodic solutions we will investigate were obtained

before [15] from a forward time-dependent integration of the KS equation for sufficiently
small aspect ratios (r

<
9 ). Such calculations are of course relevant for pattern formation in a

confined system. For extended systems (r » I ) the dynamical study of the KS is a formidable

task, being due essentially to the exponential growth of the characteristic relaxation time as a

function of r. In practice it is very hard to distinguish between a transient chaotic motion that

will eventually stop before an ordered state takes place, and a completely permanent chaotic

regime. Therefore the characterization, in particular, of periodic solutions and their stability

can hardly be accomplished in practice from a forward time-dependent calculation if the

system size is large enough. An alternative way, which is much more efficient, consists in

solving the steady-state problem for periodic solutions and treat their full linear stability
analysis by means of Floquet-Bloch theorem. This allows us to capture all types of

instabilities. It tums out here that the most dangerous modes are the longwavelength ones

which can be captured in a full dynamical integration only for large sizes. Of course our

methodology does not tell us about metastability (if any) which may be relevant in the

complete evolution of the dynamical system (see comments below). The present analysis is

thought of as the first essential step in any stability problem and will allow us to give a

complete stability diagram of periodic solutions in an extended system govemed by equation
(23).

We find here two types of steady-solutions with different ranges of wavenumbers. Unlike

directional solidification problem [16] for example, the range of stable solutions is extremely

narrow, so that this would correspond in practice to a quasi-perfect wavelength selection. It is

not however possible to decide (at least for the authors) which of these two states would be

selected if the system is in an ordered regime. We will comment on this point later.
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4. Steady-state periodic solutions.

It is easy to show that equation (23) does not admit a steady-state periodic solution

(F~
=

0). Indeed let A denote the periodicity of the solution. Integration of equation (23)

over a period leads to

~
lF)

=

(F() ~0, (25)

where I... ) signifies the mean value over a period. Equation (25) means that the mean

interface position is permanently drifting. This indicates that steady-state solutions

Fo(X), if they are to exist, should move with a constant speed pin the z-direction

v =

(F(x)
,

(26)

where Fo obeys the following nonlinear differential equation

v =

Fo
xx

Fo
XxXx +

F(x. (27)
2

This represents a jump pin the growth speed of that corrugated interface as compared with

the speed of the plane interface. We look for solutions of equation (27) in the form

I
w

Fo
=

jj at cos
(fKX (28)

I i

Inserting equation (28) into (27), collecting terms proportional to cos
(fKX)

we obtain a set

of nonlinear algebraic equations for the coefficients at. For all f's but f ~0 this set reads

l~~~°~-i) f~ai+~fn(f-n)a~ai ~-~fn(n+f)a~a~~i+
2

n=i n=1

~
~

~~~~ ~~
~ ~

'

~~~~

where m = ~
for odd values off, and m =

~
for even values. It is understood here

2

that for m =

0 the first sum in equation (29) should be set to zero. For f
=

0 equation (27)
provides a relation between the velocity

v
and the Fourier coefficients :

J~2 n w

" ~ ~
z (~~n)~ (3°)

The set of equations (29) are solved by means of Newton-Raphson method. Before going
further we should note that our equation (27) is free of any parameter (e.g. control

parameter...). The set of algebraic equations is parametrized by the basic wavenumber K

only. In the interval (0, Ko
=

/), where the planar front solution is linearly unstable, we

have found two types of solutions. These are the « cellular » and « strange » solutions, which

have been discovered previously [8]. They are displayed in figure I.

