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Résumé. 2014 L’étude de l’ionisation Poole Frenkel, lorsque les niveaux localisés sont distribués en bandes, est

réalisée en prenant la température T comme variable. Un grand nombre de simulations 
a révélé le même

comportement qualitatif des diagrammes d’Arrhénius de la conductivité (log 03C3, 1/T), que celui présenté par
un seul niveau. De nombreux exemples sont traités, pour montrer clairement que des portions linéaires

étendues peuvent être obtenues sur les courbes, quelle que soit la largeur de la distribution. 
En conséquence,

les énergies d’activation, déduites de ces diagrammes, ne peuvent plus être assignées 
à un niveau d’énergie réel

quelconque. Nous croyons avoir montré que, poser comme principe que les 
niveaux d’un système à niveaux

multiples peuvent toujours être séparés en leurs composantes, est en contradiction avec 
la statistique de Fermi-

Dirac.

Abstract. 2014 Investigation of Poole Frenkel ionization, when the localized levels are distributed within bands,

is realized with temperature T as the variable. A large amount of simulations revealed the same qualitative
behaviour of Arrhenius diagrams of conductivity (lg 03C3, 1/T), as that given by a single level. Many examples
are treated, in order to make clear that extended linear parts can be obtained, as wide as the 

distribution can

be. Consequently, the activation energies deduced from these diagrams can no more be assigned 
to any actual

localized level. We believe to have shown that setting down as a principle that levels, in a multi-level system,
can always be splitted into their components, is in contradiction with Fermi-Dirac statistics.
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1. Introduction.

Arrhenius diagrams were used for many decades as a

very simple means allowing for determination of

activation energies. Their field of application is

extremely varied. However, for the present purpose,
we have limited the analysis to the investigation of

energy levels located into the gap of solids.

Moreover, in this area, we restrict further the matter

to representations of conductivities in terms of

T-1, when an applied field is supposed to be the only
source of perturbation of thermal equilibrium.
Nevertheless, the domain of applicability of our

study remains quite large, as it encompasses all the

analyses of currents against temperature, where bulk
conduction mechanisms dominate, such as, for in-

stance, Poole-Frenkel (PF) effect. It includes also

the analysis of energy levels in the gap, by the

thermally-stimulated-current (TSC) method.
The use of such diagrams is simple for, when the

measured entity is expected to vary following an

exponential form, y oc exp (- W/kT), it would give

a straight line in a (lg y, 1/7) plot. In addition,

another simple idea is associated with such a graph :
if several energies Wi are assumed, then, the same

entity y would appear as a sum of exponential
contributions. In an Arrhenius plot, a curve display-
ing a continuously varying slope obtains then. Conse-

quently, it can be theoretically splitted into a few

straight lines. This would be the case, for example,
for the model analysed by Mott and Davis [1], which
is given as representative of three main types of
superimposed conductivities in amorphous materials
(see sub-section 2 below). Such splitting corre-

sponds, besides, to the fact that, from a strict

mathematical point of view, a great wealth of

continuous curves can be approached by a series in

exponential terms. This is why some authors like
Gardner et al. [2], and then, especially, Provencher

[3], put into shape more and more sophisticated
mathematical technics to determine the parameters
of each component. Similarly, the technic of TSC

appears, mainly, as a direct experimental method of

splitting off the exponential components. Let us

recall that it consists, sometimes, in resolving the
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current into its various components, by a series of
successive temperature rises with increasing maxima,
each followed by a lowering-back to the initial
temperature.

Thence, the use of Arrhenius plots seems to lie on
an apparently common sense principle, which we
call, for the sake of convenience, « splittability
principle ». If this principle were always working,
the various contributions to the conductivity, of
levels with different energies, would always be
expressible through a sum of exponential terms.
Each of these terms seems then to proceed readily
from Boltzmann function. So that, this principle
establishes a bi-univocal correspondence, between a
set of conductivity components, and an any shaped
distribution of localized states in the gap, which
occupation rates would follow Boltzmann statistics.
Therefore, the splittability principle, appearing as
fully legitimate, from either physical or mathematical.1
view-points, has practically never been suspected.
As a result, the Arrhenius plot is universally con-
sidered as a well-behaved tool, succeeding very
simply in the investigation of flaws in the gap of
materials.

Examples are so many, showing up the very large
agreement of searchers about this, that any signifi-
cant inventory is impossible. Just in order to give
one example in the field of crystalline solids,
Fritzsche [4] can be cited. This author finds that the
n-type conductivity of Ge dopped with Sb, is repre-
sentable by a set of three straight lines, from which
he deduces three trap levels. More recently, the
same kind of analysis has been applied, as a rule, to
amorphous materials. We adopted ourselves the
same attitude in analysing currents in the amorphous
chalcogenide AS35Te28Gel6S21 (Felix et al. [5]), or in
a-PVDF (Felix-Vandorpe et al. [6]). Conversely,
many authors have contrived models with N localised
levels, in order to interpret some typical variations
of currents with temperature. The models of Cohen,
Fritzsche and Ovshinsky [7], or of Davis and Mott
[8], can be cited as examples, in the field of
amorphous semiconductors.

This brief recall gives an idea of the upsetting, any
challenge of the validity of Arrhenius plots, as a
proof of the actual existence of some kind of level
distribution in the gap of materials, would introduce
into the practice of experimental, as well as theoreti-
cal, analyses. Now, we have developed, in two
preceeding papers [9, 10], an exact formulation of
models with one donor level only, or with donors
distributed in energy. With the help of computer
simulation, we have been able to compare curves
obtained in either case, when F is varied. It remains
presently, to simulate the corresponding temperature
variations. This will afford us convincing arguments,
against the general effectiveness of the splittability
principle.

