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Generalized Poole Frenkel (PF) effect with donors distributed in energy
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banne Cedex, France

(Reçu le le, décembre 1988, révisé le 27 juin 1989, accepté le 8 septembre 1989)

Résumé. 2014 Une étape supplémentaire est franchie dans la généralisation de l’effet PF, en considérant l’effet
d’une répartition des donneurs, en énergie, dans la bande interdite. Différentes lois de répartition sont
étudiées. Les distributions uniformes sont d’abord traitées d’une manière extensive. Les simulations

numériques ont révélé des similarités évidentes avec le cas d’un seul niveau donneur. L’ionisation par le champ
est ensuite déterminée pour des distributions exponentielles. Au passage, une loi exponentielle, rencontrée
quelquefois dans la littérature, est analysée. Les conditions de résolvabilité de l’équation différentielle de base
sont indiquées. Le calcul et la simulation sont, en outre, étendus à un système à deux bandes uniformes.
Finalement, une méthode de résolution approchée est proposée, lorsque les distributions ont des formes
quelconques.

Abstract. 2014 A further step in generalization of PF effect is got over, in considering the effect of a distribution
of donors in energy, within the gap. Various laws of repartition are studied. Uniform distributions are first
treated extensively. Computer simulations pointed out very conspicuous similarities with the one donor level
case. Field-induced ionization is then derived for exponential distributions. An exponential law, given
sometimes in literature, is analyzed throughout. Conditions of solvability of the basic differential equation are
indicated. Moreover derivation and simulation are extended to a system of two uniform bands. Finally, an
approximate method of resolution is proposed, when distributions of any shape are concerned.

Revue Phys. Appl. 24 (1989) 1097-1110 DÉCEMBRE 1989,
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1. Introduction. Basic hypotheses.

In theoretical developments dealing with Poole-

Frenkel (PF) effect, it is regularly supposed that one
donor level alone is present in the gap. Furthermore,
as was shown in a preceding paper [1], a PF satu-
ration can be foreseen, when introducing Fermi-
Dirac statistics into derivations of field enhanced

donor ionization, instead of the usually implemented
Boltzmann function.
A step more in generalization can be made, if

some kind of distribution of donors in energy is

admitted. This is the object of the present paper. We
determine here the free electron density when a one-
dimensional PF effect is concemed, account being
taken of saturation, and for an any shaping of wells,
coulombic or not. Thus is obtained a larger based
Generalized PF effect.
Two classical types of distributions are considered

(Rose [2]) : (i) A uniform distribution ranging from
any shallow level, or from the conclusion band edge,

down to any deeper arbitrary level. (ii) An exponen-
tial distribution starting from any shallow level,
singularly from conduction band. In order to achieve
the furthermost attainable generalization, two other
repartitions are considered : a double-band with
uniform donor distribution ; and an arbitrarily
shaped distribution.

Fermi-Dirac statistics is used, as required by [1],
to describe site population. However, Boltzmann
function is retained to write down the density of
electrons in conduction band, as no band degeneracy
can take place in dielectrics to which PF theories can
apply. So that, when simulations are sometimes

performed until reaching parameter values that

would imply a small degree of degeneracy, these
ought to be considered only as describing an asymp-
totic behaviour. Compensation by acceptors is intro-
duced directly, the case of non-compensated donors
being simply a particular case, obtained letting the
compensation ratio q = N dl Nato tend toward infini-
ty. AU acceptors are supposed to lie far below the
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Fig. 1. - Schematic representation of a compensated uniform distribution of donors.

Fermi energy, in such a manner that, as in usual
treatments, they can be considered as completely
filled, whatever the field F and temperature T. The
presence of any other kind of flaws is neglected.
Finally it is admitted that the spin degeneracy factor
for electrons in donor sites is equal to 1. This is only
a matter of convenience, though being not in accor-
dance with the involved monovalent nature of
donors. But it can allow numerical fitting of the
limiting Boltzmann-type results with those found in
literature. Any way, this does not modify signifi-
cantly the reported behaviours.