We have studied the linear stability of these solutions, denoted from now on by
Fo(x), by looking for solutions of equation (23) in the form

F(X,
r =

Fo(X) + 1~
(X) e~~

,

(31)
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4

2

Fo

Fo o

-2

a) b)

Fig. I. Steady-state periodic solutions. (a)
« Cellular state. (b) « Strange state ».

where ~ is a small deviation about Fo. Inserting (31) into (27) and neglecting all but linear

terms, we obtain :

«~ =-~xx-j~xxxx+2Fox~x. (32)

Equation (32) is linear and homogeneous with a periodic coefficient Foy(Foy(X+ A)
=

Fo x(X), with A
=

2 or/lt~. This problem is similar to that of an electron moving in a periodic
potential. The general form of the eigenfunction follows from Floquet-Bloch theorem. We

write it as

~ (x)
=

*( c~ cos ((Q + mK x)
,

(33)

where Q is a real number which belongs to the first Brillouin zone, -K/2wQ«
K/2. This means that we are using a reduced zone representation. Inserting equation (33) into

(32) and equating similar terms on both sides, we obtain

I"-(Q+mK)2 j_(Q+mK)2jj
2

~m~

~w ~w

=-

jj a~nK(Q+(m-n)K)c~_~+ £ a~nK(Q+ (m+n)K)c~~~. (34)

n=-w n=-w

This is a set of linear equations for the coefficients c~. The eigenvalue tr(Q) is obtained by
imposing a vanishing determinant. As the above system is of infinite dimension there exists in

principle an infinite number of roots to the characteristic equation. Since we are interested in

the location of a primary instability only, we focus attention on the branches
tr

whose real

parts are close to the instability threshold. To investigate the roots tr(Q) we first truncate

equation (34) at a finite value m. We have checked the stability of our results by varying the

value of
m. We have computed the spectrum tr(Q) for the two types of steady-solutions

shown in figure I. Figure 2 shows the range of stability for these two solutions as a function of

r
=

A/Ao, where A
=

2 or/K, is the actual periodicity, and Ao
=

2 or/Ko the wavelength of the
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neutral mode (« the stability length»). The interval of stability of the «cellular» solution

(Fig. la) is found to be

1,195
«

r
«

1.305 (35a)

The stable domain of « strange » solutions is

4.22
<

r
<

4.23 (35b)

These two intervals are very narrow. In particular the one of strange » solutions (Fig. lb)

can hardly be distinguished from a line in figure 2. This result is to be contrasted with that

found in directional solidification of binary alloys at moderate speed where the band of stable

solutions has appreciable width [16]. The domain of stability (Eq. (35a)) was determined first

by Cohen et al. [9] and later by Frisch et al. [10] with a better accuracy. Frisch et al. [10] have

in addition demonstrated the viscoelastic nature of the instability. It is, to our knowledge, the

first time, however, that the stability of the strange solution is performed.

n

0 2 3 4 5 6

r ~-

Fig. 2. The stability diagram. The full line represents the amplification rate of the perturbation of the

planar front. The dashed area represents the domain of stable cellular solutions. The domain of stability
of strange solutions is so small so that it appears as a thick vertical line.

Note that in the present problem the stability analysis leads practically to a wavelength
selection of the periodic structure. Of course the question of whether a system would select a

« cellular state rather than a strange one remains however unclear. We do not have at

our disposal any criterion to answer a such question. If a variational formulation were valid,

we could expect that the state of the system would be the one which minimizes the

appropriate « free energy » (one state is stable and the other metastable). This denomination

is, however, somehow misleading in the framework of deterministic dynamics. Indeed the

final state depends on initial conditions only and can not be decided by simply looking to the

free energy » (if any). Of course fluctuations may change a such conclusion. As it is not clear

whether fluctuations play an important role in nonequilibrium systems, we can simply test

their importance in numerical experiments. Therefore whether fluctuations are important or

not in real experiments can be checked a posteriori by confronting numerical results to

experimental observations. We will return to the question of an experimental realization that

is capable of exploring the large supercooling limit at the end of this paper.
The above discussion does not exhaust by far all scenarios of pattern selection. We can

indeed imagine a competition of the « cellular
» and strange » solutions when they coexist as
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two domains. We know from the Landau-Ginzburg equation describing a subcritical steady-
bifurcation that in the coexistence domain the stable solution always invades the metastable

one. If the bifurcation is of Hopf type [17], however, one phase may move steadily in the

other one as a stable soliton (this is due to nonvariational effects). Another question of

interest is to consider two coexisting semi-infinite domains. A natural question thus arises

will one domain grow at the expense of the other ? If so what determines the growth direction

and the « wall velocity. We should note that the velocity in the z direction of the « cellular

state, which lies near the maximum value (Fig. 3), is significantly bigger than that of the

« strange » solution (not shown on the Fig.). It is interesting to see whether this difference

may be relevant in the competition between the two states. We are planning to deal with these

questions in the near future.

