
HAL Id: jpa-00246346
https://hal.science/jpa-00246346

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Symmetries and parametrization of the transfer matrix
in electronic quantum transport theory

Pier Mello, Jean-Louis Pichard

To cite this version:
Pier Mello, Jean-Louis Pichard. Symmetries and parametrization of the transfer matrix in electronic
quantum transport theory. Journal de Physique I, 1991, 1 (4), pp.493-513. �10.1051/jp1:1991148�.
�jpa-00246346�

https://hal.science/jpa-00246346
https://hal.archives-ouvertes.fr


J. Phys. I1 (1991) 493-513 AVRIL 1991, PAGE 493

Classification

Physics Abstracts

05.60 72,10

Symmetries and parametrization of the transfer matrix in

electronic quantum transport theory (*)

Pier A. Mello (**) and Jean-Louis Pichard

Instituto de Fisica, UNAM, Apartado Postal 20-364, 01000 Mbxico D.F.

Service de Physique du Solide et Rdsonance Magndtique, CEA, CEN-Saclay, 91191 Gif-sur-

Yvette Cedex, France

(Received 22 October 1990, accepted 20 December 1990)

Rks1Jmk. Nous analysons pour [es cas orthogonal, unitaire et symplectique, la structure de

l'espace oh est dbfinie la matrice de transfert multiplicative d'un diffiuseur dlastique I

N canaux. Nous ddcrivons cet espace I l'aide de N paramdtres radiaux, dont la conductance est

une fonction simple, et par deux matrices unitaires auxiliaires dont la structure ddpend de la Masse

d'universalitd.

Abstract. We analyze for the orthogonal, unitary and symplectic cases the structure of the

space where the multiplicative transfer matrix M of a multi-channel elastic scatterer is defined.

We parametrize this space with a set of radial parameters, which are related in a simple way to the

conductance of the ilastic scatterer, and with two auxiliary unitary matrices, whose structure

depends on the universality class.

1. Introduction.

The importance of basic symmetry considerations (time reversal symmetry and spin rotation

synunetry) has been appreciated for a long time in electronic quantum transport theory [I]. In

the absence of sufficient spin-orbit scattering, the spin-up and spin-down electronic gases are

decoupled in a non-interacting theory. One can then ignore the electronic spins, except for a

trivial twofold degeneracy which can be removed by an applied magnetic field B (Zeemann
splitting). A spinless-particle theory is then sufficient in order to describe quantum transport,
and two'cases

can occur pither the system is time reversal invariant (orthogonal case) or this

symmetry is removed by an ipplied magnetic field (unitary case). In the presence of strong
spin-orbit scattering, spin components are coupled and a spin-1/2-particle theory is then

necessary two cases can also occur : in the presence of time reversal symmetry one has the

symplectic case and the removal of this last symmetry by a magnetic field gives again the

unitary case.

The above classification in three cases was first introduced by Dyson [2] very generally for
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quantum mechanical ensembles and yields [I] three different renormalization group fl-

functions for electronic quantum transport. The importance of transitions between these

three cases is well understood for the weak-localization corrections in the metallic regime
(k~ I

~
l ), as well as for the magnitude of the universal conductance fluctuations, but has

been realized only very recently for the localized regime (k~ I
<

I ), where the magnitude of

the localization length is changed when a symmetry is broken [3].
Therefore, a theory where symmetry considerations are carefufly taken into account from

the beginning is of primary interest. Two random matrix approaches introducing maxhnum

entropy ensembles for the multiplicative transfer matrix M have been based on lids point of

view (see Refs. [4-6] for reviews). The first one [7-12] uses the parametrization of

M that we will demonstrate in this paper I.e.

where A is a diagonal, real, positive matrix and U and V are unitary matrices whose structure

depends on the universality class. The second one [13, 15] is based more specifically on the

matrix

X
=

[M~ M + (M~ M)~ ' 2]
,

(1.2)

which tums out to be diagonalizable as

X= V~ (~ ~
V. (1.3)

We note that the study of the parametrization (I.I), which is a natural generalization of

Bargamann's parametrization [16] of M for a many-channel system, gives us also the structure

of the eigenvectors of X. We recall that the interest of formulas (I.I) and (1.3) consists in

introducing the matrix A, whose diagonal elements (A~) are simply related to the two-probe
conductance [4] by

N

g
=

2 £
~

(l.4)

a=

~
a

In order to understand the effect of symmetry breaking, we have to know the structure of

the matrices U and V for the three universality cases. This win allow us to know in which a

priori matrix space M and X are defined for a given symmetry and how this space is either

enlarged or restricted when a basic symmetry is removed. A full description of the transition

between different universality classes would suppose a knowledge of how the probability
density of M (or lt~ diffuses from one space of definition to another, when a symmetry
breaking perturbation is applied. One could think, for instance, of applying a Brownian

motion model in order to describe this diffusion [17], but we think useful, as a first step, to

give in this work a careful and rigorous study of the three different spaces of definition of

M (or lt~, with the corresponding appropriate parametrization.
The parametrization demonstrated in the present paper was used without proof in some of

the earlier publications indicated above. Thus we first review the results that were used in

those references, both for the sake of completeness and to indicate more specifically the

statements that we want to prove or extend in the following sections.