2. Uniform distribution.

2.1 MATHEMATICAL FORMULATION. - The model

under consideration is represented in figure 1. Sites
of constant density Ad per unit volume and unit
energy, are distributed between a level El of depth
01 below the conduction band edge, and a level
E2 of depth cfJ2. The total density of donor sites is
then given by :

Let nd be the density of electrons coming from the
whole of sites, under a given applied field, and n the
density of free electrons. Then :

The density dnd of electrons liberated from an

elementary slab de, situated at any depth 0, can be
written

where is the relative field-induced

potential lowering for an any kind of well, either
coulombic or more steeply shaped. In this equation,
n depends upon a p only. Thus integration can be

made readily. Letting 17 and K =

Ad it becomes :

Taking account of equation (2), yields immediately,
in relative quantities :

N
with nr = n , and s = 2013 . This equation reduces

N~ 
1 

N~
readily to equation (4b) of [1], whenever 11 2.

2.2 SIMULATED BEHAVIOUR OF THE MODEL. -
The behaviour of function (4), studied by computer
simulation, allowed to put forward some important
peculiarities of the uniform distribution. The leading
parameters are 8n = -q 2 - qi 1 and the maximum
relative depth ’q2. Their respective influence is
studied separately, parameters s and q being chosen
so as to facilitate cross-checking with the one-level
model results.

2.2.1 Influence o f the maximum donor depth n2. -
712 has a very simple action on the behaviour.
To put this forward, we drew in figure 2 variations of
Ig nr in terms of ap, for various ~2 values. We
verified by curve superposition that they get rigor-
ously the same form, when the relative band width
811, as well as s and q are left constant. Curves are
simply shifted towards right hand side, pro-
portionally to 112’ Saturation occurs as for the one
level case, with the same limiting value s - s. As it

q
could be inferred directly from the model, figure 2
shows that, under a given field, conductivity in-

creases as the impurity band becomes nearer to the
conduction band.
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Fig. 2. -- Variations of nr versus ap for bands of equal widths = 10, for various depths lq2 (marked on curves).
s = 0.1 ; q =1.04 (nearly full compensation).

2.2.2 Band width influence. - All curves resulting
from the model of uniform distribution are alike the
curves given by the one-level model. To show this
clearly, we have represented in figure 3a, Ig n, =
f ( a p ) ; with 8n as the leading parameter, 172 being
held constant. Four families of curves are drawn.
Families (1) to (3) correspond to q = 1.04 (practi-
cally full compensation), and distinguish from one
each other by 3 s values : 10-1, @ 10- 3 and 10- 6
(decreasing relative density of donors). Family (4)
corresponds to a relatively high donor density
{s =10! 1 ) and to a very weak compensation
(q =106). Arrows in the figure indicate increasing
band widths. It must be emphasized that the chosen
S 17 values allow to examplify situations going from a
case very close to that of one-donor level

(S17 = 10- 4, or 6 W = 10- 4 to the case of a

wide band lying in between the conduction band
edge and 02(3’q = 40 ).

Moreover, allowing 8n to fall down to values as
weak as 8n = 10-7, we verified that the lower curve
in these families have reached a limiting position,
which in addition coincides strictly with the related
curve given by the one-level theory of [1]. Hence it is
proved that, relative to the one donor level case, a
uniform donor distribution exhibits no other effect
than curve shifting. This is why, in figure 3b, slopes
corresponding to m = 1, and to m = 2 [1], are

obtained as well as transition regions from the
former value to the latter. Moreover, when the band
of donors approaches its maximum extension

(’6’q -5 17 2), conditions exist where curves are nearly
linear over the overall interval, with a small slope
corresponding to slope parameter values m ~ 2.

Remembering (see [1]) that stationary values of m
greater than 2 cannot be obtained in the frame of the

one-level theory, it is interesting to note that such
opportunity can arise better with a uniform distri-
bution.