2. Survey of possible forms of o, (T).
Before analysing the influence of an energetic distri-
bution of donors, on the shape of the conductivity
(T (T), let us recall briefly, the most common re-
lationships between (T (T) and the density n(T) of
free electrons. If electrons are the dominant carriers,
the general relationship between a (T) and n(T) can
be written simply :

C(T) being a convenient parameter, eventually
independent of T. This equation shows that the
effective shape of curves, in an Arrhenius plot,
depends upon the form adopted for C (T).
When crystalline semiconductors are concerned,

the pre-exponential factor in (1) writes :

Nc being the density of states in the conduction
band. Then, its variation against T is that of the
function 03BC(T) T312. Many theoretical forms of
g (T) are available in literature. However, as we are
interested mostly with the possible influences of
03BC(T) on graphical representations, we shall not
attempt an exhaustive account of these forms, and of
the relevant physical backgrown. For that references
[11] or [12] can be consulted. To indicate simply an
approximate panel of forms, 03BC ( T) can be taken
roughly as proportional : to T-3/2 when carriers are
diffused by acoustical phonons ; to T° when nearly
temperature independent behaviour results from
scattering by neutral impurities ; to T when diffusion
by dislocations is dominant ; or to T3/2 when scat-
tering proceeds from charged impurities. In addition,
proportionality to 17/3 or T-s13 have been derived,
respectively in p-Ge and n-Ge, when scattering
results from interactions with optical or intervalley
phonons. As a matter of fact, much intricate forms
are actually derived.
The different processes may act simultaneously,

and the resulting mobility is, actually, a very intricate
function of T. However, in so far as processes can be
considered as independent, the resulting reciprocal
mobility is often taken as a sum over the reciprocal
mobility components. Therefore, when the con-

tributing terms are reduced to power functions

Following Conwell, it should be better summing the
reciprocal relaxation times before deriving the equiv-
alent mobility.
When amorphous materials are concerned, two ’

types of conduction can be relevant, either in the
extended states of the conduction band, or in some
kind of localized states in the gap. Therefore, in
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équation (1), the expression for C(T) must be

specified, following both the kind of assigned con-
ductivity, and the pertinent theoretical model.

Equation (2) can be used to describe conduction in
the extended states, if N (Ec ) is substituted for

Nc. Actually, the problem of conductivity is, more
often, approached directly through a consideration
of few exponential contributions (see e.g. Mott and
Davis, [1]) :

For instance, in the model of Davis and Mott [8],
three components are mainly postulated. In the high
temperature range, conduction should be due to an
excitation of carriers, beyond the mobility shoulder,
into non-localized states. In the intermediate range,
conductivity should proceed from carriers excited
into localized states of the conduction band tail. At
weaker temperatures, a hopping conduction,
through nearest neighbour sites, prevails in localized
states close to the Fermi level. This latter process is

analogous to the conductivity in an impurity band,
for a heavily doped crystal. Moreover, in a still

weaker temperature range, carriers should hop di-
rectly into more distant sites. This is the well-known
model of Mott [13], in which a becomes proportional
to exp (- BT-1/4).

Moreover, it can be remarked that, in amorphous
solids where disorder is an important source of

scattering, there does not seem to exist so sophisti-
cated theories of mobility as in semiconductors.

Therefore, expressions of the pre-exponential factors
in (4) appear rather as rule of thumb formulations.
For example (see Mott and Davis [1], p. 201), it can
be shown that, for the high temperature range,

C1 ~ 03BCT, and g oc 11. This description is hardly
modified when mobility is activated. Because, then,
the exponential factor, would contribute to the

overall activation energy.
Various other mobility laws can be cited. Among

them, let us indicate the mobility resulting from
collisions of phonons with large or small polarons.
Following Howard and Sondheimer [14], mobility
can be written, in the former case, either as

ILtp oc T1/2, in the high temperature range ; or as

at low temperature. G(T) is a slowly varying func-

tion of T, close to 1. A slightly different form obtains
when phonons and polarons are tightly coupled.
When small polarons are concerned, the Holstein’s
model [15] leads to a very involved relation, which
takes the approximate form :

in the high temperature range, y being a coupling
parameter.

Finally, it appears that so many mobility functions
are available that choosing the right one, in interpre-
ting a given set of data, is not always easy, especially
in non-crystalline materials. This could be why
Arrhenius representations are very often taken sim-
ply as (lg j, 1/T) plots. The incidence of this choice
will be estimated in section 3.2 below.

3. Non-splittability of levels, in a uniform band.

Developments in [9] and [10] were devoted to the
analysis of curves obtained, at constant temperature
under the influence of a field, either when one level
only exists, or when donors are distributed in

energy. The related behaviours, in terms of tempera-
ture variations, can then be deduced readily. For this
purpose, it is only needed to precise the form of
C (T).

If crystalline solids are considered, cr = egnc nr,
then in equations (5) of [9], the multiplying factor
sNc is independent of temperature. This means that
curves for which 03C3(T) ~ n(T), with g = IL 1 inde-
pendent of T, are given by the Arrhenius plot
(lg (n, T3/2), 1/1). If now, mobility is supposed to
vary following a given power of T, say IL = 03BC2 T or
03BC = 03BC3 T-3/2, the related plots, to be simulated,
would be respectively, (lg (n, T5/2), 1/T) and (lg nr,
1/T).
More generally, anyone of the forms of M (T) or

C ( T ) quoted above, must be related to an appropri-
ate Arrhenius plot, with the proper function

lg(nr F(T)) as ordinate.

3.1 VARIATIONS OF T3/2 nr(T) (CONSTANT MOBILI-
TY). - The main purpose of the present study, is to
compare the curves given by the one-donor-level
model, to that given by the uniform distribution of
donors in energy.

3.1.1 One-donor-level case. - This case is treated

readily by simulation of equation (5b) of [9], multi-
plied by T3/2, namely :
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with T as the variable, and for various, constant,
applied fields, and sT3/2 being independent of T. In
this equation ~ = 03A6/kT is the relative well depth,
03B1p = 039403A6p/kT the relative field-induced pptential
lowering for an any shaped well, s = Nd/Nc and
q = Nd/Na, Nd and Na being respectively the den-
sities of donors and acceptors.
The related Arrhenius plot is represented in

figure 1, with the limits in temperature 100 K and
.573 K. To emphasize the influence of the applied
field on the shape of curves, the relative barrier

lowering 039403A6p/03A6 was given three values : 0.3 ; 0.65
and 0.85. These define three families of curves,
characterized by suitable s and q values. In each
family, q is varied by powers of 10, from 1.04 to

105. Moreover, in families 1 and 3, smax = s (100 K)
equals either 10-1 1 or 10- 6 ; in family 2, smax =
10-6 only. Two main observations can be made
about these curves. First, it appears that they can
display more or less extended quasi-linear parts,
corresponding to the slope parameters m = 1 or

m = 2, as usual in 03B1p plots. Thus, as it could be
inferred easily, the Arrhenius plot of the one-level
model, is made up of two straight lines, contrary to
the statements of the splittability principle. Secondly
the slope of curves depends upon the value to which
the saturation ratio 039403A6p/03A6 is amounting. A distor-
sion of curves, drawn for the same s and q values,
results from an increase in this ratio ; namely, the
curves are stretched along, as if the 1 / T scale was