Suppose that the disordered system is placed between two perfect leads : in the latter, the

quantized transverse states define N channels for propagating modes, so that the one-particle
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wave function is specified by 2 N or 4 N components, depending on whether the particle has

no spin or spin 1/2, respectively. The transfer matrix M relates the vector on the right of the

system with that on the left. The requirement of flux conservation and, in the absence of a

magnetic field, that of time-reversal symmetry, impose restrictions among the matrix

elements of M. The question then arises as to how one can write M in terms of independent
parameters.

Consider spinless particles. We write the wave function on the left and on the right of the

disordered system, respectively, as

ll'(X)
"

( ll'i(X)>
>

ll' N(X)) (1.5a)

ll"(x)
=

ll'i(x),..
,

ll' i(x)). (1.5b)

To be specific, suppose that the basic solutions in the perfect conductors are plane waves. The

n-th component can then be expressed as a linear combination of unit-flux plane waves

travelling to the right and to the left I.e.

ik~ x ik~ x

~'~ ~~~ ~~
(fi~ /~y~)1/2

~ ~~ (~
/~y~)1/2

~~'~~~

n n

The transfer matrix M relates the 2 N coefficients appearing in 1l'~(x) of (1.6a) with those

appearing in 1l'((x) of (1.6b) ; I.e.

C'
=

MC, (1.7)

where

C
=

,

C'
=

~
(l.8a, b)

M
= (~'

fl (1.8c)
Y 8

where a, b, a', b' are N-dimensional vectors and a, fl, y, 8, N x N matrices.

The requirement of flux conservation imposes on M the restriction

M3~ Ml
=

3~ (1.9a)

or, equivalently,

M~ 3~ M
=

3~ (1.9b)

where

~y
0

~
~0 (1.10)

is the 2 N-dimensional generalization of the usual Pauli matrix «~ l being the N x N unit

matrix. We thus see that the transfer matrices M satisfying flux conservation form the

pseudounitary group U(N, N) ; the number
v

of independent parameters is given by

v =
(2 N)~, (l.ll)
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just as for the unitary group U(2 N). As in references [14, 15], one can perforrn the unitary
transforrnation

P
=

U/ MUD, (1.12)

where

~£
=

t
~ / ~-

i I '

(1.13)

and show that the new matrices P satisfy the relation

P~ JP =J (1.14)

where

J
=

(° I (1.15)

If, in addition, the Hamiltonian goveming the system is invariant under the operation of time

reversal (the orthogonal case), our transfer matrices M must also satisfy the requirement

M* =3~M3~. (1.16)

It can be checked that the condition (1.16) implies that the P matrices of (1.12) must be real,

P
=

P*, (1.17)

so that (1.14) define the real sympletic group Sp(2 N, R), with

v'= N(2N+1) (1,18)

independent parameters.
In reference [12] it was indicated without proof that any M-matrix satisfying the flux-

conservation requirement (1.9) can be parameterized as (see (I.I))

M= ~~~~ ~~j (fi fi ~(2) ~

~
~

~ fi 0
u

(4)
U~ V

,

(1.19)

where u
~'~ (i

=

1,
...,

4 ) are arbitrary N x N unitary matrices and is a real, diagonal matrix

with non-negative elements Ai,..., A
~.

The T-symmetry requirement (1.16) imposes the additional constraints

~
(3)

~

(~ (i)~~
~

(4)
~ ~ (2)~ ~ (~ _~~~

In this latter case, u~'~ and u~~~ give rise to N~ parameters each, and to N additional ones, in

agreement with (1.18). For N
=

I, we get back Bargrnann's result [16].
In the absence of T-symmetry, (1.19) contains 4N~+ N parameters, N more than in

(I.I I). This is connected with the fact that, when all A~'s are non degenerate, the M of (1.19)
is insensitive to the transformation

U-UG, V-G ~'V, (1.21a)

G being the diagonal matrix

~_ [d
0 (121b)

0 d '
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with

~inj

0

d
=

,

(1.21c)
0

<n~
e

so that (1.21) could be used to eliminate N parameters in the u~~~ of (1.19).

The above are, basically, the results used in references [8-12]. Equations (1.19)-(1.21) are

the ones we shall be particularly interested in in what follows. The purpose of the next section

of the present paper is to give a proof of the parametrization (1.19), (1.20) : we start with the

orthogonal case, because the extra freedom (1.21) occurring in the unitary case is absent and,
in that sense, the analysis is a bit simpler. In section 3 we then study the unitary case : I.e., we

prove the parametrization of equation (1.19) and analyze the freedom (1.21) more closely.
Finally, extension to spin-1/2 particles- the sympletic case is dealt With in section 4.

