
HAL Id: jpa-00246063
https://hal.science/jpa-00246063

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Self phase modulation of a Gaussian laser beam through
a non linear thin film

F. Bloisi, L. Vicari, S. Martellucci, J. Quartieri, P. Cavaliere

To cite this version:
F. Bloisi, L. Vicari, S. Martellucci, J. Quartieri, P. Cavaliere. Self phase modulation of a Gaussian
laser beam through a non linear thin film. Revue de Physique Appliquée, 1989, 24 (3), pp.411-415.
�10.1051/rphysap:01989002403041100�. �jpa-00246063�

https://hal.science/jpa-00246063
https://hal.archives-ouvertes.fr


411

Self phase modulation of a Gaussian laser beam through a non linear thin
film

F. Bloisi (1), L. Vicari (1), S. Martellucci (2), J. Quartieri (2) and P. Cavaliere (3)

(1) Dipartimento di Scienze Fisiche, Università di Napoli, I 80125 Napoli, Italy
(2) Dipartimento di Ingegneria Meccanica, Università Tor Vergata, I 00100 Roma, Italy
(3) Istituto di Fisica, Università di Lecce, I 73100 Lecce, Italy

(Reçu le 29 mars 1988, révisé les 30 juin et 14 novembre 1988, accepté le 14 novembre 1988)

Résumé. 2014 Après quelques expériences numériques, nous avons mis au point une technique permettant
l’évaluation rapide d’une intégrale apparaissant dans l’étude mathématique des anneaux de diffraction

produits par un faisceau laser gaussien auto-focalisé dans une couche mince de matériau non linéaire. Nous
montrons que les résultats obtenus à l’aide d’un simple micro-ordinateur (IBM-PC) peuvent être utilisés pour
en déduire la valeur du coefficient de non-linéarité de la couche étudiée.

Abstract. 2014 After some numerical experience, we developed a technique allowing the fast computation of an
integral appearing in the mathematical study of the diffraction rings produced by the self phase modulation of a
Gaussian laser beam through a non linear thin film. The results obtained by means of a simple microcomputer
(IBM-PC) are shown to may be used for the deduction of the non linearity properties of the film.
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Introduction.

The focusing of a Gaussian laser beam into a non
linear thin film give rise to the formation of spatial
rings in the Fraunhofer diffraction pattern. This

effect has been studied by several authors [1-14]
since it has found several application in bistable

devices, passive self limiter and non linear media
characterization. Passing trough a thin film the

amplitude, and hence the intensity of the beam is not
modulated while the dependence of the refractive
index on the intensity results in a phase modulation.
In this paper we restrict our attention to Kerr or
Kerr like media in which the total phase shift is

proportional to the intensity. This behavior may also
be taken as a valid approximation for thermal effects
[4, 8, 13]. A comparison between the measured and
the thaoretically predicted diffraction pattern allow
the computation of the non linearity coefficient. The
diffraction pattern is described by the Kirchhoff

integral whose computation is usually quite difficult.
With an appropriate experimental apparatus the

diffraction pattern may be measured in the far field
and, under these hypotheses, the Kirchhoff integral
may be calculated in the Fraunhofer simplification.
Yet an analytical solution doesn’t always exist. It has

been reported in literature [10, 13] for a Gaussian
beam but it has the form of a series quite difficult tb
be calculated also by means of electronic computers.
Hence the theoretical study of the diffraction pattern
has usually to be performed by numerical methods.
The process is quite cumbersome and time consum-
ing because the product of several oscillating func-
tions appears in the Fraunhofer integral and hence
very little integration steps have to be considered.
To simplify the computation a different approach
may be used. The diffraction pattern is characterized
by means of some parameters, as the number and
the position of the maxima, which are calculated
under simplifying hypothesis and then are compared
to the measured ones. In reference [6] it was ob-

served that the number of bright rings has nearly to
be the total phase shift divided by 2 03C0 and the