Another feature confirmed (see also Frisch et al. [10]) here for the cellular solution, which

holds for the strange one also, is that the edges of the stable domains in figure 2 are limited by
longwavelength propagative instabilities, which are to be contrasted with the usual Eckhaus

diffusive instabilities. This feature results from the fact that in addition to the usual

translational symmetry (which causes large scale phase modulations be dangerous, as

expressed by the Eckhaus result), there exists in the present case another group of symmetry.
To see this we first derive equation (23) with respect to X and write the resulting equation as

g~
=

gyy gyyyy/2 + ggy, where g
=

Fy/2, and then notice that this equation is invariant

under a Galilean transformation: g-g+c and X- X+ CT, where c is a constant.

Consequently the relevant modes for the dynamics are the phase of the pattern plus an

additive mode, associated with large scales Galilean distortions. This means that we have a

co-dimension 2 bifurcation problem with a strong coupling of modes that is capable of

transforming the usual diffusive character, inherent to pure phase instabilities, into a

propagative one.

Finally it is worthrnentioning that the cellular solution (Fig. la) which moves at the

maximum speed
v

(Fig. 3) is marginally stable. This is not accidental but is a general property
of equation (23). Indeed the linearized equation (32) has, besides the usual translational

mode, another null eigen-mode Fo~ at the maximum speed
v. To see this we simply need to

differentiate the static equation (27) with respect to A

VA ~ 1~0 XXA (1~0 XXXXA + 21~0 X1~0
VA

0.000 0.500 1.000 1.500 2.000 2.500

r=A/A o

Fig. 3. The speed of cellular solutions as a function of the reduced wavelength r
=

A/Ao. The dashed

area refers to the stable band.
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and then recognize that the r.h.s. of this equation is identical to that of equation (32) in which

~ is replaced by Fo
~,

It follows immediately that tr =
0 at the point where v~ =

0. This result

looks interesting when we know that in some contexts [11] the marginal stability has been

considered as decisive, regarding pattern selection, or even demonstrated in model equations

as the usual Landau-Ginzburg one [12]. Vfhether the fact that the marginal stability in the

present case has any consequence on pattem selection is a question which needs further

investigations and is beyond the scope of this paper. We would like however to make the

following conjecture : if the system is initially
«

prepared with a localized perturbation in an

unstable situation it will likely, in view of numerical information [15], develop a turbulent

regime. Even when the pattern happens to be linearly stable, the chaotic regions would not

decay rapidly into a regular pattem. The ordering is, in some sense, inhibited by the

propagation of disturbances, since, as mentioned above, the stable domain (Fig. 2) is limited

by propagative instabilities.

5. Discussions.

In this section we would like to discuss the possibilities for the experimental realization of

large undercoolings A
=

A~ ~
l. We found in section 2 that the critical undercooling above

which a planar front is stable is given by (Eq. (ll))

$
=

+
~~

(36)
fl T~ y

A~ is a function of the material parameters only. In general one of the major handicap for a

rough estimate of A~ lies to the ignorance of the kinetic coefficient p. In the absence of a

complete microscopic description, we will take estimated values in the literature, although

some procedures for obtaining this coefficient remain questionable. We will first consider a

metallic alloy. This is nickel for which rapid solidification experiments have been recently
performed [18]. The parameters entering the r-h-s- of equation (36) are D

=

6.5 x 10 ~~ m~/s,
L

=

2.58 x
10~ J/m~, T~

=

726 K, y =

0.464 J/m~, p
=

1.6 m/s K. We then obtain A~ >
14.

Using the definition of A we find that the required temperature T~ for the planar front to be

stable is given by

Tw=Tm-)As.