2. The orthogonal case (Particles with no spin, satisfying the conditions of flux conservation

and T-symmewy).

The T-symmetry condition (I.16) implies that the transfer matrix M of (1.8c) can be Written as

M
= (~'

fl
~ ,

(2.I)
fl * a

While the requirement of flux conservation (1.9a) or (1.9b) imposes on a, fl the restrictions [8]

a a fl fl
=

l (2.2)

afl~= fla~, (2.3)

or

a~
a fl ~fl *

=

(2.4)

~yt p
~

pT ~~ (~ ~~
>

respectively.
The purpose of this section is to express in ternJs of independent parameters the most

general matrices a, fl that occur in (2.I) and satisfy the conditions (2.2)-(2.5). We write a, fl
in their « polar representation » [18]

a =

uiv (2.6)
fl

=

u' I' v' (2.7)

All the matrices occurring in (2.6), (2.7) are NXN: u, v, u', v' are unitary and
I, I'

are diagonal, real and positive (any phase appearing in I, I'
can be incorporated in u, v).

The diagonal matrix appearing in the polar representation is unique : for instance, I in (2.6)
contains the positive square root of the eigenvalues of the Hermitean matrix

h
= aa

1. (2.8)
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In contrast, the unitary matrices u, v are not unique : suppose that I has the structure (')

ii
i~~

0
I

=
(2.9)

o

fk Ink

k

where I~ is the n; xn; unit matrix, f;
are positive numbers and £ n; =

N; then the
~

i=I

transformation

u-ud, v-d ~'v, (2,10)

d having the structure

j
0

d
=

(2.ll)
0

u~

(u; (I
=

I,
...,

k ) are unitary n; x n; matrices), leaves
a

of (2.6) invariait
: this is so because d

of (2.ll) and I of (2.9) commute and hence

a =

uiv
-

udid
V

=

uiv (2.12)

If there is no degeneracy in (2.9) (I.e, n~ =

I, a =

I,
...,

N), then, in (2.I I), u~ =
exp (I#~)

and the nonuniqueness mentioned above is related to these N phases.
In any case, given one form of writing

a
(I.e. with one u, v in (2.6)), we ask what are the

most general u', v', I' of (2.7) that satisfy equations (2.2)-(2.5).
Substitution of (2.6) and (2.7) in (2.2)-(2.5) yields

~(2 ~l ~, (,2 ~,l j (~ j3)
~(y~,T (, ~,T ~, (, ~,~ T (~T (~~j ~)

yl f2
y

y,T f,2 y,* (~ j~)
yl f~l ~, (, y, y,T (, ~,T ~* (y* (~ ~~)

One solution to these equations is clearly

u'
= u, v'

=
v*, I' ~

=

i~ -1, (2.17)

which implies

a =

uiv (2. 18)

fl
= u I v* (2.19)

(j) The n, degenerate eigenvalues i~ may not appear next to each other as in (2.9), but scattered along
the diagonal ; however, one can always bring them together by means of a suitable permutation matrix

that can be incorporated in u, v. We shall thus keep the structure off
as in (2.9).
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Defining

I
=

fi (2.20)

we then have

~_ (u
0 (fi / V $),

(2.21)
° U* fi ,fi ° ~

which has the form of equation (1,19) with (1.20).
We should keep in mind that (2.17) is just one solution of (2.13)-(2,16) and by no means we

know whether any transfer matrix M can be written as in (2.21) (in the orthogonal case). We

now proceed to find the most general solution.

From equation (2.13) we have

(u'~ u) (i~ I (u'~ u)~
=

i'~ (2.22)

We apply the lemma of the Appendix, with p
=f~-I having the structure (2.9).

Equations (A7) and (A6) then give

I
=

P I P~ (2.23)

u'
=

ud/ P~, (2.24)

where dj has the structure (2.ll).
From equation (2.15) we have

(v'* vi ) (12 1) (v'* vi )t =1'2 (2.25)

We apply the lemma of the appendix; again, P takes
fi

into f',
as in (2.23).