Fig. 1. - Variations of 19 (n, r2) versus 1/T in a one-level model, for various ’values of the saturation ratio

039403A6p/03A6. 03A6 = 1 eV. 039403A6p/03A6 : ____;..... Letters a; to fi (indicated only for family 2) correspond to
Smax = 10- 6 and to the q values : 1.04, 10.4, 104, 103, 104, 105. Curves fi correspond to Smax = 0.1.
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expanded. To give some examples, the quoted
growth in 039403A6p/03A6 makes curve Il 1 to transform

successively into curves f2 and f3. The same is true
for curves ’1’ f3 (see circular arrows in the Fig.).

This result shows that, when the field approaches
its maximum FS, conductivity becomes a slightly
varying function of T, even in an extended interval.

Comparison of curves f3 and f3 shows, in addition,
that this phenomenon manifests itself the more

easily, the weaker the density of donors. In such a
case, an experimentalist would certainly not try to
promote a PF mechanism, as an available interpret-
ation of his data. For, Boltzmann function does not

bring any possibility to put together an invariance of
03C3(T) with a PF regime.

3.1.2 Uniform distribution of donors. - This case
needs to compute equation (4) of [10], namely :

with q = 03A61/kT and 112 = 03A62/kT(03A62 &#x3E; clJ1).
Let us recall that this relationship describes typi-

cally transitions between conduction band and trap-
ping levels, perturbations of thermal equilibrium by
the applied field being accounted for through the
existence of a steady-state Fermi level [16]. Hence,
direct transitions through the levels are considered
as very improbable. Likewise, impact ionization by
hot electrons is not taken into consideration, in

conformity with a usual prerequisite of PF theories.

Fig. 2. - Variations of 19 (n, T3/2) versus 1/T for a uniform band, showing the influence of 5 tP for two saturation

ratios. 02 = 1 eV ; Smax = 0.1 ; q = 10.4. 039403A6p/03A62: family (1) 0.30; ; family (2) 0.75. se values (in eV) are
indicated on curves.
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Some examples of 19 (nr T3/2) variations against
1/ T, are plotted in figures 2, 3a and 3b, to show
what kind of behaviour can result when a uniform
distribution of donors is concerned. The model is not
otherwise different from the model of sub-sec-
tion 3.1.1 above. However, it introduces one more
parameter, the band-width 03B403A6. Moreover, the satu-
ration ratio is now necessarily defined as 039403A6p/03A62,
03A62 being the maximum donor depth (see [10],
Fig. 1).

It is observed mainly that, despite the widening of
the distribution, the same quasi-linear parts are still
present on the curves, corresponding to the same

slope parameter values, m = 1 and m = 2. A careful
examination of these parts shows, however, that
slightly more visible bending, physically insignificant,
results from band widening.
Figure 2 is made up of two families of curves,

labelléd (1) and (2) and corresponding to the
039403A6p/03A62 values, 0.30 and 0.75. In each family,
03B403A6 (in eV) is given the following values : 10-5 (very
close to one level) ; 2.5  10-2 ; 0.30, 0.50, 0.70 and
1 (full band). For the sake of easiness in comparing
figures 1 and 2, 03A62 = 1 eV, Smax = 0.1 and q =
10.4. It is observed that, when the system is going
from the quasi-unique level case, to the case of a

Fig. 3. - lg (n, T312) versus 11T for a uniform band, showing the influence of 039403A6p/03A62 for various &#x26; 0.
03A62 = 1 eV. Values of 039403A6p/03A62 are indicated on curves. (a) q = 107. Family (3) : smax = 0.1 ; 03B403A6 = 0.2 eV (2013) ;
family (4) : smax = 0.1 ; Sep = 0. 5 eV (- - - - -) ; family (5) : smax = 10 6 ; Sep = 0.2 eV (------- ). [] : Limitswithin which curve a is quasi-linear. (b) q = 10.4 and smax = 10-2. Family (6) : Sep = 0.2 eV (2013) ; family (7) :03B403A6 = 0.5 eV (- - - -).
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complete band, the slopes of curves decrease steadily
(see circular arrows in the Fig.), and become very
small for 03B4 03A6 = 1 eV. Therefore, a progressive wide-
ning of the band of donors, from 03A62 upwards,
appears mostly, as equivalent to a field enhancement
in the one-level case. Two more observations can be

made, from a comparison of curves of families (1)
and (2). First, the range of slope variations is the
larger, the smaller 039403A6p/03A62. Secondly, the slope
sensitivity to small 03B403A6 variations, in narrow bands,
increases with 03B403A6p/03A62. For example, in family (1),
the curves corresponding to 03B403A6 = 10- 5 eV and
03B403A6 = 2.5 x 10-2 eV merge in, whilst, in family (2),
the same curves are significantly far apart.
These topics are easily interpretable. Because, for

any given field strength, the amount of empty levels
tends to increase with the band width. In the case of

relatively narrow bands, especially, a high value of
039403A6p/03A62 implies that the deeper empty level is close
to 03A62. Thus, a small increase in 03B403A6, at constant
Nd, leads to a new repartition, containing more
empty levels, namely those levels which have
reached the saturation condition.

Figure 3a shows the Arrhenius plot which obtains
when à 039403A6p/03A62 is varied, for two given (constant)
widths of the donor band (54) = 0.2 eV for families
(3) and (5) ; 03B403A6 = 0.5 eV for family (4)). In each
family, the saturation ratio takes the values : 0.1, 0.3
and 0.45 ; 03A62 = 1 eV ; Smax = 0.1 except for

family (5) where smax = 10-6 ; and q = 107 (no com-
pensation at all). These curves have been drawn to
exemplify cases where the curves display two quasi-
linear parts (m = 1 and m = 2). It is apparent in the
figure, that the quasi-linear portions are liable to
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extend over quite large temperature intervals. In
curve (a), for example, a convenient linearity ex-
tends over a temperature range lying, at a minimum,
between 140 K and 350 K. The corresponding
variation is then of about 4.5 decades. Now, this
interval is rather reduced, owing to the assumption
of non-compensation (q = 107).

