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Résumé. 2014 Nous étudions l’étalement d’une goutte de ferrofluide sur un fil. L’étalement du liquide
magnétique non mouillant est piloté par le champ magnétique créé par application d’un courant électrique
dans le fil conducteur. Pour un courant seuil, nous prédisons un étalement de la goutte sous une forme de
manchon. Cette transition de mouillage magnétique est analogue à la transition de mouillage sur une fibre
prédite pour un liquide totalement mouillant en présence de forces de Van der Waals. Nous montrons des
expériences préliminaires en accord avec nos prédictions théoriques.

Abstract. 2014 We study the spreading of a non wetting ferrofluid drop along a wire. The external control
parameter of the magnetic fluid spreading is the magnetic field generated by the current in the conducting wire.
For a current threshold we predict a spreading of the drop into a sheath coverage. This magnetic wetting
transition is analogous to the wetting transition on a fiber predicted for totally wetting fluid in presence of Van
der Waals forces.
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1. Introduction.

After pioneering works on wetting of solids by fluids
two centuries ago [1], it is only recently that many
efforts have been paid to determine completely the
spreading of a drop on a flat surface [2, 3, 4]. The so-
called spreading parameter S :

where yso, ysL and y are the interfacial tensions
between solid/liquid and liquid/fluid, controls the

wetting of the surface : S  0 corresponds to partial
spreading ; the drop forms a nearly spherical cap
with a contact angle 9 ( y cos 9 = yso - ’YSL).

. S :&#x3E; 0 corresponds to complete wetting ; the drop
spreads over the surface in order to achieve a

pancake shape analysed by de Gennes [2] and

Joanny [3]. The thickness e of this pancake results
from a balance between spreading power S and
disjoining pressure due to long range Van der Waals
forces. The typical size of this film (e =
b 303B3/2S), is generally of the order of molecular
size b except in the close vicinity of a wetting
transition (S ~ 0).

Wetting of fibers is of particular interest for

applications in textil and cosmetic industries. This

problem has been recently reconsidered in details by
Brochard [5] : due to the axial geometry of the fiber
the liquid does not spread out at S = 0 but at a
sensitively higher threshold Sc. At the threshold the
drop spreads into a sheath like coverage (manchon)
of typical thickness of a few nanometers. Some

experimental evidences of this wetting transition has
been reported [6, 7], but because of the molecular
thickness of the involved film the experiment is of
hard observation and is very sensitive to surface

roughness.
In a previous paper [8], we have studied the

ascension of a ferrofluid along a vertical wire. In
such an experiment the control parameter is the

magnetic field generated by the current in the

conducting wire [9]. A magnetic wetting transition is
predicted and clearly experimentally observed [8] :
at the current threshold the ferrofluid raises up along
the wire with a sheath-like coverage. The sheath
thickness results from a balance between the nega-
tive S parameter and the magnetic disjoining pres-
sure which monitors the spreading of the ferrofluid :
the sheath thickness is of the order of the wire
diameter (~ 100 J.Lm). The phenomenon is then

macroscopic [10, 11].
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In the present paper, we discuss in details the
existence of a magnetic drop/sheath transition and
the continuous or discontinuous character of this
transition. We then report on first experimental
observation of such a transition.

2. Theory.

The spreading of a drop on a thin cylinder, at

S &#x3E; 0, was studied by Brochard [5] leading to the
prediction of a wetting transition from a droplet to a
sheath coverage of the cylinder. The sheath thickness
is of the order of nanometers. Our theoretical

approach follows the main trends of this article with
magnetic forces in place of Van der Waals forces.
This allows us to predict a magnetic wetting tran-
sition for ferrofluids with 5 0.
The conducting wire is a cylinder of radius a,

parallel to the z-direction and we are interested in
the profile of the magnetic fluid drop r(z) (r : radial
distance from the cylinder axis) as a current of

intensity I is travelling through the wire ; the corre-
sponding magnetic field at a distance r is 1£0 I /2 7ra
where mo = 4 ’TT X 10-7 is the vacuum permeability.
The ferrofluid is characterized by a magnetic suscep-
tibility y at low field. The ferrofluid droplet is
immersed in a non magnetic surrounding liquid of
same density than the ferrofluid. For a monotonous
profile 0 -- 0 -- ?r/2 (cf. appendix 1 where the more
general situation 0 -- 0  7r is discussed), the free
energy of the system is :