Equation (A6) then gives

v'
=

Pd? v *

,

(2.26)

where d~ has the structure (2.ll).
We now substitute (2.23)-(2.26) in (2,14), with the result (which coincides with that

obtained upon substituting in (2.16))

d) df
=

d/ d?
w s =

s~, (2.27)

s being a unitary, symmetric matrix with the structure (2.ll).
Therefore, given

a
in the form (2.6), substitution of (2.23)-(2.27) in (2.7) and use of the fact

that di, d~ commute with f (see Eqs. (2.9) and (2.ll)) shows that the most general fl
satisfying (2.2)-(2.5) is

fl
= us

11
v* (2.28)

Any unitary and symmetric matrix s can be written as

s =

ww~, (2.29)

where w is unitary ; s and w have the structure (2.I I), so that they commute with f, which has

the structure (2.9). Then

p
=

(uw ) /0
(w t

v ) * (2.30)
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Now we can make use of the arbitrariness in the u, v of (2.6) explained riglit after (2.8) to

write
a as

a =

uiv
=

(uw) I(w~ v) (2.31)

Defining

u~'~
= uw, u ~~~

=

w~
v

,

I ~
=

l + A
,

(2.32)

we can write

M= U~~~ ° ~fi° fi (~~~~ ° (2.33)
0 u~~~* / fi 0 u~~~* '

which has precisely the structure found in (2.21), or (1.19) with (1.20).
In conclusion, we have proved that, in the orthogonal case, any transfer matrix M can be

written in the form (2.33).
We now inquire whether the decomposition (2.33) is unique. To answer this question we

need to kno~v whether there is a transformation of the type

u
~~~

- u
~'~

uo, u
~~~

-
u( u

~~~ (2.34)

that leaves M invariant. Clearly, this can only happen if uo and u( are of the form (2.I I) ; I.e.

u
~~~

- u
~~~ dj

,
u

~~~
-

d~ u
~~~ (2.35)

because then di, d~ commute with A of (2.33), which has the structure (2.9).
For M to remain invariant we need

di d~
=

(2.36)

di d?
=

1, (2.37)

which imply

di
=

df (2.38)

d~
=

d?
=

d). (2.39)

Therefore, if d has the form (2.ll) and is real and orthogonal, the transformation

u
~'

- u
~'~ d, u

~~~
-

d~
u

~~~ (2.40)

leaves M invariant. Therefore, the decomposition (2.33) has the arbitrariness expressed by
(2.40). In particular, f the A;'s are nondegenerate, the decomposition is unique.

3. The unitary case (Particles nith no spin, satisfying the condition of flux conservation).

We now drop the condition of T-symmetry used in the previous section.

The flux-conservation requirement (1.9a) or (1.9b) imposes on a, fl, y, 8 of (1.8c) the

restrictions

aa~ fill
=

l (3.1)
88~ yy~

=

(3.2)

a
y~

=
pa (3.3)
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or

a~a Y~ Y "

(3.4)
8~ 8 p p

=

(3.5)
a~ p

=

y~ 8 (3.6)

We write a, fl, y, 8 in their polar representation

a =

ufv
,

fl
=

u'f' v' (3.7a, b)

y =

x'm' y'
,

8
= xmy. (3.8a, b)

All the matrices occurring in (3.7), (3.8) are N x N u, v, u', v', x, y, x', y' are unitary and

I, I',
m, m' are diagonal, real and positive.

Substituting (3.7), (3.8) in (3.1)-(3.6) we get

ui~ u~ u'i'~ u'~
=

(3.9)
xm~x~ x'm'~x'~

=

(3.10)
uivy'~ m' x'~

=
u' I' v' y

mx~ (3.I I)

v~ i~
v

y'~ m'~ y'
=

(3.12)
ylm~y v'~ i'~ v'= (3.13)

v~ iu~u' I' v'
=

y'~ m'x'~
xmy (3.14)

Suppose we are given u,I,v,x,y. One solution (for u', f', v', x', m', y', m) of

equations (3.9)-(3.14) is clearly

u,
= u, x,

= x, v,
= y

,

y'
=

v (3. Isa> b> C> ~~

t,
=

fi,
m,

=

fi
,

m =

I
,

(3.ise> f> g)

which implies

a =

uiv
,

fl
= u I y (3.16)

y=x I v, 8 =xiy

and, with I
=

fi,

~ ju oj jwm fi
jv oj, (3.17)

0 x
,§ fi ° Y

which has the structure of equation (1,19).
At this stage of the analysis we do not know whether any transfer matrix can be written, in

the unitary case, as in (3.17). Thus we now look for the general solution.

From (3.9) we have

(U'~ U) (f~ I) (u'~ u)~
=

i'~ (3.18)

We apply the lemma of the Appendix, with p =

i~- I having the structure (2.9).

Equations (A7) and (A6) then give

I'
=

Pi /$ PI (3,19)

u'
=

ud P )
,

(3.20)
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where dj has the structure (2.ll).
From (3.12) we have

~, ~i ~t~ ~~~,i
~

~,~ ~~_~i~

We apply again the lemma of the Appendix, to get

m'
=

P~ I P) (3.22)

y'
=

P~ d~ v (3.23)

where d~ has the structure (2.ll).
From (3,10) and using (3.22) we have

(xi x, p~) t2(xt x, p~)t
=

m2 (3.24)

Again i~ has the structure (2.9). The lemma gives

m
=

P~ fP) (3.25)

and

x'
=

xP~ d~ P), (3.26)

where d~ has the structure (2.ll).
From (3,13) and using (3.19) and (3.25) we have

(P)v'y~ P~) f~(P)yv'~ Pi)
=

i~, (3.27)

so that

v'
=

Pi d~ Ply, (3.28)

where d~ has the structure (2.ll).
We now substitute (3.19)-(3.28) in (3.ll), with the result (which coincides with that

obtained upon substituting in (3.14))

d) d)
=

d) d~
m

do (3.29)

Summarizing, given u,
f, v, x, y, the most general solution of (3.9)-(3.14) for the remaining

matrices (to be contrasted with the particular solution (3,15)) is given by

u'=ud)P), x'=xP~d~P), v'=Pid~P)y, y'=P~d~v (3.30a,b,c,d)

I'=Pj/0P/, m'=P~/lP), m=P~fP), (3.30e,f,g)

with f having the structure (2.9) and di> d~, d~, d~ the structure (2,ll) satisfying (3.29).

With f
=

fi,
we can then write a, fl, y, 8 as

a = u
fi

v
,

fl
= u

fi do Ply (3.31a, b)

y =

xP~ d( fi
v

,

8
=

xP~ d( fi do P)
y (3.3 lc, d)
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If we define

u~'~
= u

,
u