angular position of the outermost bright ring nearly
equals the maximum of the radial derivative of the
phase divided by the wave number k. This approxi-
mation is commonly used for the characterization of
non linear media. In a recent letter [15] we intro-
duced a new mathematical approach to the compu-
tation of circularly symmetric diffraction patterns. In
this paper we apply it to the systematic study of the
position of the first five maxima (bright rings) and
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minima (dark rings) in the diffraction pattern as a
function of the input power, of the non-linearity
coefficient and of the geometrical parameters of the
experiment. To test the validity of the method we
perform a comparison between our solution and the
analytical one in a region were it is accessible. In the
conclusions we present the position, in dimensionless
units, of the first five minima and maxima of the
diffraction pattern. The comparison with measured
diffraction pattern will allow the straightforward
calculation of the non linearity coefficient of thin
films. The calculation is quick and easy as the one of
reference [6] but it has an accuracy that otherwise is
allowed only by the cumbersome and time consum-
ing traditional numerical approach.

Diffraction equations.

The intensity of the incident laser beam at the

entrance plane of the non linear film is

where W is the beam waist and Io is the on axis
intensity. If the incident beam is focused on the thin
film the phase is constant. The intensity distribution
at the observation plane, in the Fraunhofer approxi-
mation, is

where k is the wave number, 2 03C0 03A60 is the total
phase shift at intensity Io, Jo is the first kind Bessel
function of order zero.

Equation (2) may be more conveniently written

where E = Iz2/I0 k2 w4, x = r,IW, y = krW/z.
Equation (3) has the advantage that E, x and

y are dimensionless quantities.

Fraunhofer diffraction pattern.

The normalized intensity distribution E (y ) given by
equation (3) may be expressed as a series

but some difficulties may be found for a numerical
evaluation of E(y) as given by equation (4). Obvi-
ously the summation has to be truncated somewhere.

The real part of the series is given by the even values
of s while the imaginary part is given by the odd
values of s. Both these parts are made of alternating
terms whose relative importance is function of both
y and s. For large values of y terms with large values
of s are more important than terms with low ones.
Hence the summation has to be performed for
several thousands of terms. Owing to these difficul-
ties direct numerical integration of equation (3) is

usually preferred [12].
A more convenient expression for E, requiring the

summation of decreasing real terms can be obtained
with the assumptions that both source and output
intensity distributions are zero outside of a finite

support. Although it is well known that a function
and its Hankel transform cannot be both limited to a
finite support, these assumptions are often « physi-
cally » true. A good example is given by the gaussian
beam we are dealing with. The Hankel transform of
a Gaussian function is a Gaussian. Of course from a
mathematical point of view the Gaussian function
extend to the infinity. Nevertheless from a physical
point of view it may be disregarded when the radius
is about five times larger than the beam waist and
the amplitude is reduced by a factor exp (- 25 ). It

has been reported [6] that the diffraction pattern of a
gaussian beam with Gaussian phase modulation

significantly differs from zero only when the angle of
view is lesser than the maximum of the radial
derivative of the phase divided by the wave number
k. The method we are using cannot be applied to
plane waves or to any wave whose energy isn’t finite
but may be successfully used for almost all actual
beam shapes with finite energy (i.e. circle function
even of very large radius, etc.). Further discussion of
these hypotheses is performed in the following when
they are used.
The normalized diffraction intensity distribution

given by equation (3) may be written as

where

is the Hankel transform of the normalized source

amplitude distribution

For the inversion property of the Hankel transform
it holds

We know that the energy has to be finite, hence the
integral
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has to be finite and hence the function F (y ) has to
go to decrease faster than the inverse of the square
radius. Since in the integral (7) F (y ) is multiplied by
J0(yx) whose absolute value decreases with the
inverse of the radius the integral

decreases at least with the inverse of y. Once given
an y * so that this integral may be disregarded it may
be assumed that F(y) = 0 for y &#x3E; y*. In fact

