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Résumé. 2014 Un effet Poole Frenkel (PF) amélioré est proposé, en utilisant une approche méthodologique
rigoureuse. Le modèle choisi est détaillé précisément, l’accent étant mis explicitement sur les hypothèses sous-
jacentes. La référence systématique à la fonction de Fermi-Dirac permet d’établir quantitativement le concept
de saturation PF. La théorie générale qui en résulte intègre, comme applications particulières, les précédentes
théories PF à une dimension.

Abstract. 2014 An improved Poole Frenkel (PF) effect, based upon a rigorous methodological approach, is

proposed. The chosen model is stated precisely, emphasis being made explicitly on the subtending hypotheses.
A systematic reference to Fermi-Dirac function, allows to establish quantitatively the concept of PF saturation.
The resulting general theory integrates, as particular applications, the previous one-dimensional PF theories.
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1. Introduction. 

’

The Poole Frenkel effect (labelled hereafter as PF
effect), a field-enhanced free carrier density associat-
ed with a field-reduction of a coulombic potential
barrier, was first proposed by Frenkel [1]. Many
theoretical developments have been published on
the subject from that time. Meanwhile it has been

largely used as a possible interpretation of many
experimental field-driven permanent non-ohmic cur-
rents.

An exhaustive analysis of the available PF theories
is beyond the scope of this paper. But we believe
necessary to give an outline of the basic subtending
hypotheses in order to emphasize, from a user’s
view-point, the diversity of PF models. These as-
sumptions are as follows.

(i) A single carrier (electron) is generally con-
sidered, referring to situations where n-type conduc-
tion is dominant.

(ii) Ohmic contacts are supposed to exist, so as to
ensure that electrons swept away by the field F are
replenished at the proper electrode.

(iii) Any space charge, either injected or de-

pleted, is generally ignored, whatever the field
which is mainly taken as uniform. Few exceptions

can be found, for example, in the works of Frank
and Simmons [2], Simmons [3], or Murgatroyd [4].

(iv) Mobility is more often supposed to be field-
independent, so that the basic, linear, drawing of
current is usually made in a Ig (1 /F ) versus

F1/2 plot. Such representation would be readily
justified in crystalline semiconductors, or following
Hill [5], in semi-crystalline materials. However, it is
largely admitted, in conformity with Jonscher’s [6]
statement, that PF effect can be detected only in low
mobility materials. For, high mobility in crystalline
solids would result, in high fields, in a depletion of
carriers, the re-trapping process becoming somewhat
inefficient. Consequently, PF effect is often intro-
duced as a plausible explanation of I (V ) curves in
semi-crystalline or amorphous materials, and even in
polymers, when pertinent graphical representations
give straight lines over a wide range of current. But,
then, arises the problem of expressing the pre-

exponential factor in PF laws. Usually this factor is
considered as independent of F in cases, irrelevant
to Schottky mechanism, where extended linear be-
haviour obtains in a (lg I, F 1/2) plot. However, a
wealth of other possibilities avails in literature. For
example, Jonscher [6] evokes two possible assump-
tions as to the fate of electrons out of centres. First,
electrons can be re-trapped by nearest downward
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centres. The author obtains so a pre-exponential
factor proportional to F-112, with three-dimensional
wells. Secondly, Jonscher assumes that the free
carriers may drift during a constant time before re-
trapping. A proportionality to F l2 is then found.
Besides following Hill [5], the drift velocity of

electrons, in completely amorphous materials,
should be proportional to F 1/2 as a result of a random
diffusion process. Likewise, Hall [7] proposes for
amorphous materials a pre-exponential factor pro-
portional to F -3/2 or to F -3/4 corresponding respect-
ively to hopping-type transitions and to diffusion out
of centres. Moreover the two current components,
simultaneously present, exhibit dependences of re-
spective forms exp {3 ft 12 kT and exp {3 ft 1 kT
(see (vi) below). But the problem of knowing in
what F and T combined ranges each one is dominant,
is not straightforward. It is to be stressed here that,
as a consequence, a fair choice of a graphical
representation is not free from ambiguity. This could
explain why many experimentalists do not sharply
discriminate (lg l, F 112) and (lg 1 IF, F 1/2) as PF