~~~
=

v
,

u
~~~

=
xP~ d/

,
u

~~~
=

do Ply, (3.32)

We can finally write M as

~
~(1) ~ fi fi ~(2) ~

~~~ ~~~~~
0 u

~~~ / /$ 0 u
~~~ ~

which has preciiely the structure found in (3.17), or (1.19).

In conclusion, we have proved that, in the unitary case, any transfer matrix M can be written

in the form (3.33).
There only remains to study the uniqueness of the decomposition (3.33). Just as in the

previous section, we need to know whether there is a transformation

~(l)_ ~(l) ~(l>
~

(2>_ ~(2) ~(2>

~
(3)

_ ~
(3)

~
(3)

~
(4)

_ ~
(4)

~
(4) (3 3~)

that leaves a, fl, y, 8 invariant. Clearly this can only happen if u)'~, u)~~, uj~~, u)~~ are of the

form (2.ll) I.e.

~
(i)

_ ~
(i) ~(i)

~
~

(2)
_

~(2)
~

(2)
~ ~~

~
(3)

_ ~
(3) ~(3)

~
(4)

_
~ (4)

~
(4)

because then the d~'~ commute with A which has the structure (2.9).
Invariance of a, fl, y, 8 implies, respectively

d~'~ d~~~
=

(3.36a)
do) ~(4)

~ ~~ ~~~~
d(3) ~(2)

~ ~~ ~~~
d~~~d~~~

=
(3.36d)

Equations (3.36a, b) give

d(2) ~(4) ~(i)~t ~~ ~~ ~~

Equations (3.36c, d) give

d(2) ~(4) ( ~(3)~t ~~ ~~~~

Therefore

d(1)
~

~(3) ~ (2) ~(4) ~(i)~t ~~ ~~~

1.e., if

G
d 0

0 d
(3. 39)

(see Eq. (1.18)), with d having the structure (2,ll), then M
=

UrV remains invariant if

U-UG, V-G V. (3.40)
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Therefore, the decomposition (3.33) has the arbitrariness expressed by (3.40). In particular, f
the A;'s are nondegenerate,

,ni
0

d
=

,

(3.41)
0

e'~~

and even in that case the decomposition (3.33) is not unique. TMs has to be contrasted with the

uniqueness of the decomposition in the orthogonal case, when the A,'s are nondegenerate.

4. The symplectic case (Patticles with spin 1/2, satisfying the condition of flux conservation and

T-symmewy).

The coefficients appearing in equation (1.6) now have an extra index ± that specifies the spin
projection I-e-

aj~ -
-a(~

aj_- -a(_

aN~- -a(~

aN_- -a(_

(4.1)

bj~
-

-b(~

bj_
-

-b(_

b~
~

-
-b[

~

b~_- -b[_

The 4 N x 4 N transfer matrix M is defined as in (1.7), (1.8), where a and b now denote 2 N-

dimensional vectors.

a a

Time-reversal invariance implies that if is a solution, O is a solution too, O

b b

being the time-reversal operator

O
=

I«~ C. (4.2)

Here, C is the complex conjugation operator and the Pauli matrix «~ acts on the indices ±

introduced above. The consequence of T-symmetry, I.e. the equivalent of equation (1.16) is

now

M*
=

KMK~, (4.3)

where

K
=

~ (4.4)
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Here, k is the 2 N dimensional matrix

I«~ ~r
0 0

k
= = ,

(4.5)
0 0

i«~ «

where
«

is the 2 x 2 matrix

« =
I«~

= (~ (4.6)

The matrices K and k satisfy the relations

KK~
=

1 (4.7a)
kk~

=
,

(4.7b)

where I and I denote the 4 N and 2 N-dimensional unit matrix, repectively.
Equation (4.3) has the consequence that M has the structure

M
=

~'

~

fl
~j =

~'

,

(4.8)
kg * k ka * k Y

each block being 2 N x 2 N. Equation (4.8) is the extension of (2.I) for particles with spin
1/2.

Flux conservation is expressed again as in equations (1.9), where each matrix is now

4 N x 4 N. The consequence for a, fl (the parallel of Eqs. (2.2)-(2.5)) is now

a a fl fl
=

l (4.9)

akfl ~
=

flka ~ (4.10)

or

a~
a

-kfl~fl*k~=1 (4.ll)

a~fl =kfl~a*k~ (4.12)

Let n
=

2 N a, fl in (4.8) are then n x n
complex matrices, with a total of 4 n~ parameters.

Equations (4.9) and (4. lo) imply n~ and n(n + I ) real restrictions, respectively, so that the

total number
v

of independent parameters is

v =

2n~-n =2N(4N-1). (4.13)

According to reference [2], a unitary and self-dual S matrix with dimensionality D has

D(D -1)/2 parameters ; here D
=

4 N, thus giving the same result (4,13).
We now write a, fl in their polar representation, just as in (2.6), (2.7) I-e-

a =

uiv (4. 14)
fl

=

u'i'v', (4.15)

u,v,u',v' being 2Nx2N unitary matrices and I, I', diagonal, real and positive
2 N x 2 N matrices.

Just as in section 2, suppose u,f,v given. We ask for the most general u', I',
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v~ that satisfy (4.9)-(4.12) (it will turn out that I itself cannot be completely arbitrary).
Substituting (4.14), (4,15) in (4.9)-(4,12) we have

uf~ u~ u'f'~ u'~