F (y) decreases faster than this integral. Now the
integral (7) reduces to

The function F (y ) is a continue function for physical
reasons and hence it satisfies the Dirichlet conditions
in the closed interval 0  y  y *. When a function
has these properties it may be developed in terms of
Bessel functions by means of the finite Hankel
transform [16]. If we select the basis given by the
zeroth order Bessel functions it assumes the simple
form

where JI is the first kind Bessel function of order

one, js is the s-th positive zero of Jo and F, is defined
by

Comparison with equation (7) shows that

and hence

Since the energy has to be finite at the input plane as
well at the output one, the same considerations

developed for F (y ) hold for f(x) that has to

decrease at least as the inverse square of the radius.
In our case they have a Gaussian decay and hence
the terms of the series in equation (9) quickly
decreases with increasing s. Hence it may be found
an integer N so that it may be assumed f(js/y*) = 0
for s  N. Once again this condition may be math-
ematically satisfied if f vanishes out of a disk.

Elsewhere it may be chosen so that f is so small that
it may be physically disregarded. Hence

In the following we assumed N = 200, a value that
appears to be sufficient in many cases of physical
interest. In figure 1 we show a diffraction pattern
computed by means of equation (10) (full line) and
of equation (4) (crosses). We encountered severe
difficulties to handle the numbers required by
equation (4) with our computer (IBM-PC) for higher
values of 00. Of course direct numerical integration
of equation (2) could be used but to achieve an
accuracy comparable to the one used in this paper it
would require computer times of two order of

magnitude higher.

Fig. 1. - Diffraction pattern for Vo = 2.0 obtained with
our method (full line) and using analytic solution (crosses).

Conclusions.

Computer implementation of equation (10) was used
to compute 500 diffraction patterns for 0  03A60  5.
Each diffraction pattern was composed by 200 values
of E given by equation (10). The position of the
maxima of the diffraction patterns are reported in
figure 2 while the position of minima are reported in
figure 3. For a discussion let us see figure 4 where
full lines represent the maxima positions, dashed
lines represent the minima position and crosses

represent positions in which there is a point of
inflection due to the merging of a maximum and a
minimum. The dash dotted line through zero is the
theoretical position of the external maximum in the
approximation of reference [6]. Several couples of
maxima and minima arise and evolve as intensity
increases. The first couple (A+ , A- ) arise for

00 = 0.55 at y = 2.3 and stay around the optical axis
y = 0. The other couples of maxima and minima
(B+, B-), (C+, C-), (D+, D-), (E+, E-) arise in
the range 3.8  y  3.9 for several values of 00.
After an initial assessment their distances from the

optical axis increase linearly with the intensity. For
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Fig. 2. - The position (y = krW/z ) of the maxima
(bright rings) of the diffraction patterns are shown for 500
values of 00 in the range [0, 5].

Fig. 3. - The position (y = krW/z) of the minima (dark
rings) of the diffraction patterns are shown for 500 values
of 03A60 in the range [0, 5].

Fig. 4. - The position (y = krW/z) of the maxima (full
line) and of the minima (dashed line) of the diffraction
patterns are shown for values of 00 in the range [0, 5].
The crosses represents the positions of flexes due to the
merging of the maximum A+ with the minima B-,
A- or C-. The dash-dot line is the position of the
outermost bright ring estimated following reference [6] :
y = (~8 7T/e) 00.

03A60 &#x3E; 1.5 the external maximum B+ follows the

straight line y = 7.0858 03A60 - 3.179 instead of the
straight line y = 6.5378 03A60 provided by reference
[6]. We observe that in some regions the maximum
A+ disappear since it merges to the minima

B-, A- or C- giving rise to an inflection point. The
number and the position of the maxima and minima
are very well defined for 00 = 2, 00 = 3 or

03A60 = 4. These values hence have to be preferred in
experimental works. The maxima position may be
marked on the screen and the intensity of the beam
may be increased until the actual maxima coincide
with the marked ones. The nonlinearity coefficient
may hence be easily computed from the intensity
value.
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