plots.
(v) Coulombic centres are mostly considered

(donors). Despite the fact that they can hardly be
accepted when deep levels are concerned, the range
of application of PF theories is usually extended up
to activation energies in excess of 0.5-0.6 eV. These
values are that given by Chang et al. [8]. But many
experimentalists use to consider activation energies,
deduced experimentally from PF analysis, ranging
up to 1.5 eV (Lovell [9]), 1.6 eV (Hancomb and
Kaahwa [10]), or even 2 eV (Vollmann [11]), this
author taking, however, such a high value in a

simulation process only. If this range had to be

limited to much lesser values, we shall show in the
following that PF saturation, to be defined hereafter,
would reduce significantly the uppermost field

beyond which PF effect ceases to apply. However,
potentials steeper than the hydrogenic potential are
sometimes introduced in PF theories. They belong
to two main kinds : potentials in r- n (n &#x3E; 1 ) originat-
ing in multipolar defects (Arnett and Klein [12]), or
screened Coulomb potentials (Fritzsch and Bobe
[13]). But then, the classical PF law is modified. For
example, with centres of the first kind, 1 becomes

proportional to exp (KFn ) with 1  n  1 and n - 1 as2
n - oo . The impurity potential is then less perturbed
by the applied field, and saturation is delayed to
higher fields.

(vi) Donors are considered either alone (Frenkel
[1), O’Dwyer [14]), or more or less compensated by
acceptors. In addition traps, neutral when empty,
are sometimes introduced, independently of acceptor
sites. When acceptors are supposed to exist, they are
always conjectured as being entirely filled with

electrons from donors, whatever F and temperature

T. Authors adopt usually various compensation
rates and distributions of neutral traps, seemingly as
a mean of providing, in a (lg u, F 1/2) plot, slope
adjustment to any values between f3/2 kT (donors
alone) and f3 1 kT, with f3 = (e3 / £ £0 )112 (Simmons
[15] ; Mark and Hartman [16] ; Yeargan and Taylor
[17]). This can afford an opportunity of application
of PF theories, to cases less simpler than that treated
originally by Frenkel, in contradistinction to Schott-
ky effect. It is to be emphasized at this point, that a
large amount of data results in slopes smaller than
expected, leading thus to rather large values of the
involved dielectric constant e. Alternatively, miscel-
laneous trapping can also be considered as a way
likely to succeed in an appropriate location of the
Fermi energy. Besides following Jonscher and Ansari
[18], neutral traps in amorphous semiconductors can
modify the transport processes of electrons, excited
from donors by the field, in such a way that an

effective temperature introduces in the PF equation.
(vii) One donor level alone is generally stated.

Additional levels are sometimes introduced (Mark
and Hartman [16], but they are then supposed to lie
far below the Fermi energy, so that they remain
completely filled over the entire ranges of F and

T, and does not supply electrons to conduction
band. This hypothesis seems to be supported by the
fact that complementary experiments such as ther-
mostimulated currents are in favour of a one-level
donor distribution (Servini and Jonscher [19]). But
we shall show in a following paper that these are not
unquestionable proofs.

(viii) Moreover, the various PF models can be
roughly subdivided into one-dimensional (PF-1D)
and three-dimensional (PF-3D) models, the latter

taking account of the direction of electron emission.
The three-dimensional models differ from one

another by the way in which the probability of
electron ionization in the reverse direction is con-

sidered. For Jonscher [20], this is a negligible
quantity ; for Hartke [21], it does not depend on
field. Hill [5], as well as Connell et al. [22], determine
this probability as if the barrier enhancement in the
reverse direction were equal to the barrier lowering
in the forward direction. Ieda et al. [23], in addition,
truncate the potential well at a level cp ~ kT below
the conduction band. They obtain then two different
PF laws, appropriate for low and high fields respect-
ively. In addition, it can be noted that authors do not
agree on whether the two current components, in
the forward and reverse directions, have to be

summed or subtracted. This seems in relation with a

too much imprecise statement of the fate of excited
electrons. Such difficulty is apparently dropped in a
treatment by Pai [24]. This author uses Onsager
theory of Brownian motion, under the influence of a
field, of particules out of coulombic potentials
(Onsager [25, 26]).
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The above review shows that, conceming PF
effect, every ambiguity is far from being removed,
both from a theoretical point of view and from an
examination of the conditions in which experimental-
ists use to implement PF theories. An extensive
study of PF effect can be found in [27]. For the sake
of simplicity, this paper is dealt with PF-1D case

only.