where r’ = dr/dz, the different interfacial tensions
have been defined in the introduction (S : solid, L :
magnetic liquid, 0 : surrounding fluid). The first two
terms of (2) account for capillarity, the third one for
magnetism. The free energy F must be minimal for
all variations of the profile which conserve the total

volume of the drop : 1Ii = 7r f (r2 - a2) dz. Using a
Lagrange multiplier po, which may be interpreted as
the pressure difference between the magnetic fluid
and the surrounding one, we minimisez = F -
po f2 at constant volume n. One obtains :

where H = u 0 XI 2/8 7T2 y is a characteristic mag-
netic length. It is straightforward to verify that :

ils a first integral of (3) with the boundary condition
at the wire surface r’ = - tg 0 for r = a. As Van der
Waals forces are neglected our discussion is limited
to 0 # 0 (S  0). In (4) po value is determined from
droplet volume conservation after computation of
the equilibrium profiles. We first briefly recall the
main features of the simple case po = 0 which

corresponds to an infinitely large drop and is equival-
ent to the ascension along a wire.

2.1 ASCENSION OF A FERROFLUID ALONG A VERTI-
CAL WIRE (Po = 0).
2.1.1 Sheath coverage. - Let us assume that one
can reach a regime where the magnetic liquid
spreads along the wire leading to a sheath of uniform
radius r (r’2  1, r"  r-1). We get from (3)

i.e. the radius of the sheath is the magnetic length.
Contrary to the Van der Waals sheath (5) which is of
the order of a few nanometers, our magnetic sheath
is of the order of the wire radius a.

2.1.2 Magnetic wetting transition,. - An ultimate

integration of (4), with po = 0, gives the profile
z (r ) of the interface :

If the wire current is increased from zero to a low
value (H  a for instance), the magnetic liquid raises
up along the wire. If I is further increased, compu-
tation of (6) is only possible up to a critical magnetic
. length HS where (6) diverges (r‘2 , 0). At this

magnetic threshold the fluid raises up without bond
along the wire with a sheath like coverage of
thickness rs given by :

Using the sheath condition (5) (Hs = rs ) one obtains
the relationship between the contact angle 0 and the
critical magnetic length Hs. rs is the sheath radius
corresponding to complete spreading of the magnetic
fluid all along the cylindrical wire : this magnetic
wetting is analogous to the wetting transition pre-
dicted by Brochard in case of Van der Waals forces
with S &#x3E; 0. We have already reported [8] on the
experimental evidence of this transition for a ferro-
, fluid.

2.2 MAGNETIC SPREADING OF A FERROFLUID DROP

ALONG A WIRE.

2.2.1 Sheath coverage. - Let us again assume that
one can reach a regime where the magnetic drop
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spreads along the wire with a uniform radius r

(r’2  1, r"  r-1, except in the tip). We get from
(3) : 1

The pressure po of the drop has to be determined
from conservation of its volume :

L is the apex of the drop (maximum r value along
the profile, r = L, z = 0) ; the singularity r’ = 0 for
r = L is easily removed in the integration of (9) or
(10). Because of the required adjustment of

po through (10), the discussion is somewhat difficult :
as the magnetic length H is increased, there is a

decrease of both L and po as the drop flattens along
the wire. In order to make the discussion of the

possibility of a drop/sheath transition more illuminat-
ing, we anticipate on the fact that a sheath corres-
ponds to r’ = 0 and leads to a singularity in express-
ions (9) and (10). The relationship, for r’ = 0,
between the magnetic length H and the radius r is :