2.2.3 Variations o f the interval of saturation. - The
range of saturation levelling is an increasing function
of the relative band width 6q , when ’n 2 is kept
constant. This results from two combined effects : (i)
curves are shifted upward as 8’n is enhanced, because
shallower levels are then brought nearer to conduc-
tion band edge ; (ii) whereas the maximum value of

nr, amounting does not depend on

q
8n, when in addition, it is implicitly supposed as in
figure 3a, that Nd = Ad kT is kept constant. This
figure (families (1) to (3)) shows that, for constant q,
the range of levelling off increases as s is decreased.
Likewise, for constant s, it increases with q (famil-
ies (1) and (4)), so that conditions can be met where
saturation extends practically over the full range of

a p. Then, and rather paradoxically, a PF regime
nearly insensitive to the field can be theoretically
imagined.

3. Exponential distribution.

3.1 PRELIMINARY CONSIDERATIONS ABOUT THE

MODEL. - The density of sites is supposed to

decrease downwards exponentially. The elementary
donor density within a slab d 0, at any depth e, is
found in literature under two forms.
The first is Rose’s [2] expression, which is tran-

scribed here :
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Ad being the density of donors per unit energy
range, and To a suitable constant having the dimen-
sion of a temperature (see also Lampert and
Mark [3]).
The second expression is that indicated for

example by Pulfrey et al. [4]. It can be written :

b being a dimensionless parameter characterizing
the distribution sharpness. This form, contrary to

that of equation (5a), implies a strong temperature
dependence of the distribution steepness.
But actually this formulation should be misleading,

as it would lead to an unfaithfull variation of the
inter-side distance a, with temperature, at least for
the most commonly available dielectrics. This is
shown by a simple calculation of the total donor
density. This density Nd results readily from any
above expression for dNd. In order to introduce

directly the most general case of exponential distri-
bution, we suppose first that sites are distributed

Fig. 3. - lg n, versus ap for q 2 = 40 (4)2 = 1.04 eV for T = 300 K). Arrows indicate increasing 8 ~ : (t) 4 x 10-3 ; (u) 4 ;
(v) 10 ; (w) 20 ; (x) 40. 3a ( ) families (1), (2), (3) : s = 0.1 ; 10- 3 ; 10- 6 ; and q = 1.04 ; (----) family (4) :
s = 0.1 ; q = 106 (small compensation). 3b (----) part of family (4) already drawn in figure 3a (-) family (5) :
s = 10-6 ; q = 106. The second ordinate scaling on the left indicates the relative quasi-Fermi level - Schematic

drawing below abscissa visualizes band extensions associated with curves (t) to (x).
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Fig. 3 (Continued).

within a band limited by any two potential energies
El and E2, corresponding to depths 4&#x3E;1 and

4J2 (~2 &#x3E; Equations (5a) and (5b) give then
respectively :

with and ’YJ2 = 02lkT. In the particu-
lar, and most commonly admitted situation of a band

adjacent to the conduction band 01 = 0 and

CP2 = 00.
But as (6) indicates a proportionality to T, apart

from the T dependence of Ad, it leads immediately
to a variation of the inter-site distance nearly pro-
portional to T- 1/3. So that a large contraction of the
material would result from a growth in temperature.
In contrast, expressions (5a) and (6a) of Rose seem
more appropriate, as thermal expansion effects are
present only through Ad. Such a simple reasoning
shows that, even if Pulfrey-type distributions could
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be advantageous, to describe, in particular, capture
cross-sections varying exponentially with T, one

should be aware that they lead to an unusual thermal
expansion property.

Nevertheless, it must be noted that variations with
T of the shape of the distribution, would not be an
anomaly. It is well known that, in many semiconduc-
tors, the gap is a function of T which, in the simplest
instances, takes the approximate form :

À g being a parameter which, as an example amounts
to 4 x 10- 4 in Ge for T &#x3E; 200 K, following Macfar-
lane et al. [5]. Such variations are commonly attri-
buted to an increase in thermal vibration magni-
tudes, as well as to an enhancement of inter-atomic
distances, resulting from solid expansion (see e.g.
Blakemore [6]). But concerning the temperature
induced distorsions of distributions of flaws, theoreti-
cal as well as experimental foundations seem to be
few, though this notion is well stated. Thus for

example, Debye and Conwell [7] consider a more
general dependance O(Nd, T), for doped semi-con-
ductors like Ge or Si. Moreover, in the domain of

amorphous semi-conductors, a form like (7) can be
adopted following Mott and Davis [8]. For n-type
conduction these authors give an expression which
can be transcribed as :

But now it concerns electrons (holes) excited from
localized states into extended states. When applied
to the Davis and Mott model [9], where a narrow
band of localized states exists in the gap and pins the
Fermi energy near the centre of the gap, this relation

clearly applies for the depth of any of these states.
Thus it appears that in the formulation (5a) of Rose,
some dependence O(T) with T can be postulated.
With a linear variation, equation (5a) becomes :

In such a case, and provided that 1, a
linear dilatation of the material is liable to hold.