2. PF saturation requirement.

A number of the above models lead to relations

tending asymptotically towards Ohm’s law at low
fields. But the essential feature, in view of the

following developments, is that they are all inde fi-
nitely increasing functions, eventually expressible
as :

However, PF effect proceeding from a donor empty-
ing process would inevitably result in a situation

where centres become completely ionized. Thus the
notion of PF saturation follows directly as a conse-
quence of the model. But despite its obviousness,
this notion is completely missing in literature. As we
shall show below, this comes from the simplification,
adopted steadily by authors, following which
Boltzmann function can be taken as the always
convenient approximation of Fermi-Dirac function.
Moreover, as shown in figure 1, the coulombic well
model loses any physical meaning for sufficiently

high field strenghts. The potential barrier of such a
well, of depth 4&#x3E;, is reduced in the field direction to
the magnitude 0 - {3 Ui (curve a). The barrier
vanishes (curve b) when F amounts to :

F s is called field of saturation.
Sites are then necessarily fully ionized, and the

density of electrons in conduction band is a maxi-
mum. For Fez Fg s the potential turning-point is
located below the ground state of centres. No

physical meaning can then be affected to centres so
soundly perturbed by the field.
But the question arises then to know the reasons

why PF saturation has apparently never been put
forward experimentally. It can be thought that, in
effective experiments, F remains always smaller than
FS. But determination of some orders of magnitude
shows that this is not necessarily the case. For

example, with e = 2.2 and for a site of depth
0 = 1 eV, Fs = 3.8 x 108 V.m-1, a value lesser or
comparable to the breakdown field Fd of some
insulators. Thus, for relatively shallow donor sites,
the condition Fs  F~ may be fulfilled. In such a

case, saturation is likely to occur ; and particularly
when a distribution of donors in energy is con-

sidered. Why then no experimental proof of PF
saturation exists in literature. We believe that, in

absence of the theoretical concept of saturation,
experimentalists liable to have observed such an

effect, would have preferentially chosen other

mechanisms than PF effect to interpret their data.

Fig. 1. - Evolutions of the field-induced coulombic well profiles (a)
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3. Effective determination of saturation, when com-

pensation is present.

3.1 DESCRIPTION OF THE MODEL, AND CALCU-

LATION. - The concept of saturation being now
well stated, a complete calculation is needed. In

order to give a little more general approach, we
develop the case where compensation by acceptor
levels is present in any proportion. No other kind of
traps are supposed to exist. This latter hypothesis is
made to simplify calculations at the best, and as we
do not think it to be an essential one. Anyway it can
be re-introduced easily to give a little more sophisti-
cated model.

Five hypotheses are then made (Blakemore [28]),
and lead to figure 2.

(i) Acceptor levels are situated well below the
Fermi level, so that they remain completely filled,
whatever F and T.

(ii) A single donor level exists, at a depth 0 below
the conduction band ( ~ &#x3E; kT ).

(iii) The donor density Nd is greater than the

density Na of acceptors. We define then a compen-
sation rate as the ratio q = Nd/Na (q &#x3E; 1 ). lonized
donors and acceptors are supposed to lie far apart,
so that the two species do not perturb significantly
one each other. This hypothesis could be difficult to
maintain when q - 1 and Nd is very large. However,
it is to be noticed that, when large values are given to
Nd and Na this aims mainly in describing the limiting
behaviour of the studied functions, sometimes at the
risk of blurring somewhat the pertinence of the
model.

(iv) Boltzmann function can be used only to

describe the free electron density. Hence

(v) Fermi-Dirac statistics is used to define the

population of filled donors in the gap. Besides being

necessary to express saturation, this allows us to

avoid, contrary to previous treatments, any at hand
hypothesis about the respective positionings of

donor level and of Fermi level.

