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Résumé. - Les nouvelles céramiques frittées supraconductrices à haute température critique peuvent être
décrites dans certains cas comme un réseau de tiges interconnectées, dans d’autres cas, comme un empilement
plus ou moins aléatoire de cristallites parallélépipédiques ; leur taille est de l’ordre de quelques microns. Le
courant critique continu à voltage nul d’un tel matériau n’est pas relié aux propriétés supraconductrices
massives, mais à la structure granulaire du matériau. Le courant critique entre deux grains voisins est régi par
le courant critique de leur jonction commune, qui se comporte comme une jonction Josephson, dans certaines
limites. Dans ce travail, nous modélisons le système comme un réseau de jonctions Josephson. Nous
spécialisons au cas du courant critique continu à voltage nul d’un réseau de jonctions identiques, immergé dans
un espace à deux dimensions. Nous examinons l’influence des dimensions finies de l’échantillon. Nous

discutons les relations avec la conductivité normale et la percolation.

Abstract. - The new superconducting high-Tc sintered ceramics can be described in some case as a lattice of
interconnected rods, in other cases as a more or less random packing of parallelepiped crystallites ; their size is
about a few microns. The d.c. critical current at zero voltage of such a material is not related to the critical
current of the bulk material, but to its granular structure. Indeed, the critical current between two adjacent
cells is governed by the critical current of the weak link between them ; this link behaves within some limits as a
Josephson junction, the critical current of which is known. For our present problem, the system can be
modeled as a lattice of Josephson junctions. We present here results for the d.c. critical current at zero voltage
of lattices of identical Josephson junctions in two dimensions. The influence of the finiteness of size of the
sample is examined. The relationship with normal conductivity simulations and percolation is discussed.
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1. Introduction.

The determination of the maximal critical d.c.
current density at zero voltage in the new granular high-
Tc superconductive ceramics [1] is a problem of
uppermost interest, as well for technological appli-
cations (the transportation without loss of electric
power), as for theoretical ones (percolation above
the threshold). According to their density and pack-
ing, the sintered superconductive materials are de-
scribed either as a lattice of interconnected rods [2,
SSG] in the case of low-density materials, either as a
random packing of parallelepiped crystallites of

typical size a few microns [3] in the case of denser
ones.

In the first case (low density materials), a descrip-
tion within the Ginzburg-Landau theory is appropri-
ate, if the superconducting correlation length es is
larger than the lateral rod dimension [4]. Such an
approach has been used by Leath and Tang [5] for
simulating the maximal critical current, the voltage
versus current behavior and the breakdown to nor-
mal state, on a bond percolation square lattice.
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For more compact materials we will be studying
here, the critical d.c. current is limited by the weak
links between grains [6] ; these are usually described
as Josephson junctions. Again, such networks are a
subject of intense interest, under magnetic field

specially [7].
The critical current of a Josephson junction is

given by :

R is the resistance of the link in the normal state ; J1
is the temperature dependent gap energy ; the last
tanh factor describes the depairing of Cooper pairs
caused by thermal excitation [8].

2. The model.

As described above, we model the sintered materials
as a network of Josephson junctions. Each interface
between two neighboring grains constitutes a junc-
tion (its critical current value is about 1 mA). These
Josephson junctions located at the boundary of a
same grain are interconnected by this grain, which
ought to be a bulk superconductor and to possess a
higher critical d.c. current than all junctions at its

boundary together.
In the following, according to the terminology of

networks [9, 10], a Josephson junction will be
denoted as a « node » or « site », its critical current
as its « node capacity » ; the connection between two
junctions located at the boundary of a same grain
will be denoted as an « arc », and the « arc capacity »
is not bounded here in a first approach.

For a lot of reasons, as well of physical as of
chemical nature, one expects that the critical current
of junctions is widely distributed between a maximal
value, and a minimal one (usually zero). For in-
stance, all junctions at the boundary of a non-
superconducting grain (a foreign phase) will be

defective, and possess a vanishing critical current ;
chemical alteration of the interfaces (the oxygen
surface concentration deviating from the bulk con-
centration optimal for superconductivity [11] will
also strongly reduce the maximal critical current of
the junctions located at these interfaces. Geometrical
factors, like grain size and shape distribution, their
relative orientation (texture) will also generate wide
distributions for the critical currents of junctions,
owing to the distribution of intergrain normal resist-
ance [12] (cf. [1]).
Within a classical model neglecting the phase

fluctuations of the superconducting order parameter
between the grains, the maximal critical current of a
composite and granular wire will be determined by
the maximal superconducting flux crossing the as-
sociated network (as described above), compatible
with the constraints that nowhere a capacity (critical

current of a junction) should be exceeded. Other-
wise, some of the junctions flip to the normal state
and dissipate heat ; the behavior of the material in
such a situation depends on the caloric coefficients
of the material and embedding medium [5]. If we
introduce the mild restriction that all capacities are
integers, we are able to solve the problem of the
determination of the maximal critical current (in-
teger also) by the maximal flow algorithm of Ford-
Fulkerson [9] in the associated capacitated network.
It is one of the outstanding results in econometrics
and linear integer programming.
The Ford-Fulkerson theorem in its usual form is

concerned with the maximal flow in networks with

capacitated arcs and nodes with unrestricted capaci-
ty. We transform our problem into this canonical
one by replacing a node with capacity k by a pair of
nodes with unrestricted capacity, linked by an arc of
capacity k [10] (Fig. 1).