=

(4.16)
ui (vkv'~) I' u'~

=

u' I'(v' kv~) iu~ (4.17)

v~ i~
v

(kv'~) i'~(v'* k~)
=

(4.18)

v~ f(u~ u') I' v'
=

(kv'~) I' u'~ u* f (v* k~) (4,19)

As before, we first construct a particular solution. We try

u'
=

uk, v'
=

v* k ~, (4.20)

which, substituted in (4.16)-(4,19), give

i~ ki'~ k~
=

(4.21)
k(it') k~

=

(11') (4.22)
i~ i'~

=
(4.23)

iki'
=

i'ki (4.24)

Consider the 2 N x 2N diagonal matrix p

Pi
p=

~

,

with p,=

~j+ ~
(4.25)

o Pi-

~

being 2 x 2 notice that

«p1
«~

kpk~
=

~

,

with «p
,

«~
= (~'~

~

,

(4.26)
o

0 p,
~

~ ~
~T

N

and

Pi"Pi

0

pkp'=
0

PN"P~r

with

» «».
=

1»,°»,+ ~ i ~'l
(4.27)

Using (4.25)-(4.27) in (4.21)-(4.24) we have

f)~ i)(
=

I
,

I )_ ii(
=

(4.28)

~i+ ~"+
~

~"- ~i- (4.29)
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I)~ i)(
=

I, I)_ I(~
=

l (4.30)

I;+ I)-
=

I)+ I;-
,

(4.31)

which imply

I,~ i;_, I)~
=

i)_ (4.32)

I, I' must be of the form

ii
ii 0

f
= w

fi (4.33)
o f~

f~

i~
f< ~

j

f' ~ (~ ~~)-~,
~ f'

fi~

f'
N

I.e., the I~, ii must be degenerate in pairs.
Our particular solution is thus

u'
=

uk, v'
=

v* k ~, f
=

fi, I'
=

/, (4.35)

so that a, fl, y, 8 of (4.8) are given by

a = u
fi

v fl
= u

/ (kv* k~) (4.36a, b)

y =

(ku* k ~) /
v

,

8
=

(ku* k ~) fi (kv * k~) (4.36c, d)

and the 4 N x 4 N transfer matrix M by

~'
~

ku~k~~
~~ ,,~~ ~

kv~k~~' ~~'~~~

Of course we have not proved that any transfer matrix can be written, in the symplectic case,

as in (4.37). We thus proceed to find the most general solution.

From equation (4.16) we
have

(u't u) (12 1) (ut u') =1'2 (4.38)

Generally speaking, suppose I has the structure (2.9). For instance, in the particular solution

studied above, equation (4.33), the i~'s
are degenerate in pairs and the various i~'s could also

be degenerate. Equations (4.38), (A7) and (A6) then give

I'
=

P I P~ (4.39)

u'
=

ud/ P~, (4.40)

where dj has the structure (2.ll).
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From equation (4.18) we have, similarly

(v'* k~v~ (i~ I (vkv'~)
=

i'~, (4.41)

so that the lemma gives

v'
=

Pd? v * k
,

(4.42)

d~ having again the structure (2.ll).
We now substitute (4.39), (4.40) and (4.42) in (4.17) and (4.19), obtaining, in both cases

d) dl
"

d/ d?
w a =

a~, (4.43)

a being a unitary, antisymmetric matrix with the block structure (2.ll). We now find an

important property of a. Let x be the matrix of eigenvectors and
v

that of the eigenvalues of

a I.e.

ax
=

xv (4.44)

Using a~
= a We then find

a(x~ ')~
=

(x- ')T
v

(4.45)

Therefore, if v; is an eigenvalue, v; is, too. If the dimensionality of a were odd, at least one

of its eigenvalues would have to vanish, contrary to the fact that all the eigenvalues of a

unitary matrix must have unit magnitude. Therefore, a can only have even dimensionality,
which is what happens in our case (2 N x 2 N). Since a has the block structure (2.ll), the

same conclusion applies to each block. Therefore, all of the n; of (2.9) and (2.I I) must be

even. The i~'s of (2.9) are thus at least degenerate in pairs and the I,'s, in tum, may be

degenerate themselves.

We can now write, a,fl,y,8 of (4.8) using (4.14), (4,15), (4.40)-(4.43) and with
I

=

fi,
as

a = u
fi

v fl
= u

fi (au * k~) (4.46a, b)

y =

(ku* a~ ) fi
v 8

=
ku* fi

v * k~ (4.46c, d)

Notice that equations (4.36) are the particular case of equations (4.46) when a =
k. We now

find the most general form of
a.

Suppose first that all the pairs of A~ are different. Then the matrix a contains

2 x 2 blocks a, (see Eq. (2.ll)) I-e-

aj

0

a =

(4.47)
0

a~

The most general 2 x 2 unitary antisymmetric matrix a, is

a, = li~
'~')

=

e~°'
«

,

(4.48)
e'

' 0
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« being defined in (4.6). We can then write a as

e'°~I~
~r

o o

a = w

e'° k
=

e'°/~ k e~°'~ (4.49)
o o

~;o~~ ~r

where I~ is the 2 x 2 unit matrix. Noting that the matrices e~° and A commute, we can write

(4.46) as

a = u
~'~ fi

u ~~~, fl
= u

~'~ / [ku ~~~* k~] (4.50a, b)

y =

[ku ~'~* k~] fi
u ~~~, 8

=

[ku ~'~* k~] fi [ku ~~~* k~] (4.50c, d)

where we have defined

~
(i)

~ ~
<8/2

~
(2) ~-18/2

y (~ ~~)
>

Finally, M can be written as

M= ~~~~ ~ (~ ~
~~~~ ° (4.52)