. 

Therefore, figure 3b was drawn to give an idea of
the ranges of linearity that can be achieved, when a
significant compensation is postulated (q = 10.4 ).
Then, curves (b) and (c) for example, can be
considered as straight lines, with an excellent ap-
proximation, at least over a temperature interval
going from 195 K to 465 K. The related variations of
u extend, respectively, over 9 and 7.5 decades.
These ranges are so large that they may encompass a
great deal of experimental data. So that our model
could bring a theoretical background to the so-called
Stuke rule (Stuke, [17]), following which extended
linear Arrhenius plots are often found in amorphous
glasses.

3.1.3 Concluding remarks. - The above develop-
ments have put forward that the fact of finding
straight lines, in an Arrhenius plot, does not bring
any proof element about the actual distribution of
traps, in the gap of materials. Because it was shown
that one or two levels can be found, either when one
level only is stated, or when levels are distributed
within a band, as wide as it can be. Therefore, this
implies a failure of the analyses based upon Ar-
rhenius plots. It must be noted that some authors
have sometimes conjectured a non universal availabi-
lity of the splittability principle. For example, Con-
nell et al. [18] made some reservations about it. They
remark, particularly, that a single activation energy
is often found in amorphous semiconductors, though
more or less extended distributions of localized
states are generally admitted, in thé gap of these
materials. These authors have then shown, through
a calculation initially nearly ours, that it is possible
to find a unique activation energy, when a narrow
band of uniformly distributed centres is stated.
However, as their calculation lies on a first order
approximation, their result could not, fundamen-
tally, point out a significant irrelevance of Arrhenius
plots.

Finally, it remains desirable to widen the present
study in three directions. The first is to examine how
much other forms of mobility can affect the observed
linearities. The second is to see what kind of
03C3 (1/T) curves result from the consideration of a set
of discrete levels. The third is to try to explain why
the splittability principle does not work, in our
models.

3.2 ARRHENIUS PLOTS FOR T03C3nr - TYPE VARI-
ATIONS. - The preceding nr(1/T) representation is

a little restraining, as it would correspond only to a
diffusion by neutral impurities. Such a diffusion
mechanism can hardly be envisaged in our models,
with donors and acceptors present, except in the
lowest temperature range, and for small applied
fields.
To simulate the most general case, a form like (3)

should be used, but it would imply an arbitrary
choice of the parameters Ai. Therefore, it seemed
preferable, instead, to draw examples of the individ-
ual effects of some of the components in (3). This
can be achieved readily, by giving relevant values to
b , b bi + 3 being the exponent to be used for J.1-

when a Tb‘ power law is adopted, in order to ensure
that the parameter factorized in conductivity
equations be independent of T. Three cases of
mobility are considered, namely : diffusion by acous-
tic phonons, which obtains with b = 0 ; diffusion by
dislocations, corresponding to b = 5/2, this case

being generally that of amorphous semiconductors ;
and diffusion by charged impurities, which is given
byb=3.

(i) Figure 4 was drawn with the only purpose of
showing the deformations undergone by curves (a)
and (c) of figures 3a and 3b, when 1£ (T) is changed.
Conductivities are given in arbitrary units, the
various curves being translated along the ordinate
axis, in order to make them to coincide at point A
( T = 100 K). It is observed, of course, that a growth
in curve steepness results from an increase in b. But,
it is important to notice that curves are still displaying
extended quasi-linear parts. When a straight line
fitting is realized at the best, particularly for the high
temperature side of the (a)-type curves, these lines
converge towards a common point A’. This conver-
gence is obvious. Because the pre-exponential factor
gives, in the diagram, a straight-line of equation
- b lg(1/T), which added to the curve nr(T) results,
principally, in a rotation according to the variations
of b. Besides, figure 4 shows, very generally, that
the assumptions made about the function C ( T),
entail some degree of undetermination, for the
activation energies deduced from the slopes, after
the splittability principle (maximum discrepancy of
the order of 7 %, at a maximum, in the temperature
range used). This evident assertion does not seem to
be always stated with sufficient care in literature.
We have tabulated, in table I, the various acti-

vation energies that an experimentalist would deduce
from figure 4.

This table establishes that the weaker energies
*$1’ found from type (a) curves, are fully irrelevant.
Besides, if an experimentalist supposed these values
to correspond to m = 2, he could not find more
adequacy with the ranges of energies involved in the
model. For the deeper levels, deduced from curves
(a) and (c), the obtained energies belong to the
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Table 1.

ranges of energies stated in the model. However, it
must be remarked that, for curves (a), the measured
energies *03A62 are very close to the top of the band

(0.80 ~ 03A6 ~ 1 eV), whilts, for curves (c), they range
near the bottom of the band, despite a larger

spreading of levels (0.5 ~ 03A6 ~ 1 eV). This is directly
related to the compensation ratio. For, when no

compensation exists (q = 107 for curves (a)), all

levels in the band are rather largely occupied. But,
when a significant compensation is achieved (q =
10.4 for curves (c)), the shallower levels are largely
emptied, and conductivity is mostly contributed for
the deeper sites.

(ii) As an illustration, and to make this more

prominent, we have represented in figure 5 the rate
of level occupation

Fig. 4. - Variations of 19 (nr Tb) versus 1/T for a uniform band, and for different values of b . e2 = 1 eV. Type (a)
curves : Smax = 0.1 ; b 0 = 0.2 eV ; q = 107; 039403A6p/03A62 = 0.45. Type (c) curves : smax = 10-2; Se = 0.5 eV ; q =

10.4 ; 039403A6p/03A6e2 = 0.10. (-) ai, cl: b = 0 (...........) a2, c2: b = 3/2. (-----) a3, c3; b = 5/2 (---) .
a4, C4 : b = 3. 
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Fig. 5. -.Variations of reduced densities a, of electrons trapped in donor levels, in terms of their depth (with inverted
signs to picture energy levels as usual) : profiles (a) and (c) corresponding to conditions of curves (a) and (c)of figure- 4 (2013 - 2013 - -) quasi-Fermi level positions corresponding to these cases, at temperatures 100 K and 573 K ;
(----) limits of Ar(T) ; ........... (a) - type and (c) - type profiles for complementary values of q : (1) 1.04 ;(2) 10.4 ; (3) 10 .

with Ar = s/03B403A6 . Curves drawn in full line, give the
profiles of level occupation, at 100 K and 573 K,
corresponding respectively to the non-compensated
(a)-type, and, to the compensated (c)-type, cases.
Figure 5 shows, mainly, that an increase in T results
in a re-distribution of electrons amid the levels : the
rate of occupation of deep levels is decreased, while
that of shallower levels is increased. This originates
both from the Fermi level shift indicated in the
figure, and from the spreading with T of the Fermi
distribution function. This pictures a very intricate
interdependence of levels, which precludes a linear
superposition of their contributions to the conducti-
vity.
To widen a little more this approach, we investi-

gated the influence of q variations. Thus, we verified
that quasi-linear curves are still obtained over ex-
tended ranges of T. Apparent site depths *03A6
deduced from curve slopes differ significantly from
that of table I.