3.2 CALCULATION OF FREE ELECTRON DEN-

SITIES. - Introducing equations (5a) or (5b) instead
of simply Ad into equation (3) yields immediately :
either to

or to

Before contriving a fair method of integration, it can
be remarked that equation (8a) reduces to

equation (8b), if a parameter b = To/T is introduced
in it. Thus, they differ only through the fact that b is
a function of T in the former equation, and a

constant in the latter. Their integration can then be
treated in the same way, for constant temperature.
Now, in order to integrate, we take as a new

variable :

Hence, equation (8b) becomes :

with

3.2.1 Resolution for some simple Pul frey-type distributions. - Equation (10) shows that the remaining
quadrature is straightforward for the particular values of b : b = 1, b = 2 and b = 3. Then, the following
results obtain.

. 

P 
- 

ap ...

(al) For b = 1 and with Kl = N 1 which parameter reduces to s e for an mfmte
Nc

distribution starting from the conduction band edge, the density of free carriers is given by :

When 0 and 712 = + 00, this equation becomes :
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1, and ap &#x3E; In nr in order that PF regime exists, it approximates to :

Again, for q 1 = 0 and 172 = + oo , it becomes :

As 1, this latter equation is resolved readily and gives :

If the Pulfrey’s repartition function should hold,
equations (11) to (13) should give the right solutions,
but only for very few ranges of the distribution

stretching. Now it appears that b = 1 is a value

which makes the density of sites (5b) to fall off

rapidly, i.e. to 10-4 of the initial amount within the
range 9.2 kT. Then it can be appropriate only for
very narrow site distributions, typically for restricted
band tails in amorphous materials. A value b = 3
could be more adequate for some insulating ma-
terials, although they would certainly need b &#x3E; 3.

3.2.2 Research o f a general solution in T, for a Rose-
type distribution. - As Rose’s law could be prefer-
red to Pulfrey-type law, the above expressions (11)
to (13) remain established only for the temperatures

T = To, T = To/2, and T = T~/3. It can be remarked
here that Rose estimated that To should amount to
about 103 K. Thus, in the present development, this
would correspond to b - 3 at nearly room tempera-
ture.

Now, their would be needed for a general solution,
valuable whatever T. Such a solution does not seem
to exist, at least when Fermi-Dirac function is used.
Instead, a lot of solutions can theoretically be found,
each for a suitably defined relative temperature
b -1- T/ To. Because the remaining integral in (10)
can receive analytical solutions for any rational value
of b :
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c and d being integers. tC, transforms
(10) into the integrable form :

However, solutions become somewhat untractable
for large c and d values. Nevertheless it stands that,
theoretically speaking, determination of is

achievable for a large set of T (and To). But a
discrete variation with T, determined through as

many equations as many b values involved, is
substituted for the usual continuous variation.

Thus, expressed in terms of b, our model would
lead to a generallaw nr (b, s, q, F ), known through a
set of numerical values. Moreover To being a con-
stant characteristic of the investigated material, or at
least of the trap « freezing in » temperature, it must
be known for any actual application.
The above development reveals so awkward to

handle that it can be asked whether a direct compu-
tation of equation (10) should not be more advan-
tagious, after an appropriate choice of To. Yet it

constitutes a throughrough analysis of what is pos-
sible to do with an exponential distribution, when
the use of Fermi-Dirac statistics is not ruled out by
« at hand » hypotheses, as did Rose and many other
later authors.