Fig. 1. - Transformation to canonical network for capaci-
tated nodes. A node with capacity k is replaced by two
nodes of unrestricted capacity, connected by an arc of
capacity k grain (dotted).

The conclusions which may be drawn at this point
are the following :

i) we may simplify the network by removing all
dead sites, isolated islands and dead ends (primary
ineffective junctions, sites not connected to any
electrode or to one only), leaving over the backbone
of sites and arcs connected to both electrodes (called
source and sink in the network terminology) ;

ii) the maxflow-mincut theorem of Ford-Fulker-
son states that the maximal flow corresponds to a
minimal cut across the network (this is the sum of
capacities of the arcs cut in order to split the network
into two pieces) [9] ;

iii) this solution is numerical ; it is independent of
the topology and dimensionality of the space.
We will examine first the critical current in the

simplest networks of Josephson junctions, a « site
percolation » system. We assume that a proportion c
of junctions (sites) is defective, with vanishing
critical current (0), and that all active junctions are
identical with the same critical current (1).
Without restriction, we may assume that the

capacity of all arcs interconnecting the sites (junc-
tions) is unity also. This class of networks has unit
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arc capacity everywhere and is furthermore simple
(i.e. each node has inflow or outflow bounded by
one). Special results exist for such networks, namely
accelerated convergence for Ford-Fulkerson imple-
mentations, which can be run in a time of order
(v1/2a), where v is the total number of sites, a the
total number of arcs [10].
There exists also a relation for the distance from

source s to sink s’ (the electrodes), i.e. the minimal
number of arcs to be crossed from one to the other :

d(s, s’)v/Ic, (2)

where v is the total number of nodes of the network,
1 c the maximal flow, d the distance (in steps)
between the two electrodes [10].

3. Two-dimensional networks.

We present here results corresponding to the critical
d.c. current for two-dimensional lattices, a band of
width b and length n wrapped onto a cylinder
(periodic boundary conditions on b) ; we simplify
somewhat the connections, by keeping in a first

stage only a subset of one-way arcs, in an oriented
network. These assumptions are unessential for the
method, but not for the results concerning the

percolation, since the critical concentration and the
critical exponents are dependent on the fact that the
arcs are directed or not [13-15] ; evenmore, the
« susceptibility » exponents are anisotropic :

a) the triangular lattice : each site is connected to
two sites on its right, as shown in figure 2 ;

Fig. 2. - Triangular lattice. Each grain has a triangular
shape ; each vertex is connected to two vertices at its right
(bold arc) in each grain (dot-filled).

b) a lattice of « bricks » : it is a variant of a),
which looks more like superconducting sintered
materials (Fig. 3).

In figure 4, we represent such a typical configur-
ation, for a given concentration of defective sites.
The most stringent feature is that even in the

backbone, not all sites and arcs may be used

simultaneously, due to the bottleneck created by the
minimal cut somewhere in the lattice.
We recall that the maximal flow has a unique

solution associated with a unique minimal cut (up to

Fig. 3. - A lattice of « bricks ». Each grain has a

rectangular shape ; each vertex is connected to two

vertices at its right (bold line) in each grain (dot-filled).
There is no connection between arcs not crossing at a
vertex.

Fig. 4. - A flow in a triangular lattice. The size of the
lattice is 10 x 10 (width b, depth n) ; the concentration of
defects is 0.35. Squares : connected active junctions ;
hexagons : connected inactive junctions ; (x) : primary
killed junctions ; (+) : partially or fully disconnected

junctions ; bold line : a current path ; normal line : unused
arcs ; dotted line : partially connected arcs. The two sites
at the left and right represent the electrodes (source and
sink resp.). Note the periodic boundary conditions on the
links from the upper to the lower sides.

accidental degeneracy) ; the cut is a « surface »

cutting the network into two pieces such that the
sum of capacities of arcs crossing this « surface » is
minimal. Many configurations of the flow lead to
this optimal solution for the current. The physical
ow wou e an a equa e average over a ese

flows ; but this is irrelevant for our present problem,
the determination of the maximal critical current.

In figure 5, we report the results for the critical
current versus concentration of defective junctions,
for various choices of b and n ; an average over one
hundred configurations per concentration has been
performed, and the computational fluctuation has
been recorded.