(iii) A lot of simulations, not reported in this
paper, have been made to cover more general cases
than those of figure 4. The only indication we want
to give here, concerns the levelling off in the high
temperature range, that was apparent on some
curves in figures 1 to 3. When 03C3(T) ~ nr(T) is
considered, instead of 03C3(T) ~ T3/2 nr ( T ), this

plateau of saturation is replaced by an increasing
portion, along which conductivity becomes a de-
creasing function of T, until a maximum is reached.
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This somewhat surprising, metallic-conduction-like

effect, is directly related to the existence of a
saturation. For, in this zone, the density of free
electrons is very close to its maximum, and is

practically insensitive to temperature. Then, the
observed decrease of 03C3(T) proceeds readily from
that of g (T) oc T-3/2. This effect extends over a
larger interval, the smaller smax.

3.3 BAND MODEL INVESTIGATION WITH

BOLTZMANN FUNCTION. - The preceding investi-
gation, made only by computer simulation of

equation (6) above, cannot bring easily physical
insights into the observed behaviours. To attempt to
do this, and to avoid overwhelming complexities,
inherent to Fermi-Dirac statistics, we suppose here
that suitable conditions are met, allowing for
Boltzmann statistics to apply. Then, the relationship

giving the density of electrons freed from a slab of ’
width d03A6, can take two approximate forms, depend-
ing on whether, on the interval (~1, TJ 2) :

or

Condition (8a) can be achieved, only, for sufficiently
low field strengths for which 03B1p  ~1. For larger
fields, (8a) must be inverted. Cases can then exist
where an inversion of (8b) is simultaneously realized..
This is not considered hereafter.

Integrating (7), both when conditions (8a) and
(8b) apply, gives the respective solutions :

and

In these equations, 1

and

Now, let us compare equation (9a) with the relation-
ship that holds when Boltzmann function applies to
the single level case (Eq. (8a) of [9]).

It appears that the two equations differ only through
the substitution of e- TI for ~ e-1~ .

Equations (9) can be further simplified. Indeed,
when the band widens, so that 03B403A6 ~ kT over the
full temperature range, equation (9a) reduces to :

For equation (9b), it can be remarked that

e-03B1p~e~~ ~ e~2 - 03B1p. Now e~2-03B1p ~ 1 as long as the
rate of saturation 039403A6p/03A62 remains far below 1. This
equation gives then :

These equations show that, depending on which of
the conditions (8) is fulfilled, either of the limits of a
wide band can be found, in an Arrhenius plot.
However, a large set of simulations showed us that
(8b) seems practically the only available condition.
In such a case, an apparent activation energy
*03A6 = 1 eV was effectively deduced. But when other
conditions were fulfilled, we obtained, as indicated
partially in table I, either irrelevant values, or inter-
mediate values, ranging amid the (03A61, 03A62) interval.
These considerations show that Boltzmann distri-

bution function is rarely available, when a band of
donors is concerned. Anyway, as the existence of a
band of donors remains experimentally hidden, no
clear significance can be assigned to the energy
values obtained in an Arrhenius plot. However, it
was observed that, when a single level is concerned,
the two possible exponential developments of

equation (9c) can be convenient approaches, but

over separate temperature ranges. Nevertheless,
even in this case, an undetermination remains, in
relation with the slope parameter value m. We
postpone to sub-section 5 the remaining problem of
interpreting the order in which the two slopes are
liable to appear (m = 2 in the higher temperature
range as for example in Fig. 3a).

4. Analysis of possible reasons for failure of the

splittability principle.

4.1 DISTINCTION BETWEEN MATHEMATICAL AND
PHYSICAL APPROACHES. - The proof of the Ar-
rhenius plot inadequacy, in the investigation of
localized levels in the gap, was supported, in the
above developments, on computer simulations of
some definite models. This process affords a convinc-

ing demonstration, but it presents two faint points :
on the one hand, it does not have the full generality
of a theorem, and does not preclude the existence of
cases where the principle avails ; and on the other
hand, it does not allow a straightforward understand-
ing of the possible origins of the failure of the

splittability principle.
For the sake of conspicuousness, and to try to
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generalize somewhat our results, it is essential to
examine very carefully the subtending mechanisms
over which this principle is founded.

Let us emphasize again that the Arrhenius rep-
resentation has a well defined meaning, from a
purely mathematical prospect. And that, conse-

quently, any decomposition of continuous, often-
times monotonically decreasing, functions, is fully
legitimate. This makes clear that the failure of the
Arrhenius diagrams,. has a purely physical origin. In
other words, since the bi-univocal slope-energy
correspondence reveals erroneous, in our models,
this means that the splittability principle must neces-
sarily violate, at least, one of the underlying physical
laws of the system. 
Now, it can be shown, starting from a simple

calculation, and with the help of computer simu-
lation, that this principle fails, generally, in giving
back occupation probabilities of localized levels,
that can agree with Fermi-Dirac distribution func-
tion.

4.2 CONDITIONS FOR THE SPLITTABILITY OF TWO
DONOR LEVELS.

4.2.1 Mathematical approach. - Consider, for in-
stance, two donor levels lying at depths 01 1 and
(p2 (03A61  03A62), with densities Ndl and Nd2, In
addition, very deep lying acceptors are admitted,
with density Na. Then, Fermi-Dirac statistics gives,
for the free electron relative density nr, under a
given applied field :

with 77 = 03A6i/kT, Si = N di/Nc ; and S = sl + s2.
In this equation, Boltzmann function is supposed

to apply, as usual for non-degenerate conditions, for
electrons in the conduction band. Equation (12) is a
third degree polynomial in nr. Its resulting analytical
solution is too much awkward to avail (see, for
example, Mahapatra and Roy, [19]). But this
equation reduces either to a second order, or to a
first order, polynomial, in proper limiting cases.