So, when an extemal field is applied, we can
write :

In this equation, it is supposed that the degeneracy
factor g for electrons in donor sites equals 1. This is
only a simplifying assumption, introduced in order
that asymptotic expressions of (4a) could be quanti-
tatively in accordance with the Boltzmann functions
found in literature. Now, a spin degeneracy factor
g = 1/2 should avail as pre-exponential factor in

(4a), for a monovalent impurity. But, taking
g = 1 does not affect significantly the analysis below.
Then, substituting in this equation n/N~ for

exp (- cl&#x3E;F n 1 kT), leads readily to :

density nr = n/N~, of electrons in conduction band,
can then be expressed by :

Fig. 2. - Representation of energy levels in the gap. Relative positions of Ed and EF are arbitrary.
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or

The quasi-Fermi level position, under an applied
field, follows immediately :

3.2 SIMULATED BEHAVIOUR IN TERMS OF FIELD F.
- In this sub-section we analyse the response to an
electric field, of a dielectric representable by the
above model. We chose for that a large set of

plausible values for parameters s, q, and 7], and for
the variable a. We determined first variations with
field of nr ( a ), and then that of the quasi-Fermi level
~F~a.

3.2.1. Variations of nr versus field. - Relative
variations of Ig nr in terms of a, are given in figure 3,
with q = 40, and for s = 10- 1 and s = 10- 6. a

ranges from zero to as = 7J (saturation). q is the

leading parameter ; it is varied by series of ten from
1.04 to 10~. This allows simulation of cases passing
progressively from nearly fully compensated ma-
terials, to non-compensated materials. Though calcu-
lations are made in a, figure 3 is also scaled in

a P, a p being the relative field-induced potential
lowering when non-coulombic centres are involved.
Thus, plotting becomes independent of the particular
form of the effective relationship relating a p to F.

Then nr takes the form :

For example, when a dipolar centre is concemed a
F2I3 law is substituted for the classical F 1/2 law.

Saturation is very apparent in the figure. It begins
at fields the weaker the weaker s. Actually, PF
saturation, as defined above, sets in only for

a S = 40. The observed precocious curve levelling is
apparently associated with the relative depletion of
donor densities, the maximum of nr amounting
necessarily to (N~ - Na) 1 N c = s(q -1 )/q. This

levelling off is directly dependent on Fermi-Dirac
function ; it disappears when Boltzmann’s function
is used (dashed higher parts of curves), for it leads to
an equation like (8). However, in some cases like
that represented by curve h, function (5) is still

growing for a p = a ps- This should imply that centres
are not yet fully empty, at the time where they are
losing physical meaning. But one cannot agree with
such an idea, as it is irrelevant with Fermi-Dirac
statistics. Now, it will be seen below (see Fig. 4) that
a certain degree of degeneracy takes place in such
cases. So that hypothesis (iv), and consequently
equation (5a), becomes invalid in the vicinity of

a ps. Then the only right procedure would consist in
substituting the true analytical expression of nr for
exp(- 45F,,/kT). But, strictly speaking, this is im-

possible as no analytical expression exists for the
relevant Fermi-Dirac integral. Nevertheless, some
approximate forms have been derived, available in
ranges of energy more or less restricted upwards. In
the present case, and for the sake of simplicity, it is
permissible to adopt the approximate form given by
Ehrenberg [29] :

Following Blakemore [28], the most appropriate
value for constant C is C = 0.27 for parabolic
bands.

It is evident that (7) transforms into (5a) if

C vanishes. We did not attempt a comparative
simulation of this equation.

Figure 3 shows also that for identical q, and for
sufficiently low a p values, the obtained curves

murge in, and become independent of s.
In order to compare the present curve shapes to

that given in literature, we recall that, following
Yeargan and Taylor [17], the various PF-1D pub-

lished laws can take the general form :

m being a « slope parameter » ranging from 1 to 2.
The case m = 1 is labelled hereafter as « usual » PF

effect ; while the case m = 2 is called « original » PF
effect, as it is dealing readily with Frenkel formu-
lation.
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Fig. 3. - Variations of Ig nr versus ap, with 17 = 40. The two field scalings (in V. m- 1) correspond respectively to : (1)

a = a = BVF (usual PF effect with e = 2.2, T = 300 K, 0 = 1.04 eV) ; (2) a - 
(,p2e1 )1/3 p2/3 (PF effect forkT ( ’ ’ ) ’ ( ) p kT ( ect for

dipolar wells, with wells : e = 2.2, f = 1 Â, T -173 K, 0 = 0.6 eV). Dotted lines represent the Boltzmann function,
for large q values only.