0 ku~'~*k~ ,~ ,fi 0 ku~~)*k~ '

which has precisely the form of equation (4.37). We can now assert that in the symplectic

case, and when A
j

# # A
~

(each A~ occurring in a pair), any transfer matrix M can
be

written in the form (4.52).
We now consider the general case, when the various A~'s may occur more than once. The

matrix a contains blocks a~ with even dimensionality n; (see Eq. (2. II)). At least a large class

of unitary and antisymmetric matrices a can be written as

a = war
w~, (4.53)

where w is unitary and ao is a particular unitary and antisymmetric matrix. We leave it as a

conjecture that any unitary and antisymmetric matrix a can be written in the form (4.53).
Let's choose ao =

k, so that

a =
wkw ~ (4.54)

Equation (4.49) is a particular case of (4.54).
Introducing (4.54) in (4.46) we obtain

a =
(uw) fi (w~ v)

,

fl
=

(uw) fi [k(w~ v) * k~] (4.55a, b)

y =

[k(uw)* k~] fi (w~ v), 8
=

[k(uw)* k~] fi [k(w~ v)* k~] (4.55c, d)

Defining

uw = u ~'~, w v
= u ~~~, (4.56)

we recover the form (4.50) and hence (4.52) for the transfer matrix. We have thus proved that

in the symplectic case any transfer matrix M can be written in the form (4.52).
There only remains to study the uniqueness of the composition (4.52).
We start with the case when all A~'s are different.
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We first illustrate the situation in the simplest case N
=

I. Now u~'~~ u~~~ contribute 4

independent parameters each and A, being a multiple A' of the 2 x 2 unit matrix

A
=

A' I~
,

(4.57)

contributes I parameter. We thus have 9 parameters altogether, whereas (4.13) gives

v =
6. However, from equations (4.50) it is not surprising that the special form (4.57) of A

causes some of the combinations of u~'~ and u~~~ not be independent. To see this, let us insert