When inequality (8a) is fulfilled, one obtains the
solution :

with

While inequality (8b) leads to the solution :

In these equations, p = s/s1 is a parameter ’ 1, and
03B4~ = (03A62 - 03A61)/kT is the reduced distance apart
the levels. As previously stated, equation (13a) is
valid only for 03B1p  q 1. It is worth noting the close
forms of equations (9) and (13).

4.2.1.1 Application of inequality (8a). - The split-
tability principle does not apply directly to

equation (13a), in general conditions. But it could
be of interest to know whether its application should
be possible when A is very smaller or very larger
than 1. This happens respectively when 039B ~ s Aq2 =

would rather correspond to situations where the
donor density, and/or compensation, are large. The
splittability principle would then apply, for : 

But, the first member of equation (14a1) is an

increasing function of T, and this condition cannot
be fulfilled over extended intervals in T, especially in
the low temperature range.
Condition

would rather correspond to weak donor densities,
and/or poor compensation. It cannot, as a principle,
be fulfilled in the high temperature range. The

splittability principle should also apply to this case,
for :

It appears at this stage, that an experimentalist,
being generally unable to know which of the relation-
ships (14a) would apply, cannot determine whether
the energies, eventually found, must be affected or
not by a factor 1/2. But, in addition, he can no more
decide which of the conditions (8) is fulfilled. We
observed, numerically, that inequalities (8a) and
(14a1) do not seem to be often both compatible.
4.2.1.2 Application of inequality (8b). - In suitable
conditions where relationship (8b) avails, equation
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(13b) does apply. In the following, we consider only,
among all possibilities of development of this

equation, the most interesting cases, obtained when

This condition gives immediately :

Two more approximations can be made in

equation (15b).
(i) When 03B4~ is large enough, over a suitable

temperature range, and provided that p does not
approach closely 1,

Then, equation (15b) reduces to :

In these conditions, the deeper level, only, can be
detected (compare to Eq. (llb)).

(ii) When 03B4~ is small, and p approaches 1,

equation (15b) becomes :

Then, the shallow level is only found. But it must be
emphasized that condition (14b2) refers, in fact, to a
vanishing density of states for the deep level.

Finally, when inequation (8b) is liable to apply,
the ultimate limiting forms of equation (12) corre-
spond to applications of the splittability principle,
where one of the two levels is shadowed.

4.2.2 Computational approach. - A large set of

simulations was performed, in order to test and

examplify the conditions of validity of the various
approximations introduced above. This was done in
two directions. First, we tried to find conditions

where the diverse limiting forms could work. Sec-
ondly, we tried to put forward, on a more general
basis, a wealth of examples of effective curve

shapings that can be obtained with two donor levels.

4.2.2.1 Examples using the limiting forms (2 variable
parameters). - Curves drawn in figure 6a were
chosen to allow a relatively straightforward corre-
spondence of their shapes, with one of the aforemen-
tioned approximate equations. The levels are always
lying at depths 0 1= 0.35 eV and 03A62 = 0.50 eV,
and their total relative density Smax is held constant.

The only modified parameters are the respective
donor densities, through p, and the rate of compen-
sation q. The applied field is constant and so low as
to make 039403A6p = 0.005 eV, so that the present attain-
ments become clearly independent of any PF effect.
Results of simulations are tabulated in table II.

Table II.

Curves (1)-(3) are obtained with levels of equal
densities (p = 2), and q amounting respectively to
1.004, 1.04, and 10.4. A unique activation energy is
then found, equal to either 03A62 or 03A61. Fitting of
curves is then realized, with an excellent approxi-
mation, either by equation (15bl), or by
equation (15a2) reduced to its first term. This ex-

emplify the role played by compensation. When a
nearly full compensation is achieved, level 01 is

completely empty, and thermal emptying of elec-
trons remaining in level 03A62 is only working. But with
a lesser compensation, as in curve (3), level 03A62 is

completely filled, and thermal emptying is dealt only
with the remaining electrons of level 01. Inter-

mediate cases of compensation (1.04  q  10.4),
liable to give both 03A61 and 03A62, have not been

investigated.
Curves (5)-(7) are obtained in the particular

condition p = q, and with q = 1.04 ; 10.4 and

107. The respective density weights are roughly
inverted from curve (5) to curve (6). Inequalities (8)
are both invalid, and must be inverted to give
nr exp (~1- 03B1p) ~ 1 and nr exp(~2 - 03B1p) ~ 1. The
apparent activation energy *03A6 lies then between

03A61 and 03A62.
Curves (4) and (7), obtained respectively with

levels of equal densities and with a very light level
03A61, correspond both to non-compensation cases

(q = 106, and q = 107). Consequently, they display
two slopes, as usual. But, only one activation energy
*0 (W 1 for curve (4), and 02 for curve (7)) can be
deduced from them, the high and low temperature
ranges corresponding respectively to m = 2 and

m = 1. For curve (4), for instance, this explains as
follows. In the high temperature range, con-

dition (14a1) is verified, and consequently, the re-
lated linear part of the curve obeys equation (15al),
with (p - 1 ) e-03B4~ ~ 1. In the low temperature
range, at the opposite, condition (14a2) applies, and
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the corresponding linear part obeys equation (15a2),
limited again to its first term.
For the sake of conspicuousness, we represented

also, in figure 6b, the variations of - 03A6Fn versus

T-1 corresponding to curves (1)-(8) of figûre 6a.
The two postulated levels were drawn in order to
make more apparent the various - 03A6Fn relative
positionings. In addition, we drew a second ordinate
scaling visualizing, in each case, the *03A6 positions,
: labelled alike curves of figure 6a. Thus it is shown
that, when one slope only is apparent on curvès
(curves (1), (2), (5) and (8)), - 03A6Fn moves steadily
in direction of the level *03A6 effectively found, when