3.3 SIMULATED BEHAVIOUR. - Simulation was

performed in terms of the applied field only. Two
cases of donor distributions are treated. The case

investigated mostly is that where qi = 0 and
= + m, b being chosen equal to 1, 2 and 3. The

other case corresponds to q 1 = 8 and 712 = + oo, b
being taken equal to 3. These are represented in
figure 4 which, as seen above, is interpretable diffe-
rently following the chosen formulation of the expo-
nential distribution. In the approach of Pulfrey et al. ,
the three given values of b allows to concretize the
influence upon of the distribution stretching.
In that of Rose, these same values of b, and hence
the same curves, examplify only the behaviour

resulting from a given exponential distribution at the
three relative temperatures b-1=1, 1/2 and 1/3.

Figure 4 involves mainly three types of curves.
The first represents (curves (1), (2) and (3)) an

example of the effect of a variation of b, for
s = 10-1 1 and q = 1.04 (nearly full compensation).
The second type is a family for which b = 3 (curves
(3) to (3d)) and q = 1.04, generated by a choice of
5 values of s, respectively 10-1,10- 2,10- 3,10- 4 and
10- 6. These curves show that the overall variation of

which is the greater the higher the compen-
sation, decreases with s. The height of the plateau of
saturation reduces accordingly, as it amounts to

s - S . The third type of curves is examplified by
q

curve (3e) which shows that, even when s is high, the

overall variation of nr is greatly reduced when

compensation decreases (q = 10.4 ).
The general tendency of curve evolution, when s

and q are modified, is as follows. At constant q, a
decrease in s results simply in an oblique sliding
down of curves, parallel to their linear initial parts.
This fact could already to observed with curves of
figure 3a, when a band with a uniform distribution
was concerned. In order to bring out further the
degree of similarity in behaviour between exponen-
tial and uniform distributions, two more kinds of
curves were drawn. First we built a curve (dashes)
generated by a uniform band of depth 14 kT (with
s = 0.1 and q = 1.04), adjacent to conduction band.
This curve remains very close to curve (3) until the
onset of saturation. Secondly, we drew a family
(dotted curves) deduced directly from the family of
curves (3), by taking simply 111 = 8 instead of

~ 1= 0. This results only in a curve shifting along the
a p axis, as in figure 2. At constant s, any enhance-
ment of q is equivalent to a stretching of the

a P scaling in the left direction. The observed re-
duction of the overall variation of nr is contributed
for these kinds of displacements, originating in s or q
modifications.
The physical explanation of these facts is involved

but, fundamentally, a high compensation « con-

sumes » almost all the electrons thermally excited
out from the shallower donors, which are also the
most numerous. A detailed interpretation of be-
haviour observed in figure 4 would need, every time,
a knowledge of the pseudo-Fermi level position.
Now, this figure displays also, on a second ordinate
scaling, the relative variations eF IkT of this level.
To take one example only, let us remark that, as far
as a band contiguous to conduction band is dealt

with, the position of with no field applied
remains practically unchanged, when s is decreased
from 10-1 to 10- ~ (q =1.04 ). So, the density

of free electrons, originating from thermal
excitation only, is practically constant. Conse-

quently, every Nd lowering entails a reduction in the
density of sites that remain filled. Their subsequent
emptying by the field brings then, in proportion, less
further free electrons and the difference between

n,(oo) and is reduced.
The above results allow to conclude that, when

distributions starting from the conduction band edge
are concerned, only those with slow enough dec-
rement (b . 3 ) are liable to bring about a well
characterized PF regime. In addition, two more
conditions are prescribed, except eventually for very
large b : a high compensation must be achieved,
together with a high total donor density (family of
curves (3)). Hence, it looks very improbable for such
donor distributions, to be effectively invoked when a
PF regime is stated as a possible interpretation of
permanent currents. Conditions to obtain a well-
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Fig. 4. - Variations of nr versus ap for exponential distributions of donors. 112 = oo. ( ) 111 = 0 band adjacent to
conduction band.

(....) band with 771=8 and same parameters as curves (3a)-(3d) ; (----) uniform distribution from 0 to 14 kT :

s=0.1; q=1.04.

shaped PF regime with an exponential distribution
are less severe when the band begins at a depth
r~ 1 ~ 0. But such a case is hardly considered in
literature for, when a band is disconnected from
conduction band, it is most often regarded as a

uniform band.