The value of the heat capacity for Ni is c=6.5x10~J/m~. This amounts to

T~
=

3 795 K (! ). This means that we would need to cool the liquid far below the absolute

zero temperature (which is quite amusing). It seems from this estimate that it would be

impossible to explore the high supercooling regime in a pure material.

The question naturally arises of whether there exists any possibility to observe the planar
front transition. We show below that this would likely be the case with an impure material

where the front dynamics is mainly controlled by the (much slower) mass diffusion. This is the

so-called isothermal growth, where the heat generated at the liquid-solid interface is

instantaneously conducted away so that the growth is limited by the slow variable, namely the

concentration of impurities. It is a simple matter to rewrite the basic equations relevant to the

present situation. The main difference is that here the dimensionless supercooling A is defined

as

T~ mc~ T~
A

=
(37)
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where m is the liquidus slope, c~ the concentration of impurities far ahead of the solidification

front, AC the equilibrium miscibility gap and T~ is the actual temperature of the environment

in which the solid grows (Fig. 4). The critical dimensionless undercooling above which the

planar front is stable is given by

D~ L
~~ ~

pT~ y' ~~~~

which is exactly the same A~ for the pure material (Eq. (36)), with D substituted by

D~, the mass diffusion coefficient. We should mention that equation (38) is derived in the

constant miscibility gap approximation. It can be checked that relaxing this assumption
induces only minor changes. As seen from equation (38) and the definition of A (Eq. (37)) the

advantage for considering a situation where the growth is limited by impurities diffusion is

double. Firstly the fact that D~ is much smaller than D(D~/D
~

10~ ~-10~~) causes a drastic

reduction (by a factor equal to D/D~) of the critical dimensionless undercooling A~. Secondly
the physical undercooling is measured on the scale m AC, which may be much smaller than

L/c, which constitutes the appropriate undercooling scale for a pure substance. For the case of

Ni, we find, by taking D~~10~~m~/s, A~-l~10~~. This means that the required

temperature T~ is very close below the solidus line (Fig. 4). Such undercoolings are, by now,

likely accessible in standard experiments. Of course how difficult is the realization of an

undercooling A~ l depends on the nature of impurities (which act quantitatively on the

phase diagram and therefore on the magnitude of
m AC) and obviously on their amount. More

precisely the smaller m AC the easiest the access to the large supercooling limit. We should

however point out that when m AC becomes smaller and smaller the disregard of heat

diffusion may become questionable. We give below the condition under which our

assumption is expected to be valid.

Obviously the question arises of whether a material as nickel is an appropriate candidate for

the experimental investigation of the front dynamics. This is unfortunately far from being the

case. The main reason is that Ni, as most of metals, does not allow an in situ analysis, as do

organic materials which have been extremely helpful in the progress of our understanding of

pattern formation in crystal growth. We are therefore naturally led to ask whether transparent
materials may constitute good candidates for experimental studies. We will first concentrate

on the experimental setup of Simon and Libchaber [19] who considered recently the growth of

T

L

T-mcco

s
L+s

)--
Ac

c~ c~/k~ c

Fig. 4.-A schematic phase diagram of the coexistence of the liquid and solid phases. AC
=

c~(I/k~ I is the miscibility gap and k~ the equilibrium partition coefficient.
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a nematic crystal with a small amount of impurities. This feature strongly favours, together
with the relatively small diffusion coefficient, the experimental exploration of the large
supercooling limit. Indeed the values of the material parameters entering equation (38) are

T~
=

313 K, D~
=

2 x 10~ ~~ m~/s, L
=

2 x
10~ J/m~, y =

9.4 x
10~~ J/m~. Finally the kinetic

coefficient p is evaluated from the planar front recession as a function of the velocity [21].

From a rough estimate we find that p 10~ ~ m/s K. This value follows from writing that the

planar front recession is equal to u/p G where G is the thermal gradient and is typically of the

order of103 K/m, while the recession is of about 10-3
m for a velocity of 10-~ m/s. It follows

then that A~m10~. This value seems to be big enough. However, as stated above this

undercooling is measured in m AC scale which is rather small. In Simon and Libchaber's [19]
experiment

m AC
m

0.01. Consequently the required temperature is of the order of a degree
below the solidus line. More precisely (see Fig. 4) T~ mc~ T~

=
A~ m AC

m
I K. This is a

rather small difference whose experimental realization should be feasible. We should

however insist on the fact that the estimated value for p must be taken with a certain caution.