Retuming to figure 3 allows then to make the
following remarks. When a practically full compen-
sation is achieved (q - 1, curve a), n follows out a
« usual » PF law, until saturation begins to set in.
When compensation is negligibly small (q =10~,
curve h), the initial « usual » PF regime gives up
rapidly, followed by an « original » PF regime. For
intermediate values of q, the transition field from
the first regime to the second one, is a decreasing
function of q.

We conclude from this that whenever donors and

acceptors only are supposed to exist, a pure « usual »
PF effect is found for full compensation, whilst a
pure « original » PF effect appears in the case of no
compensation at all. Thus, the pioneering work of
Frenkel is well corroborated apart from occurrence
of saturation. But the analysis shows inversely that
authors like O’Dwyer [14] were not founded to
introduce the « usual » PF effect, when donors only
are present.
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Fig. 4. - Relative variations of 4&#x3E;Fn/kT versus ap’ for various values of s and q, and with 11 = 20. (----)

Finally our approach, based upon Fermi-Dirac
statistics, leads to two important results. (i) in

general conditions, the « usual » PF effect is present
together with the « original » PF effect ; each can
appear alone, only in limiting cases. (ii) PF satu-
ration is a fundamental notion, « consubstantial » to
barrier-field-lowering.
Our model could be completed by introducing

neutral traps, insensitive to the field, as did Mark
and Hartmann. This would give two more par-
ameters, which undoubtedly, would bring opportun-

ities to shift as desired the saturation threshold
towards high field strengths.

3.2.2 Quasi-Fermi level evolutions with field. -
Curves of figure 4 give the relative variations of the
quasi-Fermi level eF.,IkT, in terms of aP, that is for
the present purpose, in a. Three sets of curves are

drawn, corresponding to the three values of s : 0.01,
0.1, 0.9. Each set involves three curves obtained

respectively for q =1.04, q = 104 and q = 10~. The
bottom of conduction band is taken as zero-poten-
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tial. Depth of centres is represented by the open-
circle horizontal line (n = 20 ), which, for room-

temperature, corresponds to O = 0.5 eV.
It is apparent in the figure that, when compen-

sation is nearly complete (q - 1 ) the quasi-Fermi
level lies below the ground-state of coulombic

centres, for the lowest field strengths. Hence, Fermi-
Dirac statistics are needed to describe the field-
induced ionization process. But for weak compen-
sation (q &#x3E; 1 ), the reverse is true. Then Boltzmann
function can be used as a valid approximation, for
every magnitude of a, except in the vicinity of
saturation. And nr takes the form :

Simulation shows that this equation gives precisely
the whole straight lines (1) and (2) of figure 3.
An interesting additional remark can be made,

from a methodological view-point. If equation (5a)
is given in its approximate form, when - s e 71 - a ~ 1, @

~ 

q
one obtains :

instead of equation (8a). Significant departures
between these equations can then be expected, when
a nearly full compensation is achieved (q - 1 ). This
example shows how misleading formulations can,
sometimes, result from untimely simplifications of a
model.

Moreover, figure 4 shows that the quasi-Fermi
energy EFn is an increasing function of F. As F is
increased, Ep tends toward a limit, reached the

more rapidly the weaker s. For a very high density of
donors (s = 0.9), and with very poor compensation
(q =104, q = 104), a certain degree of Fermi-level
degeneracy begins to set in at higher fields. From the
above considerations about Fermi-Dirac integrals,
the quasi-Fermi level positions, given by figure 4,
are not very accurate, in the range of saturation.

4. Study using a « sliding » yariable, 1- et
In the preceding sub-sections, we considered a as ~
the direct (reduced) variable, and Ty as a parameter,
characteristic of the material under investigation.
But if we look at equations (5), (7) and (8), we
observe they depend actually on the function

a ). Thus more generality can be achieved,
if we consider, instead of a, TI - a or rather

Or quite generally

X is then a relative « sliding » variable, AOp being
the barrier lowering for a non-coulombic PF effect.

4.1 VARIATIONS OF CONDUCTIVITY. - Figure 5 is a
plot of lg a against X, for a set of q values varying by
series of ten from 1.04 to 106. Three families of
curves are defined, by choosing three values of the
leading parameter s (10-1, 10-4, 10-6). A doubly
scaled abscissa is drawn, to give simultaneously X
and 7~.