4. Generalization for any kind of distribution.

Calculations performed in the preceding subsections
can be generalized, either exactly or approximately,
whatever the shape of the distribution. As a matter
of interest, the simple case of two separated bands of
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Fig. 5. - Schematic representation of a uniform compensated donor distribution splitted in two bands.

donors is first treated exactly. Next, the case of a
continuous arbitrarily shaped distribution is devel-

oped, with the help of a suitable approximation.

4.1 DONORS UNIFORMLY DISTRIBUTED WITHIN

TWO BANDS. - Donors are supposed to be shared
within two arbitrary disconnected bands, in which a
uniform distribution prevails (Fig. 5). In the shal-
lower band, lying in between and

t/J 12 the constant donor density per
unit energy is Adl. It amounts to Ad2 in the deeper
band limited by 02, and ( ~21 ~ cfJ22)’ Calcu-
lations of paragraph 2 above apply then readily for
the two bands, and one obtains immediately :

In this equation :

To make easier the analysis of behaviours resulting
from this equation we transform it into :

where S 11 1 = 11 12 - 11 Il; S ~12 - 7122 77 21 ; and

p = sis 1 a dimensionless parameter characterizing
the fraction of total donor density present in the first
band (p &#x3E; 1 ).

Figure 6 gives some examples of curves obtainable
with the above model, in a (lg nr, a p) plot, when the
first band is contiguous to conduction band. Here,
the principal aim is mainly to try to take out the most
characteristic features of this system. The overall
donor density is supposed relatively high (s =10-1 ).
The relative proportions of the densities in the two
bands N d21 N dl = s2/sl = p -1, are modified

through p, at constant s. The (second) deeper band
keeps a constant width 8n2 = 2. Its maximum depth
is fixed to ’q22 = 40, except for curves (b) for which
n22 = 30. The width of the (first) shallower band is
more often taken as n12 = 3. Yet, larger values are
used whenever the effect of band widening is studied.

It is to be noticed that the final levelling, at large
a p, is the now well-known saturation levelling of the
deeper band. Let us recall that its magnitude is equal
to s - s/q, so that it moves downward and widens as
s decreases (see [1], Fig. 3).
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r

Fig. 6. - Variations of nr versus up for a double uniform distribution s = 0.1 ; n12 = = 2. Family a :

1722 = 40. Family b : 1122 = 30. For curves (c) and (d) : 1122 = 40.

4.1.1 Influence of a variation o f the relative densities
s2
- . - Curves drawn in full line in the figure result

Si
from p variations, the other parameters being held
constant. They show that an initial levelling can
occur or not following the chosen value of the ratio
p/q. An extended simulation put forward that a
threshold value = 1 separates curves displaying

an initial plateau from that which have none. Curve
(a,o) is then obtained which slope corresponds to
m = 2. When 1, this plateau occurs, and its
height is a decreasing function of p/q, very sensitive
to the ratio variations in the vicinity of 1. Conversely,
when p/q &#x3E; 1 the related curves display two linear
parts, the initial straight line getting a slope par-
ameter m = 1. Any ratio enhencement results in a
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right hand side shift of this initial line (curves
(a4)’ (a5) and (a~)). Curve (a6 ), on which the
straight line with m = 1 remains alone, has practi-
cally overtaken a limiting position, actually reached
when 40.

In order to precise further conditions for the

abrupt changing, occurring at the threshold, approxi-
mations that can be made on equation (15b) were
investigated. Suppose that a rough estimation of
nr on any initial plateau is made for, say ap = 10.
Equation (15b) writes then :

As 10-1:&#x3E; nr :&#x3E; 10- 8, 12 is very close to 1, while

Il approaches e. It results that :

To take an example, the initial value of nr in the
particular case of curve (a2 ) is given by :

It appears then that an initial levelling can exist
under the conditions,:::. q . This means physically

q
that Ndl &#x3E; Na. Given the respective band positions,
the first band alone supplies practically all the

electrons that filled the acceptors. Condition

Ndl &#x3E; Na is then simply that which ensures that free
electrons, coming from the first band, can exist in
conduction band. As the former is a very narrow

band, the enclosed donor sites are almost entirely
empty. Thus a low field applied is nearly unefficient.
When it becomes large enough some deep donors
begin to tempty, and the increasing part of curves
sets in. 