Indeed a recession of the front may also result from the motion of the thermal profile with the

pulling velocity, due to the thermal inertia. An accurate estimate of the kinetic coefficient

should be provided by measuring the actual surface temperature. We hope that this can be

carried out in the near future and therefore make our predictions more precise. Note that the

above value for p seems very small. Its determination follows, as stated above, from the front

recession. If the recession is overestimated, which may likely be the case due to thermal

inertia, then the actual value of p would be larger. If a such is the case then the required
supercooling A~ would be even smaller than the one evaluated above.

Another point we would like to mention is that the homogeneous nucleation of the nematic

crystal in the undercooled isotrope may be so pronounced to cause additional difficulties. The

main reason lies to the rather low value of the surface tension. Another promising candidate is

the columnar liquid crystal used by Oswald et al. [20] where large values of the supercooling
(A

m
0.6 ) were achieved. A rough estimate [22] of the critical undercooling for the planar

front to be stable provides A~ I
m

I. We believe that a more purified material should give

access to a such undercooling.
Before concluding we would like to specify the conditions under which the growth can be

considered as isothermal. For that purpose we should evaluate the real interface temperature
for a thin film, by taking into account the release of latent heat, and compare it to that

imposed extemally. For a one dimensional problem, treated here, the physical temperature T

obeys the following equation

j T T~
Tj

=
T~~

~ ,

(39)
D h

where h is a phenomenological parameter, having the dimension of a length, and

characterizes the heat exchange between the sample and the environment. Considering a

symmetric heat diffusion in both phases we can show [23] that the actual interface

temperature 7~ for a planar front is given by

lj
=

T~ + ~~
~ ~ ~~~,

(40)
c(1 + 4 D /h u )

where u is the interface velocity (Eq. (5)). The condition for the solidification process to be

isothermal is that the actual interface temperature be very close to the imposed one,

T~, namely

(-T~
ml. (41)

Tm-mew-Tw
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Using the definition of A (Eq. (37)) we can write condition (41) as

( T~
« (42)

For a sufficiently efficient heat exchange, D~/h~u~ » I (a situation which is always satisfied),
equation (42) leads to

~~~
« m AC A (43)

This gives a condition for the phenomenological parameter h for the isothermal condition to

be fulfilled. This parameter is related on the other hand to the relaxation time
r

of the thermal

profile measured on the sample when this one is immersed in an environment with a different

temperature. In other words measuring the instantaneous thermal profile from the initial time

up to a time when the sample reaches a thermal equilibrium with the reservoir » would give

access to the time
r

and via the relation r =

h~/D the phenomenological parameter can be

estimated. If one takes
r

m10s we find that equation (43) is always satisfied except for

extremely small values of m AC of the order of10-~.

Our major results can be summarized as follows. (I) We have shown that the front dynamics
in the large supercooling limit, where interface kinetics become important, is described by a

Kuramoto-Sivashinsky equation. This is the free growth version of the Novick-Cohen [7]
study. (ii) We have investigated steady-state solutions using a Newton-Raphson scheme and

treated their full linear stability for an extended system. It consists of a forward application of

the Floquet-Bloch theorem. We have found a drastic reduction of the band of possible
wavelengths. For the «strange» solution the collapse is more dramatic. Moreover the

cellular » solution with the maximum speed is marginally stable. This situation was met in

other contexts [11, 12]. But we have given to it here a general meaning. Our result on the

stability of cellular solutions is in agreement with previous investigations [9, 10]. (iii) We have

discussed the experimental feasibility of large supercoolings. It emerges from our calculations

that this regime can be accessible with a dilute binary mixture, where the growth is limited by
impurities diffusion. We believe that the nematic crystal used by Simon and Libchaber [19]
and/or the columnar liquid crystal used by Oswald et al. [20] are promising candidates to study
this regime.
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