In figures 1 and 3, the right hand side (RHS) of (11)
is sketched versus r for 8 = 80°, corresponding to
our experimental conditions, at various normalized
pressures P = po al2 y. The choice of 9 (0  8 
03C0, cf. appendix I) is not very crucial, it only modifies
the numerical values but not the main features of

figures 1 and 3. In such a diagram, solutions of (11)
are the intersections of horizontal straight line of
ordinate H with the isobaric curve P. Depending on
the monotonous character of the RHS of (11) versus
r, the related isobars can be separated in two sets :
for P &#x3E; Pc isobars are decreasing functions of
r whereas for P  Pc the isobars exhibit a minimum ;
Pc is the 8 dependent normalized pressure for which
the minimum is also an inflection point (r = rc,
Pc=a/4rc).
2.2.2a Large drops (Figs.1 and 2). - In this regime
(P  Pc) every curve exhibits a minimum. Simple
calculations show that the H values of these minima
fulfil the sheath condition (8) ; whence we conclude
that these minima are a sequence of sheath coverage
(dashed line in Figs. 1 and 3). For low H values there
is only one intersection between horizontal and the
drop isobar P : it is the trivial solution r = L, the
drop apex. For example, the drop of figure 2 has an

REVUE DE PHYSIQUE APPLIQUÉE. - T. 23, N. 6, JUIN 1988

2.2.2 Magnetic sheath ; droplet wetting transition. -
An ultimate integration of (4), whatever po, gives
the profile z (r) of the interface :

Fig. 1. - Spreading of a large magnetic drop along a
conducting wire as the magnetic length H is increased (cf.
Fig. 2) : thick full-line : evolution of the apex L computed
from relations (9) and (10) ; full lines : isobars from RHS
of relation (11) at constant normalized pressure
P = po a/2 y with 0 = 80° ; dashed curve : sheath cover-
age condition (relation (8)). Subscript i is related to initial
drop conditions ; subscript T is related to threshold
conditions. At the threshold, there is a jump in the drop
profile leading to a sheath coverage of thickness rT : the

magnetic wetting transition of a large drop is discontinu-
ous ; subscript c is related to the end point of the sheath
coverage (cf. critical drop section). Numerical values are
given in the text and in caption of figure 2.

Fig. 2. - Computed profiles of a magnetic drop spreading
along a conducting wire : large drop of initial apex

Li = 26 a and initial normalized pressure Pi = 0.65 Pic
(Pc = 0.06). The contact angle 0 is 80°. Different curves
correspond to various current intensities and thus to

different magnetic lengths H : 1- (H/HT ) = 1, 5 x 10-1,
5 x 10- 2, 5 x 10- 3, 5 x 10- 4. HT = 2.34 a is the magnetic
length threshold of the magnetic wetting transition leading
to a sheath coverage of thickness rT = 2.8 a. LT = 22 a is
the drop apex at the threshold and P T = 0.51 Pc its

normalized pressure.
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initial pressure Pi = 0.65 Pc and its zero field initial
apex Li = 26 a corresponds to the intersection of the
isobar P; i with the x axis in figure 1. It is then

straightforward to describe the behaviour of such a
large drop as H is increased from zero : the thick
full-line in figure 1 is deduced from the computed
profiles (Fig. 2) : at low H values (i.e. low current,
there is only the apex L solution. The larger H, the
smaller L, the smaller P ; in figure 1 the full-line

displays this small P decrease from P i which is

followed from volume conservation [10] as the

profile is computed. This monotonous flattening of
the drop on the wire occurs until a critical magnetic
length HT (HT = 2.34 a in our example) at which the
horizontal line HT intersects the drop isobar (PT =
0.51 Pc) at both the apex (LT = 22 a) and the isobar
minimum (rT = 2.8 a) corresponding to a sheath

coverage rs. At this magnetic threshold the solution
LT of large apex can be no more followed (r’2
becomes negative somewhere in the profile !), the
apex value jumps down to sheath coverage solution
rT ; the drop spreads along the wire. Figure 2 shows
the spreading of the drop in the vicinity of HT. The
magnetic wetting transition is discontinuous but
discussion of the possibility of hysteresis effect at the
transition would require a more complete calculation
of the energy in the vicinity of HT. As H is further
increased, the sheath spreads more and more along
the wire following the dashed-line of sheath cover-
age.