’

When p/q &#x3E; 1, shallow donors are not sufficiently
numerous to fill completely the acceptor sites. Fermi
level deepens, and a weak electron density only is
present in conduction band. This is why the related
curves are very close to curves given by a deep band
alone.
The distance apart the initial and the final plateaus

is independent of s, for :

It depends only on p and q, that is finally on the ratio
of the deep donor density to the density of shallow
donors in excess on acceptor density.

We built, in addition, curve (b3 ) corresponding to
= 30. The final saturation is shifted accordingly,

while the initial levelling remains unchanged, as it

depends only on shallow donors.
Moreover we drew, as a simple illustration, the

effect of a variation of q. Insofar as typification of
curves, with or without an initial plateau, is only
dependent on p/q, p was given the value p = 10. So,
curves (c) and (d) are obtained for q = 105 and
q = 1.04 respectively. They must be brought
together with curve (ao) for which q = 10.

4.1.2 Influence of the shallower band width. - To
get a somewhat deeper insight into the subject, we
examined the effect of a variation of width 1 of
the shallower band, the relative densities

s2/sl = p -1 being held constant as well as

s (s = 0.1 ).
It is then observed that enlarging the band makes

an initial ascending line to appear, which slope
corresponds to m = 1. This straight line shifts toward
right hand side as 5 17 1 increases (curves : (a3 ) for
6 q = 9 ; (a3 ) for 5171 = 15). The initial levelling is
reduced accordingly.
As a final remark, let us indicate that curve

(ao), obtained with 5171 = 3 and p/q = 1 is not of a
special kind which would display one straight line
only, with slope parameter m = 2. Because as a

matter of fact, curve (a4 ) results when 8171 = 15,
this curve being akin to curves (ai) to (a6 ).
4.1.3 Conclusive comments on the model. - The
account above allowed to put forward some import-
ant features deriving from the double-band model,
with one band adhering to conduction band. In

particular, this model brought a new way of in-
terpretation of curves displaying an initial levelling
(ohmic regime) followed by an « original » PF regime
(m = 2). Now, it is well known that many authors
tried to find theoretical formulations of such a kind
of behaviour, in terms of PF effect. Some introduced
for that corrections of the basic formulation through
a three dimensional PF effect (Hartke, [10] ; Hill,
[11] ; Ieda et al., [12] ; Connell et al., [13]). While
others brought along additional hypotheses ; for

example the existence of free carriers excited from
two flaw species : coulombic sites on the one hand,
and any kind of traps undistortable by the field on
the other hand. Then, under the condition that with
no field applied, the latter provides a larger amount
of conduction electrons than the former, an initial
ohmic conductivity prevails (Hirai and Nakada,
[14]).

In our model where donors and acceptors are

exclusively introduced, only the « original » PF re-
gime can be associated with this initial regime.
However, it is certainly possible to find conditions
where such an association can hold with any other
kind of PF regime (1 _ m _ 2 ). For it is believed
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that it would suffice to add to coulombic sites some
kind of traps insensitive to the field, in order to shift
the Fermi level to a suitable position. This is the

point of view of Mark and Hartman [15] that we
admit provisionally as we did not yet perform
calculations corresponding to the related model.

4.2 LEVEL DISTRIBUTION ACCORDING TO AN ARBI-

TRARY FUNCTION. - It is possible to determine in a
convenient approximate manner, and with the help
of computer calculation, theoretical nr ( a p ) vari-

ations corresponding to any kind of donor distri-

bution. The related function giving the density of
sites per unit energy can be written as :

where f is a well-behaved function, which remains
bounded over any suitable interval in 0.