(4.57) in (4.50) we have

a =

fi
u

~'~
u

~~~ (4.58a)

fl
=

$ u~'~
mu

~~~* «~)
,

(4.58b)

where
«

is defined in (4.6). Now, any 2 x 2 unitary matrix w can be expressed as

w =

e~'
s, (4.59)

where # is a real number and s is a unitary unimodular 2 x 2 matrix, which can be written as

~ -1~ ii" [[[ii
fl e~11"+l~iiffl ~~'~~~

We can easily check the property

ms* «~
= s. (4.61)

Writing

u~'~
=

e'~~
sj (4.62a)

u~~~
=

e'~~
s~ (4.62b)

and applying (4.61) to s~, a and fl of (4.58) can be expressed as

a =

$$ e" s (4.63a)

fl
=

$ e'*
s

,

(4.63b)

where

=wi+w2

~
=

ii w2 (4.64)

s = sj s~.

In (4.63) we have 6 parameters altogether, which is the right number.

We can also look at the above situation in the following way. Using (4.61) we notice that a,

fl of (4.58) remain invariant if u~'~, u~~~ are subject to the transformation

u
~~~

- u
~'~

s
,

u
~~~

-

s~
u

~~~
,

(4.65)

where
s

is a unitary unimodular matrix that contains 3 free parameters. This means that we

can choose s belonging to the group SU (2) to eliminate 3 parameters out of the 9 we had at

the beginning, and we are thus left with 6 free parameters.
We can generalize the above analysis to N

~
l, when the A~ are all different from one

another. The matrices u~~~, u~~~ contribute (2N)~ independent parameters each and A
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contributes N parameters. Since each A, is doubly degenerate, we again expect to have less

then 8 N~+ N effectively independent parameters. Indeed, just as above we can prove that

a, fl of (4.55) remain invariant if the 2N x 2N matrices u~'~, u~~~ are subject to the

transformation

Si S)

0 0

~
(l

_ ~
(l

~
~

(2)
_ ~

(2)
~

(~ ~~~

0 0

~~
~l

where s, (I
=

I,..., N) are 2 x 2 matrices belonging to the group SU (2), containing 3

parameters each. We are thus left with (8 N~
+ N ) 3 N

=

8 N~ 2 N free parameters, just

as in (4.13).
We thus conclude that when Aj # # A

~
the decomposition (4.52) has the arbitrariness

expressed by (4.66).
We now tum to the case when the A~'s may be repeated. We subject u~~~ and

u~~~ to the transformations

~
(i)

_ ~
(i)

~ ~
(2)

_

~t
~

(2)
~

~~ ~~~

where s is a unitary matrix with the structure indicated in (2.I I). Since [A, s =

0, a
of (4.50)

remains invariant under (4.67) fl transforms as

fl
- u

~' fi s(ksk~)~ (ku ~~~* k~) (4.68)

In order that fl stays invariant, we require that every n; x n, (n, even) block s~'~ satisfy

k; s~"~ k/
= s

~~~*
,

(4.69)

where k, contains n,/2 matrices «(2x2) along the diagonal. Since s~~~ are unitary,
det s~'~

=

e/° (4.69) implies det s~~~
=

real, so that det s~'~
=

± I ; the + I choice indicates

that s~~~ must belong to the group SU (n;). But (4.69) implies fur&her restrictions ; indeed, if

we break s~~~ in 2 x 2 blocks
s,~

(4.69) reads

0 ~~~ ~~~

X

o ~n, ~n,n,

~

i~ it

~
~ Sl Sl (

x =
(4.70)

o
~ * n, ~ * n, n,

~
2 2 2

so that

«s;y «~
=

s;(
,

(4.71)
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implying that the 2 x 2 block sy must have the structure

s;j =

j
~

]~ (4.72)

We thus have a particular subgroup of SU(n;).
The conclusion is that in the general case in which the A, may be repeated, the

decomposition (4.52) has the arbitrariness expressed by (4.67).

Appendix.

We prove the following lemma.

Let p be an N x N diagonal matrix, in general with degeneracy, I.e. with the structure

»1 Ini

0

v =
,

(Al)
0

»k Ink

k

where p, are real numbers and I~ is the n, x n, unit matrix, with £ n;
=

N.
'

i I

Let w be a unitary matrix and suppose that

wp w
+

=
p' (A2)

is again diagonal. Since the eigenvalues of a Hermitean matrix are unique, the diagonal
elements of p' can differ from pi,.., p~ only by a permutation. Call P the permutation
matrix that takes p into p'; I.e.

p'
=

PpP ~ (A3)

Substitute (A3) in (A2)

(P~ w) p
(P~ w)+

= p (A4)

Then the unitary matrix P~w
can only be of the form (2.ll) I.e.

P~
w

=

d (A5)

or

w =

Pd. (A6)

Notice incidentally that the same matrix P that takes p into p' (Eq.(A3)), takes
$ into $'; I.e.

$
=

P
$ P~ (A7)
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