Curves of figure 5 are symmetrical, with regard to
a vertical axis, to the corresponding ones of figure 3.
But figure 5 allows a general discussion more easily.
In this figure, it is clear that an essential feature is
the choice of an « observation window ». From that,
it appears that various conclusions are possible, in
the framework of the aforementioned PF theories,
depending on the behaviour of a given set of

experimental data. Consider for instance an ensem-
ble of coulombic wells, of depth O =1 eV. Suppose
moreover a field strength variation from
2 x 106 1 

to 2 x 108 Then, if e = 2.2
and T = 300 K, the « observation window » is li-

mited by QX = 12 (vertical dotted-line A), and
TlX = 37.2 (dotted-line B), or by X = 0.30 and

X = 0.93. Then our model shows that, depending on
magnitudes of s and q, an experimentalist can find
mainly three kinds of curves. If a curve similar to (1)
is obtained, he should infer that his data are relevant
to an « original » PF effect. Likewise, curve (2)
would give a « usual » PF effect. If a curve similar to
(3) is found, he would incline towards a less simple
explanation, where for example, space charge effects
are taken into consideration (Frank and Simmons
[2] ; Murgatroyd [4]).

Finally, as a great deal of crossed choices can be
made among the various parameters, it becomes
clear that our theory succeeds in reducing to a

unified approach many of the existing PF theories.

4.2 EVOLUTION OF THE « SLOPE PARAMETER » rrt.

- In the general case of equations (5), m is defined
as the inverse of the local slope of curves of figure 3.
That is :

Differentiating equations (5a) or (5b), leads then
to : 

’

1 1

In this equation, nr and n1 are the relative solutions,
positive and negative respectively, of equation (4b).
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Fig. 5. - Variations in arbitrary units, of against r~Y= ~(l20132013~ ) ( ) s = 0.1 ; (- - -)
s = 10- 4 ; (- - - - - -) s = 10- 6. Labelling of curves is that of figure 3. Vertical dotted lines A and B delimit an
« observation window » as quoted in the text.

Given equation (10), we are allowed to delimit
possible intervals of variation for m in terms of

QX. In figure 6, curves are shared out amoung three
families associated with three values of s : 10-1,
10-2 and 10-6.

It appears that, when compensation is very weak,
m passes through the stationary values 1 and 2,
which gives the straight portions of curves in figure 3.
While, for heavy compensation, m goes rapidly to 1,
so that the « usual » PF effect is obtained over the

most part of the X interval. Horizontal dotted lines

(m = 1 and m = 2) are drawn to emphasize the
behaviour of m resulting from Boltzmann function.
An additional horizontal line, placed between 1 and
2, would correspond to cases evoked by Yeargan
and Taylor [17], and Pai [24]. Figure 6 shows in

addition, that values of m &#x3E; 2 can be obtained, over
a more or less extended interval. But then, m does
not remain constant. Hence, a lot of experimental
data, interpreted in terms of classical PF effects,
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Fig. 6. - Variations of m as a function of
10- 6. Same labelling of curves as in figure 3.

with m &#x3E; 2, do not seem to be relevant to our

theory. A better relevance will be achieved when
distributions of donors in energy will be accounted
for.

5. Conclusion.

Our approach allowed us to show, in the domain of
theoretical studies of PF effect where everything
seemed to have been said for a long time, fundamen-
tal questions needed to be specified. As an extension

of PF theories our development refers only to strictly
isolated coulombic centres, thermally connected to
the host lattice through Fermi-Dirac statistics. In the
present paper, we went thouroughly into the essen-
tial, but still cast aside or misunderstood, notion of
PF saturation. Doing this led us to put forward the
misleading character of some over-simplifications,
even when apparently justified by ad hoc hypotheses.
This is, particularly, the case for the description of
trap populations by Boltzmann function, substituted
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rather universally for Fermi-Dirac function. Using experimental point of view, by our present PF
Fermi-Dirac statistics have resulted in a more general theory.
approach of PF effect, following which the so-called A lm 1 d t« original » and « usual » PF effects appear only as, 
limiting, peculiar aspects. Moreover, introducing a We are very indebted to Professor R. Coelho, from
« sliding » variable allowed us to show, through the the Ecole Supérieure d’Electricité, Gif sur Yvette,
choice of an « observation window », that a large for many helpful discussions and suggestions about
diversity of curves were interpretable, from an the present work.
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