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Abstract. We demonstrate the existence of a simple scaling form which describes the crossover

from anomalous to Gaussian exponents as a function of cutoff in the Zhang model of surface growth
for p > 2, where p is the exponent characterising the power-law noise distribution. For p =

2 we find

a novel scaling form with logarithmic corrections. Our results for cutoff scaling at p =
2 are supported

by the scaling of the saturation growth velocity.

Zhang [Ii has recently proposed a model of surface growth in which the noise ~ has a power-law
distribution of the form,

P(~)
+~

l/~~+" It

for large j From simulations of this model as well as of the related directed polymer model [1, 2] in

d
=

2, he obtained anomalously large values for the surface scaling exponents, which were found

to depend on p. In addition, he suggested that the presence of power-law noise may explain the

results of recent experiments on porous media [3-6] and bacterial growth [~ in d
=

2, for which

anomalously high values of the growth exponents have also been reported. Recently, we have

carried out extensive simulations [8] of several different surface growth models with power-law
noise which strongly support the existence of anomalous exponents. However, there still exists

some controversy over whether the observed anomalous exponents represent a new universality
class for the Kardar-Parisi-Zhang (KPZ) equation [9]. In order to resolve some of these questions
we have conducted a study of the Zhang model [Ii with truncated noise.

In our simulations we used the power-law noise distribution given by equation ii ), with a cutoff

~c such that P(~)
=

0 for ~ > ~c. The noise ~ was determined at each odd (even) site at each odd

(even) time step t, by generating an independent random number r at each site such that ~/" < r

< I and calculating the quantity ~ =

r-I/". Simulations were performed for a range of values of

the cutoff, with ~p " ranging from 2-~~ to 10~~ in powers of10 for each value of p. The saturation

value of the surface width, as measured by the r.m.s. fluctuation of the interface heigh~ was

determined for each value of the cutoff ~c, for system sizes L
=

16-1024 in powers of 2. Averages

were taken over times of the order of several million time steps.
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The surface width w(L, t) on length scale L at time t h expected to satisfy the scaling form

[10], w(L, t)
=

L° f (t/L~), where
z =

alp is the dynamic exponent, f(z)
~

zP for
z < I and

f(z)
-

const for z » I, and cy has the value of1/2 [9] for Gaussian noise. In order to scale

our results for the saturation width
w

(L,t
= m, ~c) as a function of cutoff ~c, we propose the

following crossover form for p >2,

w
(L, m, ~c)

~

L° f (L~~C ~c) (2)

where f(u)
~

u("- ~/~)/~C for
u « I and f(u)

- const for
u » I and cy and xc depend on p. This

h equivalent to the scaling form,

w
(L, m, ~c)

~
Ll/~~i"~~~~~~~~g (L~C ~pl) (3)

with g(u)
~

u(°-1/~)/~C for u < I and g(u)
-

const for
u » I. Figure I shows scaling plots of

the form of (2) for p =
3-5. For a we have used the values (cy= 0.75, 0.62, 0.56) obtained from a

previous study [8], while the crossover exponents xc were obtained from best fits (xc m 0.62, 0.375

and 0.2 respectively). We find good scaling for all three values of p, except at small L for which the

asymptotic region has not yet been reached. We note that with increasing p the crossover scaling
exponent xc decreases towards zero. However, the quantity (a 1/2) /zc

m 0.33-0.4 appears to

remain approximately constant for p >2.
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appears to show asymptotic behavior for very small L [1, 8]. This led us to consider an altemate

form with logarithmic corrections at p =
2,

w
(L, m, ~c)

~
L(In L)P F ((L(In L)~P) ~~~

~c) (4)

p=2

<

-l, hwf'q~i

-2 -1 0 1 2 3 4

log (q~ iL(jog L)~~
~~

Fig. 2. Scaling plot of form of equation (4) for ~ =
2, with p =

0.20 and rc =
1. L ranges from 16 to 1024

and ~c varies from 31.6 to 46340. Inset shows scaling plot of form of equation (3).

where F(u)
~-

ul/2rC for u < I and F(u)
- const for u » I. Using this scaling form with xc =

I

and p m 0.20-0.25 we find very good scaling for the entire range of system sizes L. Thus, there

appears to exist a logarithmic correction at p =
2. The existence of such a correction may explain

why values of cy slightly higher than I cy m 1.04) were obtained for several different growth models

with power-law noise at p =
2 in reference [8].