Now, the exact solution nr ( a p ) can be derived
readily from calculations of the preceding subsection.
It is sufficient for that to use the geometrical
definition of integrals, that is to replace integration
associated with by a discrete summation over
an infinitely great number of. adjacent rectangular
areas, dO wide. Calculation reduces then to a direct

generalization of equation (15). But the infinite
series so obtained is quite untractable. Fortunately
this can be reduced to few terms only, without
entailing large deviations, owing to the relative

insensitivity of towards the effective shape of
the distribution. For, it was shown in figure 4 that an
exponential distribution could be roughly approxi-
mated with only one uniform band (curves 3, 4),
except in the saturation region. Some testing simu-
lations allowed us to verify that a set of two or three
bands is sufficient to ensure a convenient fitting in
this region (maximum local departure  20 %).

Consider then figure 7 in which the area under an
arbitrarily shaped function was approximated
by a few joined rectangular slabs, of equal thickness

Fig. 7. - Any shaped donor distribution.

Each area represents a density of sites, which
can be written for the v-th rectangle :

Hence, the total density of sites is given by :

where : 4&#x3E;1 and cP2 are the limiting depths of the
distribution. They are generally zeros of f ( ~ ). A
straightforward generalization of (15) leads to :

As N can be limited to a few units, equation (20)
becomes practically as easily tractable as (15).
So as to emphasize how much this approximated

method of resolution can be relevant let us recall

that, when is a power function, with either an
integer or a fractional exponent, the integrals of
differential equations derived accordingly from (3)
are Dirac functions, taken over a finite interval.
Some of them are tabulated. Moreover, series

expansions have been proposed for example by
Sommerfeld [16], and then by Rhodes [17] or Dingle
[18]. But these processes of calculation do not seem
to bring, as easily as does equation (20), a solution of
equations of type (3).
We did not attempt in the present work any

simulation of the approximated method of resolution
of (3). Namely, we did not try to precise further the
numerical divergence with regard to the exact result,
issuing from the choice of a more or less reduced
number of slabs.

5. Conclusion.

The above developments showed that it was possible
to obtain some mathematical expressions, rather

easily tractable on a numerical view-point, when
Fermi-Dirac statistics is used. For the most conven-

tional repartitions, either uniform or exponential,
exact solutions could be found. It was also shown

throughout, that some expression of exponential
distribution, found in literature, is hardly admissible.
It was established moreover that calculation remains
tractable for any kind of distribution if an approxi-
mate formulation is used. Moreover, we put forward
an alternative interpretation of currents, often found
experimentally, which admit an initial ohmic regime
followed by a PF regime.

It must be emphasized that, as far as we know it,
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very few attemps have been made before to give
such a general treatment of site distributions. The
work of Pulfrey et al. for example, or that of Viger
et al. [19] based uppon a Rose-type distribution, can
be cited among the exceptions. The scarcity of such
treatments in literature seems attributable to two
main reasons. First, the general tendency, quite
natural before the advent of computational facilities,
was to reduce at a maximum the calculation com-

plexity, by a fair choice of suitable simplifying
assumptions. This is typically the case for Boltzmann
function which, introduced early on, leads always to
very simple equations admitting graphical
straightforward representations. The second reason
is that the greatest wealth of information, contained
into Fermi-Dirac statistics, seems to have remained
largely under-estimated, perhaps sometimes unsus-
pected, as it was shown about saturation [1], though
authors like Blakemore [6] put it forward through-
out.

At the outlet, the thourough investigation pre-

sented above leads to ask the following important
question. Is an experimentalist provided with an
available means, getting him a reasonable ability to
aknowledge some distribution of sites in the gap.
Our response is twice. Firstly, as we saw that

different shapes of distribution can get very close
forms for a major difficulty would arise in
distinguishing them. Especially, because the range
of larger divergence is in the vicinity of saturation.
Now, this saturation does not seem, as yet, to have
been found experimentally. So that attempts of

fitting data, with an apparently convenient model,
should not be considered more than plausible ways
of interpretation. Secondly, as we shall see in a

following paper, the same difficulty arises from
Arrhenius diagrams. It will be shown there that such
plots does not bring undoubtless proofs of effective-
ness of any energetic site distributions in the gap.
This will probably be the most prominant conse-
quence of our calculations, and of the assigned
simulations, developed along the present article.
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