T is decreased. But when curves display two slopes,
or nearby saturation, - 03A6Fn goes through a maxi-
mum (curves (3), (4), (6), (7)), transition of the
slope parameter m from 1 to 2 occurring there. The
following additional remarks can be made about the
case of nearly full compensation for which two
situations can be met. When densities of levels are of
the same order of magnitude, 03A62 is found because
level 03A61 is completely emptied by compensation
(curves (1) and (2)). When the ratio of level densities
is nearly equal to the compensation ratio q, the
populations of levels are of the same order of

magnitude, and *03A6 lies amid 03A61 and 02- Crosses in

Fig. 6. - (a) Arrhenius diagrams of nr(T-1) for two single levels with varying respective densitics, and for various
compensation rates. 03A61= 0.35 eV ; 03A62 = 0.50 eV ; smax = 0.1 ; 039403A6p/03A62 = 0.01. ( ) p = 2 : (1) q = 1.004 ; (2)
q = 1.04 ; (3) q = 10.4 ; (4) q = 106. (2013201320132013) p = q ; (5) q = 1.04 ; (6) q = 10.4 ; (7) q = 10’. (............)
p = 1.1 : (8) q = 1.8. (b) Fermi-level variations - 03A6Fn = EFn - Ee versus 1 / T for curves of figure 6a. A second scaling
gives the related *03A6 positions, labelled alike curves. Brackets delimit the related actual intervals of T used in figure 6a.
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the figure indicate the - 2.3 kT departure from

-03A6Fn, by which Fermi-Dirac function can be ap-
proximated by Boltzmann function within 10 %.
4.2.2.2 More general cases (all parameters allowed
to vary). 2013 Curves of figure 6a could incite to

believe that the twin-level model should display a
relatively simple behaviour, not very different from
that of a band. However, it is easy to establish that,
in general cases where all the parameters of the

System are allowed to vary, the curve shapes,
obtained in an Arrhenius plot, are not directly
foreseeable. To show this, we have proceeded to a
large simulation, where parameters s, p, q, 03A61,
03A62 and a p were modified. Only few trends are
reported here just in order to emphasize further the
difficulties pouring in from the analysis using the
splittability principle. We mainly tried to make

apparent the prominent differences, departing the
present model from that of a uniform band.

Figure 7 gives some examples of curve shapes,
obtained directly from equation (12). The respective
positions of q,1 and 03A62 are indicated in an inset in
the figure. In every cases, a medium compensation is
introduced (q = 10), and the applied field is always
taken either low or moderate (6.8 x 104 V.m-1 ~
F ~ 3.8 x 106 V.m-1, for a coulombic PF effect, and
with e = 2.2). p is always lesser than q : p =
9.5 for curve (1), and p = 9.9995 for curves (2)-(4).
This makes the density of level 0 1 to amount to
about 1/10th of the density Of 02- smax = 0.1.

The curves, represented in the figure, were cho-
sen : on the one hand because of their shapes, more
usual than those of figure 6a, in analyses using the
splittability principle ; on the other hand to show
that large variations of shapes can result from

moderate modifications of few parameters only.
Moreover, curve (3) presents the peculiarity of dis-
playing an intermediate levelling, which can be
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Fig. 7. - Arrhenius plot of nr T3/2 for two levels. smax = 0.1 ; q = 10. Curve (1) : p = 9.5 ; curves (2)-(4) :
p = 9.9995. Other parameters are apparent in the caption : dashes indicate 039403A6p ; (201320222013) indicate *0.

easily protracted towards high and low temperatures.
Such a levelling is sometimes apparent in some

experimental results, in the literature. Just in order
to give one exemple, this can be found in a paper by
Schmid [20], dealing with conductivity in glasses
with various compositions. But the author, using the
splittability principle, and hence Boltzmann function
ordinarily associated with it, did not attempt to bring
an interpretation to the observed plateaus.
Table III indicates the values of *03A6, deduced

graphically from figure 7. It is observed that, the
shallow level is always approximately found, in the
lower available temperature range. While the value
calculated for the deep level, when apparently
determinable, is always wrong.

Table III.

This confirms once more that misleading interpre-
tations can result from the splittability principle,
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even when two single levels are concerned.

Moreover, all the results above, obtained under a
very weak field, apply alike when the potential wells
are insensitive to the field. Therefore, it must be
concluded that the failure of this principle is not

strictly limited to PF and related effects, but has to
be extended to any kind of flaws, distributed in the
gap of solids.
To widen the present analysis, we have also

initiated a study of a model including uniform
distributions, shared among two separated bands.
Such systems, involving two more parameters, allow
to control independently the range of intermediate
levelling and curve slopes as well.

4.3 POSITIONING OF OUR ANALYSIS WITH RESPECT
TO FORMER WORKS. - As far as we know it, the
essential of calculations made in [9] and [10] are
original, even if some authors, like Connell et al.,
have initiated a similar, but more restricted, ap-

proach. But equations like equation (6) are certainly
not original. Effectively, many authors have, long
ago, determined the densities of electrons in the
conduction band, when a lot of discrete levels are
postulated in the gap. This is the case, for example,
for Shockley and Last [21]. A practically exhaustive
account of such calculations was given, later, by
Blakemore [22]. This author presents calculations

corresponding to two kinds of discrete level distri-
butions. In the first kind, the traps possess a single
fundamental level, but, in addition, the trapped
electrons may occupy excited levels. In the second
kind of distribution, the traps are shared among a lot
of fundamental levels, each level being, in addition,
splitted into excited states. For the sake of generali-
ty, Blakemore affects to each, fundamental or

excited level, a spin degeneracy factor g. No field-
induced deformation of the potential of the wells, is
considered. 
When only one fundamental level is postulated,

the equation for np transcribed in our notations,
writes :

In this equation 0 i = 0 - b 0 i stands for the depth
of the excited level i, while 0 is the depth of the
fundamental level (03B4 03A60 = 0). If the Fermi level

03A6F lies many kT below the conduction band edge,
this equation can also be written : 

As a result, a second degree polynomial in nr 
obtains, which solution is very close to equations (6a)

REVUE DE PHYSIQUE APPLIQUÉE. - T. 25, N. 2, FÉVRIER 1990

and (6b) of [9], under zero field condition. Following
Blakemore (see Fig. 32-13 of the author, p. 145),
accounting for thé excited states results in a slight,
but significant, damping of the curve in an Arrhenius
plot (lg nr, 1/T), mainly sensitive in the high tem-
perature range, and up to saturation.
When many fundamental levels are introduced,

the equation for nr becomes :

in the simplest case, again, where the Fermi level is
sufficiently far below the bottom of conduction
band. Therefore, determination of nr needs then to
solve a (M + 1 ) degree polynomial. However, when
Boltzmann function applies, the appropriate reduc-
tions of equation (17) lead to solutions formally
similar to equations (13).
The authors who dealt with multi-level models,

did not apparently pay much attention to the under-
lying problem set by the experimental discrimination
of the involved levels.