In order to obtain further support for our results, we also studied the scaling of the saturation

velocity V(L) which is expected to have a finite-size correction of the form [12],

V(L) V(m)
~-

< 1(T7h(~ >
~

A(I)L~°-~ (5)

where A(I) is proportional to the nonlinearity parameter I in the KPZ equation. Very good fits

of the form of equation (5) were obtained for p =
3-5, using the values of cy previously obtained

from the scaling of the interface width. For p =
2, however, the saturation velocity does not

approach a constant value as expected for
cy =

I and in fact appears to be diverging with L. We

conjecture a logarithmic correction ofthe form V(L)
~

(ln L)~P Figure 3 shows a plot ofln(V(L))
versus In(In(L)). The slope of the straight-fine fit is 2p m 0.58. This supports the existence of a

logarithmic correction at p =
2, which is most likely due to the fact that p =

2 is the critical value

for the transition from non-invariant to self-invariant noise.

Our results for cutoff scaling have implications for experiments as well as for simulations of

the Zhang model with large system sizes. The reason is that typically 32-bit or 46-bit integer



178 JOURNAL DE PHYSIQUE I N°2

,t§
i'

/

a'

"

'

2ip ~'
$'

'~~ '

'

'

k1
'

'

6. '

'

~°
l.0 1.2 1.4 1.6 1.8 2.0

in in L

Fig. 3. Plot of In V(L) ve~sus In In L showing logarithmic divergence of V(L) at ~ =
2. Dashed line fit

has slope 2p
=

0.58.

random number generators, for which the cutoff rc is 2- 3~ (4.65 x 10~ ~°) and 2-45 (2.8 x 10~
4)

respectively, are used. Equation (2) implies that the scaling region for which the surface width

is not affected by the cutoff occurs for
u =

~c/L~C
=

rc-I/" /L~C > uc where uc » I. For a

32-bit random number generator, using the value uc ci 40 (log(uc
=

1.6, see Fig. I), we find for

p =
3, 4, 5 that Lc

=
257, 88, 21 respectively. For a 46-bit random number generator for which

rc =
2.8 x 10~~~, we obtain substantially larger values for Lc (of the order of 10~). However,

on the order of 10~~ random numbers must be generated to sample the full range of the random

number generator, while a reasonable estimate of the number of random numbers accessible in

current computer simulations is only of the order of 10~-10~~. Thus, the effects of a cutoff should

begin to show up for systems of order 10~ even in large-scale simulations. Crossover to Gaussian

exponents, however, (u < I) should only occur for much larger system sizes (10~ or larger).

Summary.

We have demonstrated the existence of a simple scaling form which describes the crossover to

Gaussian exponents as a function of cutoff in the Zhang model of surface growth for p > 2. This

crossover form strongly supports the existence of anomalous exponents in thin model. In addition,
for p =

3, 4 and 5 we have obtained approximate values for the crossover exponents zc(p). With

increasing p, xc decreases towards zero while the quantity (a 1/2) /zc remains approximately
constant.

For p =
2 we find a novel scaling form with logarithmic corrections. Our results for cutoff

scaling at p =
2 are further supported by the scaling of the saturation growth velocity V (L) which

scales as (In L)~P with p m 0.29. For p > 2, our results for the finite-size correction to the growth
velocity agree with previously obtained estimates for the saturation exponent a as a function of

p, thus verifying the validity of the nonlinear KPZ equation as a description of the Zhang model.
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Due to the natural existence of cutoffs, our results may be useful in the analysis of experiments
with power-law noise.
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