2.2.2b Small drop (Figs. 3 and 4). - In this regime
the initial drop pressure Pi is much higher than
Pc ; figure 3 displays monotonously decreasing iso-
bars (P &#x3E; Pc)? and as the drop pressure decreases
with H, some P  Pc isobars are also included. For
monotonous high pressure isobars, there is only one

Fig. 3. - Spreading of a small magnetic drop along a
conducting wire as magnetic length H is increased (cf.
Fig. 4). Thick full-line, full-lines, dashed curve and various
subscripts have same meaning as in figure 1. Numerical
values are given in the text and in captions of figure 4. At
the threshold, there is no jump in the drop profile
(L, = rT ) : the magnetic wetting transition is continuous.

intersection with horizontal line H : the trivial apex
solution r = L. The full-line of figure 3 displays the
behaviour of a small drop (Li = 1.9 a and P; _
11 Pc) as H is increased from 0. The computation of
the drop profile (Fig. 4) allows us to follow L and P
through volume conservation : the larger H the
smaller the apex, the smaller P. Indeed, the different
decreasing isobars are swept very rapidly, even if
these isobars are no more monotonous (P  Pc) :
the apex value L is smaller than the sheath coverage
rs (H) (Eq. (8) is not fullfilled). As H is increased,
the flattening of the drop along the wire occurs until
a critical magnetic length is reached (HT = 7.1 a in
Fig. 3). Then the drop achieves a sheath shape of
radius rT = rs in its middle. At this magnetic
threshold there is no jump in the apex value

(LT = rT =1.5 a and PT = - 21 Pc). For small

drops the magnetic wetting transition is then continu-
ous. As H is further increased the sheath spreads
more and more along the wire following the dashed-
line of sheath coverage. Corresponding profiles are
given in figure 4.

Fig. 4. - Same computed profiles as in figure 2 with a
small drop of Li = 1.9 a and Pi = 11 P,. The different
curves correspond to : H = 0, H = 1.8 a, H = 4.1 a,
H=HT, H=8.8a (HT=7.1a, rT=LT=1.5a,
PT = - 21 Pc). The contact angle is 0 = 80°.

2.2.2c Critical drop. - Between the two previous
regimes a and b, there is an intermediate drop size
for which the threshold occurs at PT = P,, HT =
Hc, LT = rc and rT = Tc. It corresponds to the end
point of the sheath coverage curve. For such a drop
the magnetic wetting transition is turning from
continuous to discontinuous.

2.2.2d In finitely large drop. - Regime a is limited
on one side by the critical drop (PT = Pc) and on
the other one by the infinitely large drop (L = oo
and P = 0 whatever H). The magnetic wetting
transition is there indeed discontinuous and corres-

ponds to section 2.1 calculations of the ferrofluid
ascension along a wire with po = 0.

3. Expérimental observation.

A first experimental evidence of this drop-sheath
transition is presented in picture 1, it corresponds
only to preliminary experiments. The magnetic
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Picture 1. - Pictures of the spreading of a ferrofluid along a conducting wire of radius a = 50 03BCm. The current I in the
wire determines the magnetic length : (a) 1= 0.4 A, H = 0.3 a ; (b) 1= 0.7 A, H = 0.9 a ; (c) I = 0.75 A,
H = a ; (d) 1= 0.8 A, H = 1.2 a ; (e) 1=1.1 A, H = 2.2 a ; (f), (g), (h) 1=1.2 A, H = 2.6 a. Asymmetry in the
drop profile is due to an imperfect density adjustement between the ferrofluid and the surrounding liquid.

liquid is an ionic ferrofluid [12, 13] : a colloidal

dispersion of FeCo04 macroanions of typical size

10 nm in an alkalyne aqueous medium. Such ionic
ferrofluids exhibit a large magnetic relative per-
meability in low fields, for the present sample
g, = 1 + y = 5.6. The surrounding fluid is freon
and the two fluids have been chosen in order to
match their densities (Ap  10 kg.m- 3). Their inter-
facial tension is y = 0.8 mJ . m - 2. We use a copper
wire of radius a = 50 03BCm. For 1=1 A the magnetic
field at the wire surface (B = u 0 I /2 7Ta) is 4 x
10- 3 T and corresponds to a magnetic length
(H = 1£0 X 12/8 lr2 y) H = 90 03BCm = 1.8 a.
The drop of picture 1 is comparable to the large

drop of figures 1 and 2 : its initial apex for

1= 0 is Li = 26 a. Various pictures correspond to
various current intensities I in the wire and thus to

various H values. Pictures la to le are equilibrium
shapes (Fig. la : 1= 0.4 A, H = 0.3 a ; Fig. 1b :