4.4 SPLITTABILITY PRINCIPLE AND PROBABILITIES

OF LEVEL OCCUPATION. - It is now necessary to

investigate the reasons why the splittability principle
generally fails. We believe that this comes essentially
from the fact that, in equations (12), (16) and (17),
as when integrating equation (3) of [10], the total
density nr of conduction electrons is present in each
term of the discrete sums, as well as in the infinitesi-
mal summation leading to equations (4) therein. The
respective contribution to these sums, of either of
the terms, is therefore dependent on the overall
contribution of all the levels involved. As a result,
the contributions of these levels to nr cannot gener-

ally be considered as independent, contrary to the
requirement of the splittability principle. Besides,
the interdependence of populations of different
levels was already illustrated in figure 5, dealing with
a uniform distribution. This figure shows clearly that
a rise in temperature results in a re-distribution of
electrons among the various levels. The deeper
levels are always progressively emptied. But the
populations of upper levels do not vary so monotoni-
cally, at least when compensation is not too weak.
While some are always emptying, others, located
nearby the upper limit of the band, can be partially
replenished. This comes both from a shift of the
Fermi level, and from a widening of the range of
variation of the Fermi function. As a result, Fermi-
Dirac statistics leads, generally, to situations where
the response of the system is very involved, and
cannot be analyzed as a sum of independent terms.

Conversely, let us suppose independent the contri-
butions of the two levels, to the density of conduction
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electrons. This density can then be written, using the
detailed balance principle :

Now, if the populations of the two levels are still

supposed to be describable by a, presently underter-
mined, distribution function f, and if the concept of
Fermi level is preserved, it can also be stated that :

Then, resolving these equations with respect to

03A6F gives :

Therefore two differing values of 03A6F are then found,
for any sets of arbitrary values of the involved,
independent, parameters. Thus, the assumption of
level independence, results generally in a non-

uniqueness of the Fermi level.
Hence, the assertion of a general availability, for

the splittability principle, would entail a disbelief of
the notion of Fermi energy. Oppositedly, the
Boltzmann distribution function would always avail,
as it does not resort to any reference level. There-

fore, we believe to have established that, in data
plots inferring the splittability principle, one must
kept in mind that no reliability is provided by such
plots, in themselves, concerning the determination
of the involved parameters.

5. Conclusion.

It was observed, along the present study, that the
behaviour of a model of donors distributed uniformly
within a band, offers generally less diversity than a
model involving two discrete levels. Among the
discrepancies, a prominant one is particularly notice-
able, as it offers an opportunity of setting an
interesting problem of methodological analysis.
When a model, involving either a band or one

level only, is adopted, two linear portions are liable
to appear in an Arrhenius plot. But then, we
observed that the less steeper line corresponds
always to the high temperature range. The same
situation can also hold when two levels are con-

cerned, as shown by figure 6a. But with this latter
model, it is also possible to observe an inversion of
the two linear parts (Fig. 7), with the steeper one
located in the high temperature range, a situation
very commonly found in literature.
When slope steepness is increasing with tempera-

ture, the splittability principle does not give rise to
difficulties in interpretations. For, then, energy
levels are readily deduced from the slope magni-

tudes. But, in the opposite case of decreasing
steepness, the bi-univocal slope-energy correspon-
dence can no nore be used, without introducing, at
least, an additional assumption.
Our models could then provide an alternative

explanation of such kinds of behaviour. But, as we
showed that Arrhenius plots fail generally in giving
faithful informations, about either trap depths or
local density of states, we should not attempt to
assign any precise meaning to the activation energies
found experimentally. Having put forward that the
splittability principle entails some invalidation of
Fermi-Dirac statistics, we incline to believe that the
unavailability of this principle should extend far

beyond the models on which it was established. We
think peculiarly that this failure could encompass,
more generally, all experiments interpretable with
the help of a steady-state Fermi level, as for instance
in photoconductivity measurements. However, even
if our results did not enjoy such a generallity, they
have, at least, introduced some suspicion about the
actual capability of the Arrhenius plot, as an avail-
able tool for localized level investigations. This
should incite searchers, each in their own field, to
examine critically whether they are allowed to use
this tool. Particularly, a thorough re-examination
seems desirable in the field of amorphous materials,
where no refined general theory exists presently.
This is needed especially as the existing models of
distribution of localized levels, in the gap of those
materials, are often supported by experimental anal-
yses founded on the splittability principle. Never-
theless, it could be considered that a validation of
these models, would be obtained by cross-checking
with the results of other methods of measurement.
But cross-checking is conclusive only if these
methods do not lie on similar approximations. For,
then, reciprocal compatibility would prove no more
than self-consistency.

Finally, the above study, associated with extended
simulations, showed that a rigorous treatment of
models commonly used in Solid State Physics, could
bring some renewal on different prospects.

(i) It leads, sometimes, to important deepenings
about the role played by the fundamental underlying
hypotheses. (ii) As a consequence, it can result in a
suspicion about the effectiveness of some basic

concepts, usually admitted as rationally founded,
even when being, actually, based upon common
sense considerations. (iii) It can lead also to a

questioning about the availability of certain methods
of analysis of experimental data. (iv) And conse-
quently, it can succeed in accessing to a new

approach of the problems set by the interpretation of
experiments.

However, insofar as we do not offer an alternative
method of analysis of experimental data, a somewhat
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pessimistic vision emerges from our work. Fortu-

nately, it seems that the fact of being unable to
characterize the actual localized level distributions in

energy, is not a redhibitory hindrance of knowledge
improvement, at least on the level of technological
efficiency. Besides, this remark is directly related to
the manner in which some authors, like Rose [23]
and Lampert [24], consider the first approach of a

number of physical problems. These authors devoted
many skilful conceptual manipulations, to show that
the use of well-behaved ideas, connected with very
simple formulations, could be a powerful tool in
accessing, in a first step, to a convenient theoretical
knowledge, of the response of materials to some
kind of excitation. Nevertheless, the further step of
thorough analysis, remains an essential requirement.
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