For all perfect configurations, the maximal critical
current 1 c is b. This corresponds to the limit of the
inequality (2), with d(s, s’) = n, and v = nb. We
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Fig. 5. - Critical current and variance for 2d-lattices.

Critical current density ic&#x3E; = 1 N03A3Ic/b and variance
(1 N03A3 (ic - ic&#x3E;)2)1/2, where b denotes the width, N
the number of configurations. A : Bricks 10 x 10 ; B :

Bricks 10 x 20 ; C : Triangles 10 x 10 ; D : Triangles
10 x 20 ; E : Triangles 10 x 30. The curves A, B, C, D, E
are shifted upwards for a better readability of 1.0, 0.75,
0.50, 0.25, 0.0 respectively. Note that the critical concen-
tration diminishes with the ratio b/n, and the critical

current density scales accordingly.

therefore reported the current density ic = Ic/b in
2d.
At very low concentration of defects, the maximal

current is linear versus the concentration, since each
defective node (junction) removes a path.
There exists a threshold concentration c * above

which the current vanishes. This threshold coincides
with the percolation limit (probability that there
exists at least a path crossing the network [16]). Near
the threshold, the path is unique and self-avoiding.
For finite samples, the percolation limit depends on
the size and shape of the sample, and is shifted from
its limit value in an infinite system. Extrapolation
procedures are exposed in references [14, 17]. Ac-
cording to the SSG model [2] adapted to supercon-
ductors [18], near the concentration threshold, the
critical current should scale as a power law :

We analyzed our data in that model ; but rather than
extracting the critical exponents of the percolation
region near the cutoff (our actual data are too scarce
for that purpose), we merely checked that such a law
is accurate quite over the whole concentration

range. The exponents obtained in such a fit are

somewhat sensitive to the threshold concentration

and the domain fitted. We recall that the aim of this

work is to explore the domain above the percolation
threshold ; the results are reported in table I.

Table 1. - Fit of critical current densities versus
concentration to a power lax. We compare our results
with results existing in the litterature for the perco-
lation threshold. If we restrict our fit to the concen-
tration domain near the percolation limit, our ex-
ponents become closer of those of the percolation
limite

(t) B refers to the lattice of bricks, T to the triangular
lattice.
Note 1 : directed 2-dim. square lattice, site percolation

[13] ; 03B2 refers to the parallel coefficient ; cf. also [14, 15].
Note 2 : directed 2-dim. triangular lattice, site perco-

lation [13].

Conclusion.

In this paper, we showed how granular sintered
superconducting ceramics may be modeled as a

network of Josephson junctions. Within the classical
model neglecting the phase fluctuations of the super-
conducting order parameter defined in each grain,
we showed that the Ford-Fulkerson theorem and the

associated algorithms is a very efficient way to

determine the critical superconducting current, inde-
pendently of the dimension of space, with the sole
limitation of integrity on capacities and flows. The
main result, that the maximal flow (critical current)
is limited by the minimal cut (an interface cutting the
network into two pieces with minimal throughput) is
immediate. The network model is independent of
the real dimension of the space. Here, we applied
just our model to the generalized site percolation on
two-dimensional directed triangular- and square lat-
tices. This is a more general problem than the usual
percolation, since we have to find out the maximal
number of correlated non-intersecting pathes cros-
sing a network for a given concentration of defective
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junctions. This is related to directed self-avoiding
walks in polymer physics [19].

It is possible to fit the critical current density to a
power law (such a power law is strictly valid near the
percolation threshold only [18]) over the whole
concentration range ; but the exponents obtained in
this way are slightly higher than those obtained for a
neighborhood of the threshold concentration only.
All these parameters are size- and shape dependent,
and accurate determinations would require bigger
samples and more refined extrapolation procedures
[17, 14].

If the percolation has been well studied on mix-
tures of classical superconductors and normal ma-
terials [18], only very few experimental results exist
for new ceramics about the dependence of the
critical current versus the concentration of defective

junctions [20]. In order to correlate to properties
like texturing [5] or interface oxygen stoichiometry
in ceramics [11], one has to rely the maximal critical
current of a junction to the physical and chemical
parameters. We considered here intergrain junc-
tions ; but the model may be useful for inner grain
junctions also [21]. We hope to extend this work to
directed and non directed networks in two and three

dimensions, taking into account of other physical

and chemical parameters, and randomness [22].
Extensions to quantum aspects like localization [23]
or vortex flux lines remain for the moment out of

scope.
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Note added in revised version. J. Rhyner and G.
Blatter (Phys. Rev. B 40 (1989) 829) examined
independently the problem of maximal critical cur-
rent on textured materials along similar ideas, in the
framework of linear programming and duality be-
tween the maximal flow and the minimal cut [10],
without the integrity assumption about capacities
and currents. However, the numerical convergence
of the simplex method they are using is exponential,
and is less effective than efficient implementations of
the Ford-Fulkerson algorithm, which requires the
integrity condition, but can be run in a time polyno-
mial in the size of the system.
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