I = 0.7 A, H = 0.9 a ; Fig. lc : 1 = 0.75 A, H = a ;
Fig. 1d I = 0.8 A, H = 1.2 a ; Fig. le : I = 1.1 A,
H = 2.2 a). In these pictures, the shape of the drop
is similar to those of figure 2, below the magnetic
threshold. There is an experimental difficulty, al-

ready pointed out in the previous experiment of
ascension along a vertical wire [8] : the apparent
contact angle 8 varies from picture la to picture Id,
it may be due to hysteresis effects induced by the
wire surface roughness. Anyway above 1= 0.8 A
(H &#x3E; 1.2 a, Fig. Id to Fig. lh), 0 remains constant
and equal to 80°. For this contact angle, the magnetic
wetting transition is predicted (cf. Fig. 1 and Fig. 2)

to occur for HT = 2.34 a, to be discontinuous and to
lead to a sheath coverage of thickness rT = 2.8 a.

These three points are closely compatible with our
experimental observations. Pictures If to Ih are a
sequence of dynamical shapes for H = 2.6 a (i.e.
I =1.2 A) that is just above the predicted
threshold.

If such a spectacular profile jump is observed with
large drops (Li = 26 a), on the contrary small drops
(L; = 2 a) experimentally experience a continuous
deformation from a drop-shape to a sheath-shape, in
agreement with predictions of figures 3 and 4.

4. Conclusion.

We have discussed the spreading of a non wetting
liquid magnetic drop along a wire. The control

parameter of the ferrofluid spreading is the magnetic
length which is related to the current in the conduct-
ing wire. For a threshold magnetic length we predict
a spreading of the drop into a sheath coverage. This
magnetic wetting transition is analogous to the

wetting transition along a fiber predicted for totally
wetting fluid in presence of Van der Waals forces.
We also discuss the continuous or discontinuous
character of the transition depending on the drop
size.
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Appendix I.

Depending on the contact angle 6 (cf. Fig. 5), r and z
being both positive, the profile r (z ) may be single or
double valued : a -- ri (z ) * r2 (z ). The free energy
of the system is :

where ri = dri /dz (i = 1 or 2) with r’ ::. 0 and

r2’  0. The first two terms of (a) account for

capillarity, constant contributions which disappear
in next derivations are here omitted. The last term
accounts for magnetism. Free energy F must be
minimal for all variations of the profile which keep
constant the total volume of the drop :

Using a Lagrange multiplier po, which may be

interpreted as the pressure difference between the
magnetic fluid and the surrounding one, we minimize
C = F - po f2 at constant volume 03A9. As z does not

explicitely appear in C, the equilibrium profile is
obtained through relations C - r! (a£/ 8r! ) = cst.
(i = 1 or 2). One obtains :

The boundary condition at the wire surface is

Fig. 5. - Drop profile near the tip : (a) 03C0/2  03B8  7r :

a , r1(z)  r2 (z ) ; (b) 0  03B8  ’TT /2 : ri(z)= a.

r/ _ - tg 0, ri = a. It is straightforward to verify
that :

- with i = 2 for 0 « 0 * 03C0/2 : as r’ (a )  0,
ri is equal to a all along the profile and r (z ) _
r2 (z ) on the whole range ;
- with i = 1 or 2 for 03C0/2  03B8  7T: the mag-

netic profile r (z ) is first equal to 71 (z) near the wire
(r’ (a ) &#x3E; 0) and then equal to r2 (z ) after the point S
where ri = r2 and rl’ = r2’ = oo (cf. Fig. 5).

Expression (d) is the general formulation of

expression (4) ; other expressions from (5) to (11)
are valid whatever the 0 value (0 « 0  7T ).
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